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SUMMARY 
The flow structure around an NACA 0012 aerofoil oscillating in pitch around the quarter-chord is 
numerically investigated by solving the two-dimensional compressible N-S equations using a special 
matrix-splitting scheme. This scheme is of second-order accuracy in time and space and is computationally 
more efficient than the conventional flux-splitting scheme. A ‘rigid’ C-grid with 149 x 5 1  points is used 
for the computation of unsteady flow. The freestream Mach number varies from 0.2 to 0.6 and the Reynolds 
number from 5000 to 20,000. The reduced frequency equals 0.2545. The basic flow structure of dynamic 
stall is described and the Reynolds number effect on dynamic stall is briefly discussed. The influence of 
the compressibility on dynamic stall is analysed in detail. Numerical results show that there is a significant 
influence of the compressibility on the formation and convection of the dynamic stall vortex. There is a 
certain influence of the Reynolds number on the flow structure. The average convection velocity of the 
dynamic stall vortex is approximately 0.348 times the freestream velocity. 
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1. INTRODUCTION 

The problem of dynamic stall has been a topic of great interest to aerodynamicists and scientists. 
First, this problem presents a unique combination of unsteady effects, flow non-linearity and 
strong viscous-inviscid interaction, so it is an important theoretical problem. Second, it is of 
practical importance in various aerodynamic applications, including aircraft manoeuvrability, 
helicopter rotors and wind turbines. The challenging and difficult features of dynamic stall have 
stimulated its study in numerical, analytical and experimental areas. 

In Reference 1 some basic features of the viscous-inviscid interaction in dynamic stall were 
described and these serve as a guide for numerical simulations. Reference 2 presented an 
important review of the analysis and prediction of dynamic stall. In recent years, with the 
development of high-quality computational methods, the direct numerical simulation of dynamic 
stall by solving the N-S equations has become an efficient method and several works have been 
p u b l i ~ h e d . ~ - ~  The incompressible cases of dynamic stall have been studied in detail in the past 
years, but compressibility effects on dynamic stall are still an unclear problem.’ In addition, 
little is known of the influence of the Reynolds number on dynamic stall. Thus there is still 
much to be learned about dynamic stall. Mach number effects on the dynamic stall vortex have 
been studied experimentally by Chandrasekhara and Carr.’ Usually it is difficult to determine 
the influences of the Mach number and the Reynolds number on  dynamic stall separately by 
experiment, but it is easy to do so by numerical simulation. Because of these reasons, the flow 
structure of an oscillating NACA 0012 aerofoil is numerically studied by solving the N-S 
equations in this paper. The compressibility influence on dynamic stall is studied in detail and 
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the influence of the Reynolds number of dynamic stall is briefly discussed. In the following 
sections we first outline the numerical procedure, then the computational results are analysed. 

2. NUMERICAL PROCEDURE 

The two-dimensional, unsteady compressible N-S equations can be written in a conservation 
form in a curvilinear co-ordinate system as8 

arq  + a$ + a,F = R e - ' ( a 5 R  + 8,s ) .  (1) 

To solve equation (l), the second-order-accurate time difference is used. The difference equations 
are written in the implicit form 

Aq = A r [ - a c E  - a,F + R e - ' ( a g R  + d,S)] ,  

where 

A = aE/aq, B = aF/aq. 

On the right-hand side of equation (2) the flux terms and viscous terms are all central-differenced 
with second-order accuracy. The fourth-order dissipative terms* are explicitly added to the 
right-hand side of equation (2) to inhibit numerical instability. 

Because the computing time of the unsteady flow field is very long, it is necessary to develop 
an efficient scheme. Thus a special Jacobian-matrix-splitting scheme is proposed to solve the 
implicit parts of equation (2). The following is the main idea of the scheme. 

