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Abstract 

The local characteristics of the anti-plane shear stress and strain field are determined for a material where the 
stress increases linearly with strain up to a limit and then softens nonlinearly. Two unloading models are considered 
such that the unloading path always returns to the origin while the other assumes the unloading modulus to be that 
of the initial shear modulus. As the applied shear increases, an unloading zone is found to prevail between a zone in 
which the material softens and another zone in which the material is linear-elastic even though the crack does not 
propagate. The divisions of these zones are displayed graphically. 

1. Introduction 

Crack behavior in nonlinear materials has re- 
ceived much attention in the past. Constitutive 
relations of many different forms were intro- 
duced attempting to simulate the response of real 
materials. Depending on the mathematical  model, 
the crack-tip stress field characteristics could vary 
in complexity. The anti-plane shear of a crack in 
a hardening material  under small scale yielding 
has been considered [1]. But the method does not 
apply to materials with softening behavior. The 
state of  affairs near  an anti-plane shear crack in a 
softening material  with local loading was consid- 
ered in [2]. One portion of the solution was 

elliptic in character and the other hyperbolic. 
This work further considers unloading along a 
path with modulus equal to that of the elastic 
portion. The results are compared with those for 
changing moduli where the unloading path always 
returns to the original state of  zero stress and 
strain. 

In-plane extension of cracks of softening mate-  
rials have been solved in [3] using the method 
established in [4]. As the material softens, the 
unloading modulus decreases with increasing 
damage. Such a model was also considered in [5]. 

2. Anti-plane shear with softening 

* Corresponding author. 
Hodograph transformation was used in [6] to 

obtain a solution for the anti-plane shear crack 
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Fig. 1. Anti-plane shear  stress versus shear  strain for a mate-  
rial with softening. 

KL. f ield 

0 312 

/ / /  
Fig. 3. Local coordinates referred to a semi-finite crack. 

problem of a softening material whose shear stress 
~- versus shear strain y behavior is shown in Fig. 
1. Note that E is on the elastic portion from O to 
M while S is the softening portion from M to Q. 
These two regions, i.e., elastic and softening with 
border OHA and OHA and AD (circular arc) in 
Fig. 2. While the antiplane displacement w and 
normal shear stress ~'n are continuous, the normal 
shear strain Yn and tangential shear stress ~'s are 
discontinuous across OHA in Fig. 2. The solution 
in [6] is mathematically admissible, but may not 
be physically plausible. Referring to Fig. 2, a 
material particle P in the softening zone could 
return to its elastic state with increased loading. 
Moreover, when the particle P is swept by ex- 
panding of the softening zone boundary, its stress 
and strain state jumps from S to E in Fig. 1. 
These two situations are direct consequence of 
non-linear elastic constitutive relation where 
loading and unloading take place on the same 
curve. Such an assumption will not be invoked in 
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Fig. 2. Linear-elastic and softening boundary and self-similar- 
ity character. 

this work. Two different unloading schemes will 
be used for the elastic-softening material that 
contains an anti-plane semi-infinite shear crack 
(Fig. 3). 

3. Constitutive models 

The constitutive relations in [6] are of the form 

"c~= Y~= y//y3/2, MSQ, (1) 

where j = r ,  0. In Eqs. (1), OM is the linear 
elastic path and MSQ the softening path in Fig. 
1. The corresponding ~- versus y relations are 

y,  OM, 

~'= 1 / ~ - ,  MSO. (2) 

For small deformation, ,/~ ( j  = r, 0) are related to 
the anti-plane displacement w as 

aw 1 0w 
v ,  = - f i r '  V0 = - - - -  ( 3 )  r 00 

Assume that the stresses and strains are con- 
tinuous on the softening-unloading boundary F s. 
That is, only continuous fields will be considered. 
Let the subscript t denote the instance when a 
particle is swept by Ft. Hence, t -  0 and t + 0 
correspond to the instances when Fs just before 
reaching and after passing the particle. The soft- 
ening side of F s is t -  0 and the unloading side 
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t + 0. It follows that the continuity conditions on 
F~ are: 

 I+o) = ( , , ,  = 0 , , - o ,  ) , 

( ,) /+°, ,,/S +°) = (,y', ~7') = (,), '-°, , )(-° ) . (4) 
The combination of Eqs. (2) and (4) yields 

