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Abstract. A discrete slip model which characterizes the inhomogeneity of material properties 
in ductile single crystals is proposed in this paper Based on this model, rate-dependent finite 
element investigations are canied out which consider the finite deformation, finite rotation, 
latent hardening effect and elastic 3"isonOpy. The calculation c h l y  exhibits the process from 
microscopic inhomogeneous and localized deformatton to necking and the formation of uies 
and reveals several important features of shear localization. For aample, the inhomogeneous 
deformation is influenced by the imperfections and in iM non-uniformities of material properties. 
The inhomogeneous deformation may either ioduce necking which results in the lattice rotation 
and leads to geomehical softening, which in m promores the formation of CSBS. or induces 
heavily localized deformation. The microscopic lo& deformation eventnally develops 
into the LSBS and results in a failure. These results are in close agreement with experiment. 
Our calculations also find that the slip lines on the specimen's surface at necking become 
curved and also find thar if the necking occurs before the formation of LSBS. this band mmt be 
misoriented 6nm the operative slip systems. In this case, the formation of LSBS must involve 
non-crystallographtc effects. These can also be indirectly c o d e d  by experiment Au these 
suggest that OUT present discrete slip model offers a correct description of the inhomogeneous 
deformation characterimtion in ductile crystlls. 

1. Introduction 

The inhomogeneity of plastic deformation is a common phenomenon in deformed crystalline 
solids, even in single crystals at the initial stage of plastic deformation. The inhomogeneous 
plastic deformation is concentrated into slip planes and slip bands, which vary in their 
participation in total deformation. It is usually the result of heterogeneous slip in certain 
slip systems. 

Analysis of non-uniform and localized deformation in ductile single crystals have been 
carried out many times Peirce et al [1,2], Nemat-Nasser [3]). They used crystal plasticity 
to model the non-uniform and localized deformation in ductile single crystals. The only 
imperfections considered in their calculations are the initial inhomogeneity of specimen's 
thickness or thermal softening. They considered the crystal as a homogeneous media. But 
as pointed by Neuhauser [4]: 'slip Lines are distributed randomly on the whole crystal length 
with slip line density depending on the strain'. The experimental results of Mader [5 ]  and 
Zhang [6] also confirmed the discrete characterization of slip. It is also observed that only a 
small portion of crystallographic planes have taken part in the deformation and even much 
less taken part simultaneously at a time, i.e. only a limited number of sources has been 
active and each one for a limited time. Figure l(a) and (6) shows the randomly distributed 
slip lines on the specimen's surface which change with straining level. The pronounced 

0965-0393/94/061171t23$19.50 0 1994 IOP Publishing Ltd 1171 



1172 

hierarchy of slip heterogeneity depends on the ability of the dislocations destroying the 
obstacles. The ability for dislocations destroying the obstacles in a slip system, i.e. the 
critical resolved shear stress (CRSS) determines the distribution and the activation of slip 
lines. 
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Figure 1. The morphology of slip lines on specimen’s surface (Zhang [61). ((1) discrete slip 
lines at small deformation; ( b )  surface almost completely covered by the slip lines at large 
deformation. 

The theoretical framework for analyzing the initiation of LSB was set up to associate the 
formulation of LSBS with material instability (Hill [7] and Asaro [SI). They employed the 
proposition that the localization is the result of a constitutive instability and is predictable 
from the pre-localized constitutive law. Based on the framework, Needlemann and 
Tvergaard [9] and Needleman [IO] among others analyze the localized deformation. Their 
results are in close accord with the experimental observations for homogeneous or near- 
homogeneous media. 