The Jacobian matrices A and B are split into two parts A', A -  and B' ,  B -  respectively 
according to the eigenvalue sign. However, unlike conventional splitting where A+ = (A + IAl)/2 
and A -  = (A - IAl)/2, we only require A+ 2 0, A- < 0 and A+ + A- = A in order to reduce the 
CPU time. On the other hand, the matrix-splitting scheme must satisfy stability and accuracy. To 
satisfy these demands, the following matrix splitting is proposed: 

&4+) = U / 2  + sag, I ( B + )  = v/2 + pa,, 

A +  = A(A+))I, A - = A - A + ,  

B +  = A(B+)I, B -  = B - B + ,  

(3) 

where 

a< = aJ( t f  + ti), a, = aJ('If + 'I;, 

and a is the speed of sound. The values of a and p are determined according to the condition 
that eigenvalues of A + ,  B +  are positive and those of A ? ,  B -  are negative. Then the implicit 
part of equation (2) is factored into two parts 

( I  + g A , A -  + hA,B-)Aq* = RHS, 

( I  + g V , A +  + hV,B+)Aq = A @ ,  
(4) 
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Table I 
~~ ~ 

Eigenvalue A A +  A -  C 

1, U U/2 + aa, U/2 - aa, 2aaS 
4 U U/2 + mac U / 2  - ma, 2aac 
1 3  U + aC U/2 + aaC U/2 - (a - l)a, (2a - l)a, 
1 4  U - aS U/2 + mac U/2 - (a + l)a, (2a + l)a, 

Table I1 

Eigenvalue B B +  B -  D 

1, V V/2 + pa, V/2 - Ba, 2Ba, 
11 V V / 2  + Pa, V/2  - Pa, 2Ba, 
1 3  V + a,, V / 2  + Pa, V/2  - (B - l)a, (28 - l)a, 
1 4  - a,, V/2 + Ba, V/2 - (B + l)a, (2s + l)a, 

A,,  A,, and V,, V, are forward and backward differences respectively, g = Ar/2A< and h = At/2Aq.  
Writing out equation (4), we get 

( I  - g A -  - hB-) i , jAqt j  = RHS - g(A-Aq*)i+ 1 . j  - h(B-Aq*)i,j+ 1 ,  

( I  + g A +  + hB+)i , jAqi . j  = A& + g ( A + A q ) i - , , j  + h(B+Aq) imj- , .  

(54  

(5b) 

Let C = A *  - A -  and D = B +  - B - .  The differences between the above schemes and the 
central difference scheme in the implicit parts are just second-order dissipative terms 

- (gSfC + hS,ZD)Aq. ( 6 )  

If the eigenvalues of C and D are positive, they can inhibit numerical instability. The eigenvalues 
of all matrices for the special matrix-splitting scheme are given in Tables I and 11. In fact, if a 
and fl are greater than 3, the eigenvalues of C and D will be positive. The numerical stability 
will increase with increasing a and p. It can be seen from Tables I and I1 that the splitting (3) 
provides consistent dissipative quantities in the whole flow field. If other splitting forms 
are used, the eigenvalues of C and D may change with U or Vand numerical experiments show 
that this is unfavourable to numerical stability. On the other hand, because equation (5b) can 
easily be solved through scalar operations and the plus-minus Jacobian matrices can also be 
computed easily, the overall computing time is greatly reduced. As a result, the special 
matrix-splitting scheme is computationally more efficient and leads to a more robust computa- 
tion than the conventional flux-splitting scheme. 

3. BOUNDARY CONDITIONS 

Along the inflow portion of the far-field boundary, freestream conditions are specified. First-order 
extrapolation is used on the outflow boundary for all variables. Along the C-grid cut, flow field 
values are found by averaging the variables extrapolated from above and below. 
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On the aerofoil surface the following condition is applied: 

U = V = O  or (:) = J -  l (  :ix ;:.)( 1;;). 
The pressure on the aerofoil surface is obtained from the momentum equation by simplifying 

qx * (5-momentum) + qy * (q-momentum):' 

where n is the direction normal to the body surface. 
The time-dependent co-ordinate transformation (i.e. moving grid) required in the present flow 

simulation is implemented using a 'rigid' grid attached to the aerofoil. The grid is a nearly 
orthogonal boundary-fitted C-grid generated by the hyperbolic technique with 149 x 51 grid 
points. The grid extends 10 chords away from the aerofoil and the minimum spacing in the 
q-direction is O~O001c. This minimum normal spacing is small enough to allow for 10-20 grid 
points in the laminar boundary layer at the highest Reynolds number considered here. The 
non-dimensional time step (tu,/c) used is 0002. 