,,,/.'+0 = (,,)#'+0) - 1 / 2  

~i +0 = (~,, +0)-3/2 ~,1 +0. (5) 

3.1. Unloading Model I 

Assume that the material unloads from S to O 
along a straight line as shown in Fig. 1. The 
unloading modulus G u is seen to decrease as S 
travels from M to Q. The unloading constitutive 
relation is given by 

7j = Guy j, (6) 

in which 

Gu = Tt+O/~/ t+O = (~ t+0 ) -3 /2  (7) 

3.2. Unloading Model H 

Suppose that the unloading modulus is always 
equal to the initial elastic shear modulus, i.e., 
G = 1. It follows then 

Arj = Ayj, j = r, 0. (8) 

The continuity conditions in Eqs. (4) and (5) can 
be invoked to yield 

• ,=y,+yJ+°[(yt+°)-3/2-1],  j=r ,O.  (9) 

The unloading path SP is shown in Fig. 1; it is not 
a straight line parallel with the elastic segment 
from O to M. In contrast to Model I, permanent 
or plastic deformation prevails when r decreases 
to zero while y does not. For Model II, Eq. (9) 
can be written as 

,2 = ~2 + (~,+0)2_ (~,+0)2 

+ 2 E (~;+%.-r;+°rD. (lO) 
j=r,O 

4. Solution of linear elastic and softening zone 

Let w e and ws be, respectively, the anti-plane 
displacement in the linear-elastic region E and 
softening region S. These two solutions take dif- 
ferent forms. 

4.1. Anti-plane displacements 

In the linear-elastic region, the anti-plane dis- 
placement is given by [6] 

w e = 2 ~ 1  s in(0 l /2  ), (11) 

in which r 1 and 01 are the polar coordinates with 
origin at x = 3 /2  and y = 0 as given in Fig. 3. 
Replacing r 1 and 01, respectively, by r and 0 and 
expanding Eq. (11) at r = 0, there results 

1 
w e = V~- - ~ - r  cos 0 + O(r2) .  (12) 

In the softening region, the anti-plane dis- 
placement is 

1 
ws= 7f(O ), (13) 

in which 

1 [3 cos 0 + q,(o)] 3/2 
f ( o ) = ~ -  [coso+~o(o)]X/2 sinO. (14) 

The function ~b(0) stands for 

qJ(8) = (9 cos20 - 8) 1/2. (15) 

4.2. Elastic/unloading/softening boundary 

When unloading occurs, the asymptotic ex- 
pression in Eqs. (11) and (13) remain valid 
asymptotically for the linear-elastic and softening 
region, respectively. The boundary F e is between 
the linear-elastic zone E and unloading zone U as 
shown in Fig. 4. It is apparent that unloading 
cannot take place in the linear-elastic zone with- 
out entering into the regime of softening. Non-di- 
mensional variables have been used to invoke 
self-similarity which reveals that F~ must be a 
straight line originating from the crack tip. 
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Fig. 4. Divisions of elastic, unloading and softening zones near 
crack tip. 

Without loss in generality, the boundary F s 
between the unloading and softening zone can be 
expressed as 

r=g(8) .  (16) 

Since F~ passes through the crack tip, the condi- 
tion 

g(0) = 0 (17) 

follows. Strain continuity on F s can be imposed 
on ws as 

( 0wS ] _ _  
3'[+0= 3'r,-0= t Or Sr=g(O) = - - f ( 8 ) / / g 2 ( 8 ) '  

(l ws / 

The resultant strain 3' becomes 

3",+0 = 3",-o = 4~( 8 ) /g2 ( 8 ) , (19) 

in which tb(0) stands for 

th(8) = [f2(81 + (dg/dg)2] 1/z. (20) 

Only the variable 0 is involved to account for 
strains at the start of unloading. Since w s in Eq. 
(13) must be finite at the crack tip and f(O)= 0 
for 0 = 0, the interface F S must be tangent to the 
x-axis at r = 0, i.e., 

lim g(O) ~ = 0 .  (21) 
040 

The function f(O) in Eq. (14) and its first deriva- 
tive dr/dO can be expanded at 0 = 0 as follows: 

f (8 )  = 4811 - 782 + O ( 8 4 ) ]  , 

d f  =411 -~02+O(84)] (22) 
d8 

Now, Eqs. (22) may be inserted into Eq. (20) to 
yield ~b(0) at 0 = 0: 

q5(8) = 411 - 382 + O ( 8 4 ) ]  . (23) 

5. Solution in unloaded region 

Let w u be the anti-plane displacement in the 
unloaded region. Expand w s near the crack tip 
r = 0 in a series: 

Wu = WO + E rmUm(8) • (24) 
rn=l 

Satisfaction of the equations of equilibrium given 
by 

0 070 
~r (r~'r) + 0--0- = 0 (25) 

can be made by making use of stress-strain and 
strain-displacement relations. 