It has been known that plastic deformation is inhomogeneous in the microscale even at 
the initial deformation stage, with continued straining, becomes mesoscopic inhomogeneous 
and generally through the onset of diffuse necking andor LsBs. Failure usually ensues either 
by necking to a ‘chisel edge’ or by rupturing within intense shearing bands. Chang and Asaro 
[ l l ]  carried out experiments on localized shearing in FCC AI-Cu single crystals subject 
to several aging treatment. The precipitation hardened alloy containing coherent zones or 
incoherent and semicoherent precipitates form an interesting class of material that displays 
intense shearing band leading to fracture. Figure 2 shows an example of the formation 
of LSBs in AI-Cu single crystal. The crystal first deformed with randomly distributed fine 
slip lines on the surface, then underwent diffuse necking, the LSBs formed within the neck. 
Crystals that contained incoherent 8 particles behaved similarly to those containing 8’ except 
that they underwent considerably more necking before the LSBS formed. In addition, the 
bands were not straight as shown in figure 3. Figure 3 shows a LSB in an AI-Cu crystal where 
curving of the band in a direction further away from the tensile axis is evident at specimen 
free edges. The localized shearing and necking were preceded by the formation of coarse 
slip bands (cses) as shown in figure 4(a) and ( h ) .  The inhomogeneous plastic deformation 
induced by the non-uniformity of matcrial properties results in the formation of CSBS which 
may then serve as imperfections in which the necking and LSBS set in. The figure also shows 
the LSBs become misoriented with respect to the CSBs (and the underlying crystallographic 
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planes). If the LSKS a e  slipping on another slip plane as suggested by Elam [12] remains 
unresolved. The LSBS a e  not aligned with the operating slip plane as seen in figure 4(a). 
The curved slip lines at necking can he seen from figure 4(b).  The curved slip lines may give 
us some insights about the shearing at necking, because the curved slip lines have similarity 
with the curved shape of LSBS. This also means that the lattice rotation plays an important 
role in the diffuse necking and formation of LsKs. The ‘patchy’ deformations were often 
observed in cxperiment (Piercy [13]) as shown in figure 5. Two reasons may be associated 
with this phenomenon, one is the latent hardening effect and the other is generated by the 
inhomogeneity of structural constituents in slip planes, e.g. by the change of the instability 
of harriers, the freeing of mobile dislocations from impurity atoms or alloying elements etc. 
The inhomogeneity of plastic deformation and its consequences have been proved to play 
an important role in mechanical behaviours (Kafka [141). Because of the inhomogeneity 
of material property in single crystal, during deformation, each microvolume in crystal is 
differently strengthened. A difference inevitably appears in density of dislocations, and this 
results in even more inhomogeneous deformation. 

Figure 2. Localized sh-ng in R single crystal. F i p r e  2. Locali?ed sheating in single crystals. The 
Diffuse necking preceded shearing band formation. shearing bands are somewhat curved especially near the 
Curved slip lines can be observed (Chang and Asara 
[ I l l ) .  

free surfaces (Chang and Asaro [ I  11) .  

The experimental results with specimens made of the same material under the same 
conditions may exhibit some differences, e.g. the stress versus strain curves and the sites 
of necking and formation of LSBS may change. These variations may depend on the 
inhomogeneity of material properties which is randomly distributed in the specimen. Thus 
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Figure 4. Localized shear hondi (LSBS) and coarse slip balds ( i s m )  ~n single crystals. Note 
the misonentation between the two kinds of b.mds especially cvident in the left photo and also 
how the localized shearing bands form within clusters of CSBS. Note also the curved slip lines 
(Chmg and Asaro [I I]). 

Figure 5. The morphology 01 'patchy' slip pattern (Piercy C I O I  [13]). 

the statistical method based on the knowledge of the statistical description of microscopic 
properties may be used. The specimen can he divided into regions for which the crystal 
plasticity laws are in force. The microscopic parameters are considered as random variable. 
But most of them lack input information about the properties of microscopic regions and 
their distributions. 

Based on the above analyses of micromechanism, we construct a discrete slip model 
which the inhomogeneity of material property is considered. By using this model, the 
inhomogeneous and localized deformation of ductiie single crystals subject to tensile loading 
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are analyzed numerically. The rate-dependent formulation is employed with precisely 
considering the finite deformation and finite lattice rotation. The latent hardening effect 
and elastic anisotropy are included in the calculation. 