4. RESULTS AND DISCUSSION 

In order to check the numerical scheme, both steady and unsteady inviscid transonic flows are 
computed. It is seen from Figures 1 and 2 that both the steady and unsteady results agree well 
with other authors' results obtained using the central difference' and TVD9 schemes. 

The computations of dynamic stall are performed for the NACA 0012 aerofoil oscillating in 
pitch about the quarter-chord. The angle of attack varies according to 

a(t) = 10" [l - cos(wt)]. 

The reduced frequency K ( = oc/2u,) equals 0.2545, the Reynolds number varies from 5000 to 
200,000 and the freestream Mach number from 0.2 to 0.6. Most results are taken from the first 
cycle of motion. The initial condition is steady flow at 0" angle of attack. 

The present computations are limited to low-Reynolds-number laminar flows, but are of value 
since they can illustrate important dynamic stall features and trends. This is particularly true 
in the higher-pitch-rate regime, where the energetic forcing motion is expected to temporarily 
dominate over any transition and turbulence effects.s 
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oooom Present 
1.2 

Figure 1 .  C ,  distribution; M, = 0.75, OL = 2" 
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Figure 2. Unsteady lift distribution; 41) = S"sin(ot), w = 2, M, = 0.8 

The boundary layer separation of oscillating aerofoils can be divided into three types:" (i) 
separation from the tailing edge towards the leading edge; (ii) abrupt breakdown of the turbulent 
flow on the forward portion of the aerofoil and followed by initial progression of flow reversal 
from the trailing edge to approximately the mid-chord; (iii) abrupt bursting of a leading edge 
laminar separation bubble. However, a dynamic stall vortex (leading edge vortex) will form at 
last and will dominate the features of dynamic stall no matter what type of boundary layer 
separation occurs. Thus the formation and convection of the dynamic stall vortex is the key 
phenomena to be studied here. 

4. I .  Basic $ow structure 

The present numerical results show that the boundary layer separation takes place from 
the trailing edge to the leading edge, i.e. the first type of boundary layer separation mentioned 
above. 

Figure 3 shows the density contours in the first and second cycles of motion for the case of 
Re = 5000, M, = 0-4 and K = 0.5. The flow structure vanes considerably from the upstroke to 
the downstroke. In the upstroke the clockwise and counterclockwise trailing edge vortices are 
first formed at a lower angle of attack; the leading edge vortex appears at a higher angle of 
attack of approximately 17". From animated pictures generated by the computer we see that 
the leading edge vortex grows very quickly; this may be the reason why dynamic stall often 
occurs abruptly. Because the leading edge vortex is strong, a second counterclockwise vortex is 
induced near the aerofoil surface. In laminar flows even a mildly adverse gradient can produce 
a noticeable recirculation region which affects the local flow field. This is in contrast with 
high-Reynolds-number turbulent flows.' With the movement of the leading edge vortex down- 
stream, another small-scale leading edge vortex is shed. The interesting observation is that these 
vortices do not disappear in the downstroke; they still exist above the aerofoil and grow in size 
even though the local angle of attack may be very low. The difference in flow structure during 
the upstroke and downstroke processes can be seen through a comparison of Figures 3(a) 
and 3(e) (where c1 = 16") or any other pair of figures with the same angle of attack in the 
upstroke and downstroke in Figure 3. Figure 3(+3(s) show the results in the second cycle of 
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(a) up a=16' (b) up a=W (c) up a=20' (d) down a = 1 8 O  

(e )  down a=16' ( f )  down a=W (g) down a=B0 (h) down a = 4 O  

(i) down a=Oo (j) up a=4' (k)  up a=S0 (I) up a = 1 2 O  

(m) up a=16' (n) up a=20° ( 0 )  down a=16' (p) down a=12O 

(9) down a=8' (r) down a=4" (s) down a=Oo 

Figure 3. Density contours: (aHi) first cycle; (jHs) second cycle; M, = 0.4, Re = 5000, K = 0.5 
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up a=180 up CI=180 

up a=20° up a=200 

L I 1  

down a=100 down a=lOO 

(a) Re=5000 (b) Re=20000 

Figure 4. Density contours: M, = @4, K = 0.5 

motion. They are very similar to the results in the first cycle of motion and a periodic flow 
appears. 