5.1. Variable unloading moduli (Model I) 

Substituting the second of Eqs. (18) into Eq. 
(7), there results 

G u ~ -g3 (8 ) (~ -3 /2 (8 ) .  (26) 

Keep in mind that G,  depends on 8. Eq. (6) can 
be used in conjunction with Eqs. (3) for w = w, to 
express Eq. (25) as 

02Wu dG,  aw u [ 2 02Wu 0Wu ] 
Gu ~ - ~  - +  dO- a o - + G u [  r ~-~ 5 - + r  Or j = 0 "  

(27) 

Making use Eqs. (24) and (26), Eq. (27) solves for 
urn(8) in the unloading zone: 

d2um du  m 
88 2 - b p ( 8 ) - - ~ -  +m2Um = 0 .  (28) 
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Consider the contraction 

dGu 
p(O)  = --d-o-/Gu = P 1 ( 0 )  +p2(O)  (29) 

such that 

P l ( 0 )  = 3 -d-ff/g , P2(0) = -~-~-Ab. (30) 

Eq. (28) is a second order homogeneous differen- 
tial equation. Since pl(O) depends on g(O) of the 
unknown interface Is, the solution is made more 
difficult. Hence, only a local solution near 0 - -0  
is obtained. To begin with, let the asymptotic 
expression of g(O) satisfying Eqs. (17) and (21) be 
of the form 

r =g(O) =AO'[1 +AIO +A202 + 0(03)], 

n > 0, (31) 

where A, A 1 and A 2 are constants to be deter- 
mined. To find n, substitute the first of Eqs. (22) 
and (31) into Eq. (13); the displacement on the 
softening side of F s becomes 

4 
wslrs = ~ 0 - ' + 1 [ 1  + O(0)1. (32) 

The displacement w u on the unloading side of 
F~ can be obtained by substituting Eq. (31) into 
Eq. (24). This gives 

oo  

Wu IF, = WO + E zmonm[  1 + O(O)]Urn(O)" (33) 
m=l  

Finiteness of the displacement implies that w ~ 
O(1) must be the dominant term regardless of the 
form of urn(O). The displacements w s and w u 
must be continuous across F~; their dominant 
terms must have the same order. Therefore, n = 1 
and hence Eq. (31) can be written as 

r=g(O)=AO[1 +AIO+A202 + 0 ( 0 3 ) ] .  (34) 

Substituting Eq. (23) and Eq. (34) into Eq. (26), 
the asymptotic expression of the unloading modu- 
lus is given by 

Gu(0) = 1A303[1 + 3A10+ 3(A 2 +A2 + 3)02 

+0(03)]. (35) 

With the aid of Eqs. (34) and (23), Eqs. (30) 
become 

f f l ( 0 )  = 30-111 + AIO + (2A 2 -A2)O 2 + 0(03)], 

P2(0) = 9011 + O(02)] (36) 

such that Eq. (29) takes the form 

p(O) = 30-111 +AIO + ( 2 A 2 - A  2 + 3)02 

+0(03) ] .  (37) 

The two linearly independent solutions ~ U(m 1) and 
u~ ) in Eq. (28) can be obtained as 

1 2~2 0 ( 0 2 )  u ~ ) ( O ) = l - g m  ~ + 
[ 

u~)(O) = 0-2/1 - 6A,, 0 

- 1 2 A ~ - 6 A  2 + ~ - 9  02 log0 

+ 0 ( 0 2 ) ] .  (38) 

The general solution of Eq. (28) is 

Urn(O ) = amU(lm)( O) + bmu(2m)( O) 

=am[l-gtntT1-2tt2 + 0 ( 0 2 ) ]  