The crystallographic geometry and the presumed shearing modes in present paper are 
completely the same as that used by Rice [20] and Mohan el al [21]. The normal of 
specimen surface is taken to be [ilO] direction. This deformation mode is consistent with 
plane strain state. It is assumed that shear parallel to each slip plane involved simultaneous 
and equal amounts of slip along two face diagonal direction in that plane, so equal slip 
along [IiO] and [Oi l ]  on (11 1) plane combine to produce an effective composite in-plane 
slip deformation on (111)[1~1], similarly, [110] and [Oil] on (171) combine to produce 
( l i l ) [ lZl ]  in-plane deformation. Finally the pair of ( l l i ) [ lOl]  and ( i l l ) [ lOl]  operating 
jointly result in-plane strain deformations. These kinds of combinations of slip systems are 
the only ones that can accommodate large plastic strains under plane strain conditions. As 
for plane strain deformation, the strain €33 = cy3 + CL = 0. For the large in-plane plastic 
deformation, cy3 is much smaller and so is than the in-plane strain. So it is reasonable 
to ignore the slip systems that resulting in the plastic strain 

The calculation based on the discrete slip model clearly exhibits the process from 
locally inhomogeneous and localized deformation to necking and the formation of LSBS and 
reveals several important features of shear localization. For example, the inhomogeneous 
deformation is influenced by the imperfection and initial non-uniformities of material 
properties. The locally inhomogeneous deformation may either induce necking which results 
in the lattice rotation and leads to geometrical softening, this in turn promotes the formation 
of CSBS, or induces heavily localized deformation. The localized deformation eventually 
develops into the LSBs and results in a failure. These results are in close agreement with 
experiment. Our calculations also find that the slip lines on the specimen’s surface at necking 
become curved and also find that if the necking occurs before the formation of LSBs, this 
band must he misoriented from the operative slip systems. In this case, the formation of 
LSBS must involve non-crystallographic effects. These also can be indirectly conlimed by 
experiment. This suggests that our present discrete slip model offers a correct description 
of the microscopic inhomogeneousdeformation characterization in ductile crystal. 

The plan of the paper is as follows; in section 2 the discrete slip model and the 
constitutive law used in the calculation are described; in section 3 the numerical method is 
outlined and the results and discussions are presented; finally, some conclusions are given 
in section 4. 

entirely. 

2. Crystal model 

2.1. The discrete slip model (DSM) 

The crystal usually deforms by two physically distinct mechanisms; (1) plastic deformation 
which consists of material shearing relative to a crystal lattice, and (2) elastic deformation 
of the lattice and material together. A significant difference between the crystal model 
used in previous researches (Taylor [15], Asaro [16]) and present models is that the DSM 
considers the spatial material heterogeneities as imperfection to reflect the influence of the 
microscopic inhomogeneity on the plastic deformation. Experiments show that the deformed 
crystal consists of many slip and slip free zones. The slip free zones are elastic bands and 
the slip zones are the slip bands as shown in figure ] (a)  and (b ) .  Each slip band observed 
consists of fine slip lines which more or less densely packed in clusters with regular distance, 
with continued straining, the elastic hands gradually develop into slip bands. So the length 
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scale for DSM is related to the width of slip band which depends the microstructure of 
materials. We suppose that whether the slip system is active or not depends on the critical 
resolved shear mess (CRSS) on this system. 
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Figure 6. 
and numbering of the ban&. (b) the slip gomeby. 

The discrete slip model (a)  the arrangement of slip bands along three slip planes 

Based on the abovc analysis, the DSM is constructed as follows: the crystal is divided 
into lots of bands in which the CRSS distributes randomly. Each band which is parallel to 
the slip planes is taken as crystal which the crystal constitutive laws are in force. The DSM 
for FCC crystal is shown in figure 6(a) and (6). The normal of the crystal surface is (1 lo), 
the tensile axis (100). The crystal is divided into three groups of bands, each is along 
particular shearing system (figure 6(a)). The slip geometry is shown in figure 6(b). 

In order to estimate the distribution of CRSs, an experiment should be designed to get 
this distribution. But at present this distribution is not available. 

The physical meaning of this fluctuation is d a t e d  with non-uniform distribution of 
initial dislocation density, the property of precipitate particles and the size and density of 
the particles etc. According to the working hardening theory [22],  relation of the CRSS with 
the dislocation density has a form of TCR = i p ~  + aGbp’.’, T ~ N  is the Peierls-Nabmo 
stress, a material constant, G is shear modulus, b is the Burgers vector of the dislocations 
and p the dislocation density If we take p as the initial dislocation density, and know the 
distribution of p,  then the distributions of CCR are known. The distributions of CCR also 
greatly depend on misfit, size and interval of precipitates. 