4.2. Reynolds number effect 

Little has been done to determine the influence of the Reynolds number on dynamic stall, 
since it is difficult to vary the Reynolds number significantly without introducing a compress- 
ibility effect as However, it is possible to study the Reynolds number effect on dynamic 
stall by numerical simulation. Thus computations are performed for Reynolds numbers varying 
from 5000 to 20,000. Figure 4 shows a comparison of the results for Re = 5000 and 20,000. We 
see that the two results are different and that the leading edge vortex forms earlier for the 
higher-Reynolds-number case. Also, animated pictures show that the shedding rate of the leading 
edge vortex is higher for the higher-Reynolds-number case. Therefore the influence of the 
Reynolds number on the flow structure of an oscillating aerofoil cannot be neglected. Certainly, 
to understand the overall effects of the Reynolds number on dynamic stall, more computations 
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0- 0.5 10 

.IC 
Figure 5. Location of flow reversal on surface of aerofoil; Re = 10,ooO. K = 0.25 

are needed. Here we only provide a preliminary understanding about the effects of the Reynolds 
number on the flow structure. 

4.3. Compressibility effect 

To study the influence of the compressibility on dynamic stall, computations are performed 
for five freestream Mach numbers and two reduced frequencies. These computations are divided 
into two groups: the parameters of the first group are K = 025, Re = lO,OOO, M ,  = 03, 0.4, 
0.5 and of the second group K = 0.5, Re = 5000, M, = 02 ,  0.4, 0.6. It is found from the 
computations that the formation of the leading edge vortex is dominated by the rate of separation 
of the boundary layer, since the boundary layer separation takes place from the trailing edge 
to the leading edge and forms a strong leading edge vortex at  last. 

For the first-group computations Figure 5 shows that the freestream Mach number has a 
significant influence on the rate of boundary layer separation. With increasing Mach number 
the flow reversal takes place earlier. Thus the leading edge vortex forms at an earlier time and 

M, =0.3 Velocity vectors M,=0.5 

M, =0.3 Density contour M, =0.5 

Figure 6. Velocity vectors and density contours; Re = lO,ooO, K = 0.25, a = 17" 
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Figure 7. Location of dynamic stall vortex; Re = IO,OOO, K = 0.25 

this can be seen from the density contours and velocity vectors in Figure 6. The location of the 
leading edge vortex is depicted in Figure 7. Increased compressibility causes the leading edge 
vortex to occur further downstream. Figure 8 is compiled from experimental data' for which 
the variation in the angle of attack of the aerofoil is somewhat different, namely a(t) = lo" 
[l + sin(ot)], i.e. with a n/2 increase in phase angle compared with here, and in addition the 
experimental Reynolds number is higher and the reduced frequency is lower than here. Even 
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Figure 8. Location of dynamic stall vortex from Reference 7 
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Figure 9. Lift coefficient in upstroke; Re = l0,OOO; K = 0.25 

with these differences it is seen that the present numerical variation in the leading edge vortex 
location with the freestream Mach number is qualitatively the same as the experimental results. 
As a result, dynamic stall will take place earlier in the higher-Mach-number case as shown in 
Figure 9, where a,-,,, is smaller for the higher Mach number. 