+ b r n O - 2 [ 1 - 6 A l O - ( 1 2 A ~ - 6 A z  

1 2 9 )021og0+O(02) ] ,  (39) + 5m - 

where arn and b m are constants to be determined. 
Differentiating Eq. (39), the result is 

du  m 
- x m  0 + O(0)] dO = am[ 1 2 

- 2bm0-311 - 3AlO 

( m2 9)02+o 02,1 + 6 A 1 Z - 3 A 2 + T - 2  

(40) 

Note that, if b m ~ 0, terms with a m are of higher 
order and can be neglected in Eqs. (39) and (40). 

a The second of Eqs. (55) in [2] for w m should be replaced 
by the second of Eqs. (38). 
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In view of the continuity conditions of w e and 
w u on F e, set r ~ 0 in Eqs. (12) and (24), there 
renders 

w 0 = ~3. (41) 

Eqs. (34) and (39) may now be inserted into Eq. 
(24). This leads to 

wu I r~ =AblO -1 + (Wo +A2b2 - 5AAlbl)  ( 17) 
+Ab 1 12A12- 6A 2 -  0 log 0 

+ O(0 ) .  (42) 

Putting the first of Eqs. (22) and (34) into Eq. 
(13), it is found that 

4 
WsIr,= ~ + O(0) .  (43) 

Comparing the coefficients of 01 and 0 ° terms in 
the above two equations and referring to Eq. (41), 
two relations for b I and b 2 are found: 

b 1 = O, A3b2 = 4 - v~A.  (44) 

Making use of the second of Eqs. (22), (40) and 
(44), the first derivatives of w u and w s with re- 
spect to 0 on F~ are derived: 

~Wu Fs O0 = -2A2b20-1 + 2A2(A1b2 -Ab3)  

- - [ 2 A 2 b 2 ( A  2 _ A  2 -  7) + 2A4b4]O 

+ O(0 ) ,  (45) 

~ws r~ 4 4A 1 4 
= - 0 - '  O0 A A A " A - - A 2 -  

4 0 ( 0 2 ) .  

Comparison of the coefficients of 0 -1, 0 and 
constant terms yield 

A3b2 = - 2, 

A4b3 =A3b2A1 + 2A l, (46) 

Z5b4 ~ - ( a 3 b 2 + 2 ) ( Z 2 - Z 2 -  7 ) .  

The results in Eqs. (46) combined with those in 
Eqs. (44) can be applied to obtain 

1 
A = 2V~, b2 = 12v~- ' b3 = b4 = 0. 

(47) 

With the results in Eqs. (41), (44) and (47), the 
local displacement for the unloading zone is 

Wu = vf3 - + a1[1 - ½02 + 0 ( 0 2 ) ]  

1 
- - - O - 2 [ l  +O(O)]r 2 

12v~ 

+ a 3 [ 1 -  902 +O(02)]r 3 

+a4[1  - -202+O(02)]r4+O(r5) .  (48) 

The shape of the interface F S can be obtained 
from Eqs. (34) and (47) as 

6 
r = -~-0[1  + O ( 0 ) ] .  (49) 

It follows from Eqs. (35) and (47) that the asymp- 
totic expression of the unloading modulus can be 
written as 

Gu(0 ) = 3v/303[1 + O ( 0 ) l .  (50) 

Eqs. (48) and (50) can be used to obtain the 
local strains and stresses. When both r and 0 are 
small of the same order O(e) and a 1, a 3 and a n 
are of the same order O(1), the displacement 
takes the form 

1 ( O ) 2  
Wu = v ~ -  1 2 - ~  

The strains are 

{ - 0 - 2 }  Tr r 

")/0 = ~ -  0 - 3  

and stresses are 

• r) r{ 
'7"0 ~ "~ 

+ O ( e ) .  (51) 

0 ( 1 )  } 
+ O ( e _ l )  (52) 

o,} io  3)} + . ( 5 3 )  
1 O(e 2) 

5.2. Constant unloading modulus (Model II) 

Substituting the constitutive relation in Eq. (9) 
into the equilibrium equation (25) gives 

(r~--~+ 1){%+yt+°[(yt+°) -3 /2 -  1]} 

~ {Yo+Y~+°[(Y'+°) - 3 / 2 - 1 1 ) = 0 .  + o--d 
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Eqs. (18) show that yt+0 and y~+0 depend only 
on 0. Hence, the above equation can be applied 
to obtain a second order partial differential equa- 
tion for wu: 