Here a phenomenological method is used to evaluate the non-uniform distributions. We 
observed that before the crystal yields, the slip lines already exist on the specimen’s surface. 
When reaching the maxima of loading, almost the whole specimen’s surface is full of the 
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slip lines. Thus CRSS may change from rOL, the minimum critical resolved shear stress, to 
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Figure 8.  
U J S , ~ = O . I S .  ( d ) u 1 ~ ~ - 0 . 2 0 .  ( e ) u ~ ~ , , = ~ . 2 s  

The deformed meshes for case I at (0 )  UJL,,  = 0.05. (b) U J L , ,  = n.10. [c )  

I~gure Y. Ine detormed mesnes for cme 2 at ( 0 )  UJLo = 0.05 ( b )  UJLe = 0.10. (c) 
U J L ~  = 0.15. ( d )  UJL,, = 0.20. ( e )  u/L,, = 0.25. 

the sou, the maximum critical resolved shear stress in crystal. TO,. will he a little smaller 
than ro, the critical resolved shear stress in crystal plasticity [1,2]. rou will be greater 
than rn, hut smaller than T,, the saturated resolved shear stress [1,2]. Thus, the following 
distribution is employed 

T:' =azo + ?8m(R(i) - p ) .  (1) 

In FCC crystal, for ( l l l ) [ l Z l ]  and (111)[1?1] shearing systems, CY = Z/&, for the 
pair of systems ( l l i ) [ lOl ]  and ( i l l ) [ lOl ]  operating jointly, LY = &. T, is the amplitude 
of CRSS, and R(') is the random variahle changing from 0 to 1. The R(') is generated by a 
random method. f l  is a constant which determines the mean value of CRSS. 

The inhomogeneous microstructures also result in the fluctuations of the saturation shear 
stress r,, the initial hardening moduli ho and the saturation hardening moduli h,. Including 
all these fluctuations will make the prohlem more complicated. Here, for simplicity, only 
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Figure 10. The deformed meshes for case 3 at (a )  UJLo = 0.05. (b) UJLo = 0.10. (c )  
u / L O = n . i 5 .  ( d ) [ i ~ ~ , , = n . 2 0 .  ( e ) ~ ~ ~ , , = 0 . 2 5 .  

Figure 11. 
UjLn = 0.15. ( d )  UjLo = 0.20. (e )  UjLo = 0.25. 

The deformed meshes for case 4 at ( a )  U/L0 = 0.05. (h) LIJL,, = 0.10. (c) 

the fluctuation of CRSS is considered. Further investigations including all these fluctuations 
are our future research work. 

The DSM essentially represents the slipping crystal with microscopically spatial 
heterogeneities which describe the inhomogeneity of mobile dislocation distribution and the 
ability of dislocation escaping from precipitates atom and blocking. The inhomogeneous 
plastic deformation can be simulated based on the DSM. 

We use this model to examine the local inhomogeneous plastic deformation and its effect 
on the LSB and necking. It should be noted that, for the homogeneous or near-homogeneous 
crystal with fine precipitates, the slip lines are fine and relatively uniform, the continuous 
slip model (Peirce et al [2] and Needleman et al [18]) can give very good results. Here 
we consider the crystals containing large precipitates with large interval. Their slip bands 
distribute non-uniformly. The physical meaning of the width scale of the distributions 
corresponds to width of the slip bands. Our calculations reveal some important relations 
between the microscopically spatial material heterogeneity and plastic deformation pattern. 
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Figure 12. The deformed meshes for case 5 at ( a )  LIfL,, = 0.05. (b )  U f L , ,  = 0.10, (c) 
UJL, ,  = 0.15. (d)  U I L , ,  = 0.20. ( e ]  UII.,, = 0.25. 

Figure 13. Load versus engineering strain curyes for the five ca~es. 

2.2. Constitutive relation 

The crystal plasticity for describing plastic deformation of crystalline solids at a full finite 
deformation constitutive formulation is given by Hill and Rice [17] and Asaro [16], the 
crystal constitutive formulation here is taken from Peirce et a1 [2] and Needleman et a1 
U81. 
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Figure 14. The variations of cms contraction with engineering swain for case 1. case 2 and 
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The deformation gradient F is written as 

F = F * .  FP (2)  

where F* arises from the stretching and rotation of the crystal lattice and FP is the 
deformation due to plastic slipping. 