For the second-group computations, with increasing Mach number the flow reversal takes 
place earlier at a lower angle of attack, but the trend is opposite at a higher angle of attack 
(Figure lo), and this causes the leading edge vortex to form at a slightly later time (Figure 11) 
for the higher Mach number. In Reference 10 the same kind of result was obtained, i.e. increased 
compressibility has an inhibiting effect on the formation of the leading edge vortex. Therefore 
the rule of the influence of the compressibility on the flow structure will change with the reduced 
frequency. We know from previous experimental results2*' that increased compressibility should 
lead to earlier leading edge vortex formation. Thus these numerical and experimental results 
seem to be contradictory, but now the contradiction can be explained by the present results. 
For most experiments the reduced frequencies are very low, so with increasing Mach number 
the leading edge vortex will form earlier, but for higher reduced frequencies (such as K = 05) 
the result may be the opposite. It can be seen from Figure 12 that once the leading edge vortex 
is formed, it is also located further downstream in the higher-Mach-number case; this is the 
same as the results of the first-group computations. 

Except as above, with increasing reduced frequency the leading edge vortex forms later. When 
a = 20", the leading edge vortex is located above the aerofoil surface for K = 0-5 but has been 
shed for K = 0-25 as shown in Figures 12 and 7. 

0 0.5 1 .o 
x/c 

Figure 10. Location of flow reversal on surface of aerofoil; Re = SOOO, K = 0.5 
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M,=.4 Mw=.6 
Figure 1 1 .  Density contours; Re = 5000, K = 0.5, IZ = 18" 

0 -5 x/c 1. 
Figure 12. Location of dynamic stall vortex in downstroke; Re = 5000, K = 0.5 

4.4. Convection velocity of dynamic stall vortex 

The convection of the dynamic stall vortex can be divided into three regions:' (i) a region 
where the dynamic stall vortex forms and gathers strength; (ii) a region where it convects along 
the surface and grows at the same time; (iii) a region where it grows and lifts off into the stream. 
Chandrasekhara and Carr' obtained an average convection velocity of the dynamic stall vortex 
of UDsv/U, = 0.3 for the second region. From Figure 13 we see that the convection velocity of 

Figure 13. 

.1 .2 .3 .4 .5 .6 

Convection velocity of dynamic stall vortex; 
MW 

Re = K = @ 5  
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Table 111. Convection velocities of dynamic stall vortex 

M m  0.2 0.4 0.6 0.4 0.5 
K 0.5 0.5 0.5 0.25 0.25 
~ D S V l ~ ,  0.356 0.337 0.283 0.396 0,366 

the dynamic stall vortex decreases with increasing Mach number and that the trend is more 
evident when M, > 0-4. This variation can also be seen for the K = 0-25 cases in Table 111. The 
average UDSv/U, of all cases studied here is 0-348, which is close to the experimental result of 03. 

5. CONCLUSIONS 

The dynamic stall of an oscillating NACA 0012 aerofoil is numerically investigated by solving 
the N-S equations using a special matrix-splitting scheme. The scheme is of second-order 
accuracy in space and time with satisfied stability and is computationally more efficient than 
the conventional implicit matrix-splitting scheme. It is seen that the formation of the dynamic 
stall vortex (leading edge vortex) is related to the rate of boundary layer separation. The trailing 
edge vortex forms at a low angle of attack and the leading edge vortex forms at a relatively 
high angle of attach which is determined by the reduced frequency K. The influence of the 
Reynolds number on the flow structure cannot be neglected according to the present numerical 
results, which show that the leading edge vortex forms earlier and the shedding rate of the vortex 
is increased with increasing Reynolds number. The influence of the compressibility on dynamic 
stall is significant. For lower reduced frequency (K = 0.25) the dynamic stall vortex forms a 
lower angle of attack with increasing Mach number, since the boundary layer separation occurs 
earlier in the region of the leading edge, but the rule is opposite for higher reduced frequency 
(K = 05). The convection velocity of the dynamic stall vortex decreases with increasing Mach 
number and the average value is approximately 0.348 times the freestream velocity. 

Present research has been perfomed only for the low Reynolds number laminar flows. To 
understand the overall mechanisms of dynamic stall, the further research of the high Reynolds 
number turbulent flows is necessary. This is our next aim associated with dynamic stall research. 
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