0 (r 0wu ) 1 OEw~ 
~rr t -~ r  + i  0-~ = F ( 0 ) ,  (54) 

in which 

F(O) =,:+°[1-(yt+°)-s/2] 

+ O--0 
If wg and w~ denote the particular solution, and 
the general solution of Eq. (54), respectively, then 

w~ = w2 + w~, (56) 

such that 

0 W u 0 0 w ~  ~ 1 2 a 

-~ r-~-r ]l + - - -  = F ( O ) r 002 

(57) 
0 W u O(r W: I 

~r t --~-r ] + - r  ~--~ =0 .  

The product solution 

w," = rfl (0) (58) 

when substituted into the first of Eqs. (57) gives 

d2f l  
80 2 + f l ( 0 )  = F ( 0 ) .  (59)  

Eqs. (18) and (19) may be put into Eq. (55) so 
that 

F(O) =f(O)g(O)[~b(O)]-3/2 f(O) g2(o) 

d ~og(O)[~b(O)]-3/2 } 
dO 

d 1 d f ]  
+ ~  g2(O) dO]" 

(60) 

It can be estimated from Eqs. (22), (23) and (34) 
that Eq. (60) with terms up to the order of 
0(0 -2 ) can be retained to render 

F(O) = - 8 A - 2 0 - 3 [ 1  -A,O + 0(02) ] .  (61) 

Eq. (59) simplifies to 

d2fl  
d02 +f,(O) + 8A-20-3[1 -AIO + O(02)] = O, 

(62) 

the solution of which is 

fa(O) = -4A-20-1 [1  + 2AlO log 0 

+O(0  log 0)], (63) 

The particular solution in Eq. (58) follows 

w~ = -4A-ZrO-l[1 + 2A10 log 0 

+O(0  log 0)]. (64) 

The differential operators in the second of Eqs. 
(57) is Laplacian so that w~ can be assumed as 
follows 

oo 

W c = W~ + Y'~ rm(Um sin mO + V m cos toO),  
m=l  

(65) 

where w~, Um and V,,, are coefficients to be de- 
termined by the continuity conditions between 
the different zones. Substitute Eqs. (64) and (65) 
into Eq. (56) and observe the order of the r-terms 
in w~ and Wu% the total displacement in the un- 
loading zone can be written as 

w u = w~- 4A-ZrO-l[1 + 2A10 log 0 
oo 

+O(0  log 0)] + ~ rm[Um sin mO 
m=2 

+ V m c o s  mO]. ( 6 6 )  

On Fe, the continuity conditions of w e in Eq. (12) 
and wu in Eq. (66) require w~ = v~. Eq. (34) can 
be used to eliminate r in w~ and hence 

wulrs= v~--  4A-l[1  + 2A10 log 0 

+O(0  log 0)]. (67) 

Comparing the coefficients of 0 ° and 0 log 0 in 
Eqs. (43) and (67), A and A l are found: 

A = 8v~-, A 1 = O. (68) 

The continuity condition of Ow/O0 on F s is there- 
fore satisfied. The displacement of unloading 
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Mode  II can be obtained by substituting Eq. (68) 
into Eq. (66), i.e., 

3 r 
w u = v ~ - - - ~ [ l + O ( O  log 0)] + O ( r 2 ) .  

(69) 

The  equat ion for F~ is 

8 
r =  ~ - 0 [ 1  + 0 ( 0 2 ) ] .  (70) 

The strains in unloading zone are given as 

( ")/r ) 3 / --0--1 "~- O(1og 0) ) 
To = ~ 0-2  + O ( 0 - 1 )  + O ( r ) .  (71) 

6. Concluding remarks 

The foregoing results show that  there  prevails 
an unloading zone between the softening region 
and linear-elastic region. The  asymptotic expres- 
sion of  the softening zone boundary  in [6] can be 
written as 

4 
r = --~-0, as r --+ O, (72) 

gO 

which is plot ted in Fig. 4 together  with the soften- 
ing zone boundar ies  described by Eqs. (49) and 
(70). Unloading  tends to reduce the tangent  of  F S 
at the crack tip. In addition, softening zone 
boundary  F~ for the unloading Model  II is closer 
to the x-axis than that  of  the unloading Model  I. 
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