In the deformed lattice, the slip direction and the normal to the slip plane are given by 
[ L Z I  

= F* .s(4 &a) = m(a) . ( ~ * ) - 1 ,  ( 3 4 9  

For each slip system, symmetrical and anti-symmetrical tensors are defined by 

p ( d  = p) 8 m*w +,*(U) 8 s r ( d  1 ( 4 d  

(4b)  

Then, in the deformed crystals, the plastic deformation rate and plastic spin rate can be 

W") = ;(s*'"' 8 m*") - " @ s*(a) ). 

written as 

where denotes the shearing rate on the olth slip system 

@U) j(W'"' . U  - U  . W'4) 
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Figure15 ThecontourplotsoflSSshevstrainforcase1(n)U/Lo=0.05. (b)U/Lo=0.10. 
(c)  U f L o  =0.15. (d )  U/Lo =0.20. (e) U / L o  = 0.25. 

the crystal constitutive equation can be written: 

S = ( L O  + ( j  - i)r] : ii - C[(L" + j r )  : P@) + ~ ' ~ ' ] p ' ~ ' .  (7) 
a 

The elastic moduli Lo is taken to be orthogonal anisotropic, and convects with the lattice 
deformation F*,  i.e. 
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Figure 16. 
UILo = 0.10. (c) UILo = 0.15. (d)  UlLo =0.20. (e) U/Lu = 0.25. 

?be confour plou of 2SS shear strain for case I at ( a )  UILO = 0.05. ( b )  

Lo = F* . F* . L . F*+. F*7 

where L is the elastic moduli at initial undeformed state and r is the fourth-order tensor 
containing the stress terms j(uilSj, +ui$jr), j = det(F). U is the Euler stress. It is needed 
to transfer the L to the elastic moduli in (110) plane for present calculation. 

In the present formulation, each y@) is dependent on the dislocation driving force and 
current internal smcture. The expression used here for the shearing rate is of the power 
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Figure 17. The contow plors of 1SS s h w  strain for case-2 at (a) UILo  = 0.05. (b) 
UILn = 0.10. (c) UILo = 0.015. (d) U/Lo = 0.20. (e) UILo = 0.25. 

law form used in [2,18] 

where de) is the resolved shear stress, g(‘) is the current strain hardened state function 
on the orth slip system, exponent I,” characterizes the material rate sensitivity. a‘ is the 
reference shearing rate on orth slip system. 
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Figure 18. 
U/Lo = 0.10, (c) U/Lo = 0.15. (d )  U/Lo = 0.20. (e) U/Lo = 0.25. 

The contour plots of 2SS shear strain for case 2 at (a) UILo = 0.05. (b) 

The evolution of the function gCu) is specified by 

where heP is the hardening moduli, and can be expressed by 

h,B = W ) I q  + (1 - 4)L91 
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Figure 19. 
UILo = 0.10. (c )  UlLo =0.15. (d) UILo =0.20. ( e )  UlLo =0.25. 

The contour plots of ISS shear strain for case 3 at (a) UfLo = 0.05. (b) 

here, parameter q sets the levels of latent hardening as compared to the 'self-hardening' of 
the slip systems. 

h ( y )  is specified by [23] 

where 
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Figure 20. ' h e  conmu plots of 2% shear strain for ease 3 at (a) u/L,, = 0.05. (b)  
UILo = 0.10. (e)  U I L o  = 0.15. ( d )  U / L o  = 0.20. ( e )  U / L o  = 0.25. 

and r, denotes a saturation strength ho represents an initial hardening moduli, so is initial 
critical resolved shear stress, h, is the saturation hardening moduli. 
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Flyre 21. The contour plots of localized shwing bands together with Ihe slipping band 
(dashed line) for case 4. (0)  UfLo = 0.15. (b)  UfLo = 0.20. (c)  UfLo  = 0.25. Note that the 
misorientation between the two kinds of bands. 

3. Numerical calculations and discossions 

3.1. Numerical method 

The updated Lagrange method is adopted in the analysis with symmetrical Ktchhoff stress 
S-Green strain E formulation, Taking t = t N  as the reference configuration, using S(N) = U, 

AS@) = .?At, A E m  = EAt. Thus the Virtual work incremental principle can be expressed 
by (no body force is considered) 

Employed (7) in conjunction with (13) leads to exmemely small time step to 
ensure numerical stability. In order to increase the stable time step, so-called rate tangent 
algorithm [Z, 181 is employed in present calculation. This formulation gives a tangent- 
modulus method for solving the governing rate equation. The method is explicit in that no 
iterations are required. Once the displacement rate has been determined by solving the rate 
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Figure 22. The relation between the formation of LSE and CSB. Note that the lattice rotations 
due to necking play an imporrant role. Note also that non-crystallographic effect involved in 
( b )  and (e). 

boundary-value problem, updating takes place using linear incremental procedure: F ( t ~ + l )  
is computed directly as F(tru)+ A t @ ,  F P ( ~ N + I )  is updated by ( & ~ ( ~ ) @ m ( ' ) y ( ~ ) ) ~  FPAt, 
then F * ( ~ N + I )  is calculated as F(tN+l)(FP(tN+I))- ' ,  using (7), S can be calculated, and 
S ( N ) ( ~ N + I )  = U + At& according to the stress transforming relation, u ( ~ ( N + I ) )  can be 
obtained. When the internal variables have all been updated, a new current state is defined, 
and the process repeated. 

Consideration is restricted to tensile deformation by prescribing the end-displacement 
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rate. The tensile axis is aligned with y-direction. The boundary conditions on the calculated 
model analyzed numerically are: 

Y W Zhung et a1 

T, = 0 Ty = 0 a t x = O  y f O  

TL = o  Ty = 0 at x = Lo 

U, = a  a t x = O  y = O  

U, = o  Tx = 0 a t y = O  

U , = U  Tx = o  at y = Ho. 

3.2. Numerical results and discussions 

The finite element computation using DSM are carried out to analyze the five cases with 
different inhomogeneities of CRSS. In each case, the following original data are used in 

ho = 8.9~0, T~ = 1.8To, h, = 0. The values of material constants are typical of Al-Cu 
alloys [ l l ,  191. The crystal geometry is specified by Lo/Ho = &J3. 

= 60.84 MPa, r ,  = 50 MPa for case 1, 2 and 3, T~ = 20 MPa for 
case 4, T,, = 5 MPa for case 5, p = 0.2, R(') is chosen as a random variable. The R%, (i 
is the number of discrete slip bands), along (lil)[lZl], along (111)[121] and combination 
of (ill)[lOl] and (lli)[lOl] for five'cases are shown in figures 7(a)-(e). 

As for the intervals of the slip bands are usually several microns, using DSM to 
calculate the macroscopic specimen requires large computer time. In the present paper, 
only mesoscopic specimens are used in the calculation, where LO = 90 pm, HO = 
270/1/2 pm. Thus the effects of the discrete and inhomogeneous slip bands on the 
mesoscopic deformation are reported here. 

The finite element grids in the numerical investigations are based on constant-strain 
triangular elements. The number of finite element discretizations is 2072 for case 1, 2 and 
3, and 2460 for case 4 and 5. 

The deformed meshes at U/Ho = 0.05, 0.1, 0.15, 0.20, 0.25 for five cases are shown 
in figures 8(a)-(e>-figures 12(a)-(e). Except for case 3, the other four cases show a 
similar deformation mode, i.e. when U/Ho c 0.10, the deformation pattem mesoscopically 
exhibits uniform mode. Only slightest hints of imperfection at specimen boundary and of 
microscopic inhomogeneity of slip deformation are observed. With continued straining, the 
microscopic inhomogeneity gradually becomes apparent, and finally results in macroscopic 
inhomogeneity. When U/Ho > 0.15, the necking is evidently developed. Therefore the 
initiation of necking occurs between 0.10 and 0.15. For case 3, there i s  more diffuse 
necking. Several coarsely slipping bands accompany the necking development. Though 
the distributions of T:) for five cases are different, the deformation patterns are similar. 
Comparison of case 1, case 4 and case 5, it is found that the level of material property 
inhomogeneity does not affect the overall deformation pattems. The strain at initiation 
of necking is insensitive to the level. As the level decreases, the 'patchy' defomtion 
gradually becomes less pronounced. Comparison of case 1, case 2 and case 3, it is also 
found that the distribution of CRSS has an inEuence on the site of necking (case 1 is at 
lower end and case 2 at upper end) and necking feature (case 3). The plastic deformation 
patterns are insensitive to the initial material imperfection at deformation U/Ho < 0.1. As 
the deformation increases, the insensitivity gradually decreases, and eventually results in 
macroscopic inhomogeneity of plastic deformation. 

calculation: C11 = 842T0, Clz = 607T0, C, = 377T0, U = 0.001, m = 0.005, q = 1.4, 

In equation (1). 
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It is interesting to compare figure 8-figure 12 with figure 13 where the curves give the 
load-extension plot for the crystals in different cases. The load P is given by 

P = l: T,.(ye. x )  dx 

where xi is left side x-coordinate at loading-end, x, and ye are the right side x- and y -  
coordinates at loading-end. 

From figure 13, it seems that the maximum load is at U / H o  = 0.10-0.12. The variation 
of cross contraction at necking with end-displacement is shown in figure 14 for case 1 
and case 2. It can be classified into two linear variation stages. The ‘knee’ of the curves 
approximately corresponds to the initiation of necking and also to the maxima of loading. 
It seems that this kind of material inhomogeneity does not modify the overall features of 
deformation patterns. The differences induced by the inhomogeneity, such as yield stress, 
shape of load-extension curve and maxima of loading, are common phenomena which can 
also be observed in experiment. 

The corresponding contour plots of slip activities for case 1, case 2 and case 3 are shown 
in figure 15(a)-(e)-figure 20(a)-(e). From these contour plots, the discrete deformation 
pattems and discrete slip bands are clearly observed. For case 1, comparing with the cws 
as shown in figure 7(a), the CRSS at 1SS bands of 8-16 and 28-32 is lower, and that of 
2SS in bands from 6-12 and 3&38 is lower. The bands with the lower values of CRSS 
correspond to the easily slipping bands (figure 15(a) and (b) and figure 16(a) and (b)). For 
case 2, the CRSS at 1SS bands of 11, 10,15-17,27-30,3840, and at 2SS bands of 8, 10-1 1, 
15-16, 23, 28-29,36-37,40 are lower (figure 7(b)). These bands are easily slipping bands 
(figure 17(a) and (b) and figure 18(a) and (6)). For case 3, the CRSS at 1SS bands of 8-10, 
16-20, 34-35 and at 2SS bands of 2, 4, 7, 11, 20, 24, 28-29 are lower (figure 7(c)), the 
corresponding bands also show easily slipping bands (figure 19(a) and (6) and figure 20@) 
and (b)). For case 4 and case 5, similar phenomena can also be observed (figures 7(e) and 
(d), figure 11 and figure 12). As loading proceeds the deformation pattem becomes localized 
in some bands which correspond to a package of contiguous bands with lower CRSS. With 
continued straining, the localized deformation bands develop into localized zones which 
may be called CSBS (figure 15(b) and (c)-figure 20(b) and ( c ) ) .  The CSBs may result in 
the formation of LsBs and necking. Figure 15(c)-(e)-figure 20(c)-(e) show developments 
of necking and formation of LSBs. The similar results can also be obtained for case 4 
and case 5. The contour plots of 2SS for case 4 in figure 21(a)-(c) clearly exhibit the 
development of LSBS. It does not involve a single band, hut generally consists of several 
LSBs. It is also shown that the LsBs are misaligned with slip bands (dashed line). This 
can also be observed from experiment results (figure 2). The 3SS for all five cases is only 
active after necking and focuses in small regions. 

The experiments show that the CSBs play an important role in the formation of localized 
bands and necking. From our calculated results, it can be seen that the lower CRSS bands 
exhibit easily slipping bands. The closely-packed lower CRSS bands may induce the CSBs. 
CSBS may serve as imperfections to promote the necking and formation of LSBs; this is 
consistent with experimental results [ll]. The calculated results also show that the initial 
inhomogeneity of material property results in the heterogeneity of plastic deformation which 
associated with the patchy slip. The patchy slip zones evidently exist in deformed meshes. 
The patchy slip may also be promoted by the latent hardening effects. In present calculation, 
q = 1.4. 

The lattice rotation can be seen from figures 8-12, which shows very inhomogeneous. 
The inhomogeneous rotation may result in geometrical softening and hardening in crystal. 
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The softening promotes the slip activity, and the hardening prohibits the slip activity. This 
inhomogeneous rotation also results in the curved slip bands at neck. This is consistent with 
the experimental results as shown in figure 5(b). A geometrical softening due to the rotation 
near free surface at neck is observed in both experimental and our calculated results. The 
calculated results indicate that the geometrical hardening occurs in the middle of the neck. 
The experimental result shown in figure 2 confirms the calculated results. Our results also 
demonstrate that the curved slip bands depend on the amount of conjugate slip therein. The 
conjugate slip activity may promote the curving of the slip bands. It is also shown that the 
most inhomogeneous strains locate at neck and the highest slip strain is at the specimen’s 
center, not at the specimen’s free surface. 

It has been known that the LSBS usually develop from the CSBS and initialize at the free 
surface. The CSBs at free surface may serve as preferential position to induce the formation 
of LSBs. Thus the length scale of the fluctuation distributions has an apparent relationship 
with the formation of the CSBS and LSBS. The width of CSB usually contains several 
contiguous slip bands with lower CRSS, so the width of LSE may be at same magnitude. 

The experiments show that the LSBS on one hand may exhibit a straight mode, and on 
the other hand, may exhibit a curved mode. In present calculation, we conclude that when 
LSBs form before necking, they are straight and aligned with the CSBs. When the LSBS 
form just after necking, the LSBS are also straight but misaligned with CSBs. When necking 
continues developing after the formation of LSBs, the LSBS become curved and misaligned 
with the CSBS. These three forms of LSBS are schematically shown in figure 22(a)-(c). The 
experimental results [ l l ]  c o n h n  our present calculation. The experiment [ l l ]  also shows 
that formations of CSBs do not involve the nucleation of voids, but the formations of LSBS do. 
This means that the non-crystallographic effect exists in the formation of LSBS, but not in the 
formation of CSBs. Our calculated results show that, in the first mode, the formation of LSBs 
is a crystallographic process, but for the other two modes, the non-crystallographic effect is 
involved in formation of LSBS. If the LSBS form after necking, the slip lines already become 
curved. Generally, the LSBS just forming exhibit straight fashion, thus it is impossible for 
LSBS to be aligned with the curved slip limes. 

The straining and microstructure induced anisotropy can be observed in figures 8-12 
and figures 15-20. As the deformation proceeds, the initial single crystal becomes ‘patchy’ 
and is divided into many zones with different crystal orientation, called suhgrain. This 
kind of deformation pattern can also be found in experiment. The subgrains result from the 
inhomogeneity of lattice rotation. 

1. Conclusions 

Our rate-dependent finite element calculations based on the DSM show the vital role of non- 
uniformity of material property on inhomogeneous deformation. The following conclusions 
are drawn: 

(1) The DSM which describes the initial non-uniformity of material property for 
dislocation moving reasonably reflects the micromechanism in plastic deformation 
inhomogeneity. But the determination of CRSS distribution from the experiment should 
be accentuated. 

(2) The reduction of cross contraction at neck as a function of loading can be classified 
into two linear change stages. The ‘knee’ or the transition of the two stages approximately 
corresponds to maxima of loading and also corresponds to the initiation of necking. 

(3) The bands with lower CRSS are the easily slipping bands. A group of contiguous 
bands with lower CRSS may result in CSBS which may induce the formation of LSBS and 
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necking. The deformation pattems are insensitive to the level of CRSS. The distribution of 
CRSS may change the site of necking and feature of necking. 

(4) When LsBs form before necking, they exhibit a linear fashion and the shearing 
failure is along certain crystallographic planes. When the LSBs form just after necking and 
immediately result in shearing failure, the LSBs are also straight but misaligned with CSBs. 
When the LSBS form after a well-developed diffuse necking and develop after formation, 
the ISBS are curved and misaligned with the CSBs. The latter two shearing failures involve 
the non-crystallographic effect. These results are consistent with the experimental results. 

(5) The ‘patchy ’ deformation patterns are observed in present calculation. The 
deformation is related to the inhomogeneity of material property and also related with 
the high latent hardening rate. Subgrains form due to the ‘patchy’ deformation in single 
crystal. 
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