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A NEW METHOD FOR EVALUATION OF STRESS 
INTENSITIES FOR INTERFACE CRACKS 

WU YONG-LI 

Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080, P.R.C. 

Abstract-A new method is presented for calculating the values of K, and K,, in the elasticity solution 
at the tip of an interface crack. The method is based on an evaluation of the J-integral by the virtual 
crack extension method. Expressions for calculating K, and K,, by using the displacements and the stiffness 
derivative of the finite element solution and asymptotic crack tip displacements are derived. The method 
is shown to produce very accurate solutions even with coarse element mesh. 

INTRODUCTION 

As THE DEMANDS made upon the strength and durability of today’s engineering materials 
increase, the advantage of combining the properties of two or more materials into a single 
member have become apparent. For these material systems it is the low fracture toughness 
that limits their use in engineering and structural components. The need to understand, 
quantify and improve the toughness of composite materials has renewed interest in the elastic 
interface crack problem. The presence of cracks on bimaterial interfaces presents special 
analytical problems not encountered in cracked homogeneous bodies. In single material bodies, 
stress intensification arises solely from a geometric discontinuity, the crack. The bimaterial 
body, in contrast, produces stress intensification from a geometric discontinuity and 
material discontinuity. These discontinuities induce K, and K,, intensification for single 
mode loading. This coupling of stress intensification was first demonstrated by Williams [l]. 
He also showed that the stresses behave in an oscillatory manner as the crack tip is ap- 
proached. Further analysis of crack bimaterial bodies by Cherpanov [2], England [3], Erdo- 
gan [4] and Rice and Sih [5] has given yield stress intensity factors for some simple geometries and 
loading. 

Because of the complexity of these analyses, numerical procedures are a necessity when 
stress intensities are desired for more general configuration and loading. Lin and Mar [6] and 
Van der Zande and Grootenboer [7] used special hybrid crack tip finite elements to obtain K, 
and K,, for the interface crack. In this case, standard finite element code cannot be used 
directly. Complicated computational procedures are required. Smelser [8] presented a method 
for obtaining the stress intensity factor for bimaterial bodies using numerical crack flank 
displacement data. The method is able to resolve the magnitude of the stress intensity factor 
from the finite element method with accuracy; the resolution of the angle is not satisfactory 
when the angles are small. Wang and Yan [9] developed a technique for obtaining K, and 
K,, in bimaterial fracture by using the M-integral of Chen and Shield [lo]. Matos et al. (111 
presented a numerical method for obtaining the values K, and K,, in the elasticity solution at 
the tip of an interface crack. The basis of the method is an evaluation of the J-integral by 
the virtual crack extension method. Individual stress intensities can then be obtained from 
further calculation of J perturbed by small increments of the stress intensity factor. 
Numerical examples have shown that values of K, and K,, depend on the increments AK, and 

AK,, . 
In this paper, new expressions for obtaining K, and K,, by using the method of Matos et al. 

are presented. It can show that the results of K, and K,, are independent of the increments AK, 
and AK,, . The new expressions can be implemented with very little programming effort by adding 
a subroutine to any existing finite element code. 
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FORMULATION 

The crack tip geometry is shown in Fig. 1. Local polar and Cartesian coordinate systems have 
been introduced at crack tip. The traction at a distance r ahead of the crack tip takes the form [12], 

(cr,,y + ia,)O,O = kr’“/J(2nr) (1) 

The E in eq. (1) is the bimaterial constant. 

e = (l/2x)ln[(K1~L, + N(w + ~dl. (2) 

Subscripts 1 and 2 refer to the materials in y > 0 and y < 0, respectively, as in Fig. 1, K = 3 - 4v 
for plane strain and IC = (3 - v)/( 1 + v) for plane stress, v = Poisson ratio, and p = shear modulus. 

The fracture analysis of interface cracks has been complicated by the oscillatory feature of the 
near-tip deformation field. For an absolute characterization of the interface stress intensity factor, 
Rice [13] introduced a scaling length i so eq. (1) may be rewritten as 

(crv + io, )B = 0 = K(rlV”/J(2nr), (3) 

where the K = ki’” shall be defined as the stress intensity factor for the interface crack. As pointed 
out by Rice, the scaling length i may be chosen arbitrarily as long as it is held fixed when specimens 
of a given material pair but with different loading and geometry conditions are considered. 
Different values of i will not alter the magnitude of K but will change its phase angle. Since the 
oscillation index E is typically very small, the variable quantity (r/i)‘” = exp[is ln(r/i)] has a very 
weak variation with r. Thus it may define the mode I and II interface stress intensity factors K, 
and K,, as 

K = K, + iK,, = KP. (4) 

It should be understood that the definition of eq. (4) rigorously reduces to that of the classical mode 
K,, K,, stress intensity factors only when E = 0, but for simplicity we will use the same stress 
intensity factor notations (K,, K,, and K = K, + iK,,) for both homogeneous and interface cracks. 
The J-integral [14] is defined as 

J= 
s r 

W dy - nits,, 2 ds, 

where F is any contour from the bottom crack surface around the tip to the top surface, W is the 
strain energy density, oij the stress tensor, U, the displacement vector, and ni the outward unit normal 
to the contour. The conservation integral J has been extended by Smelser and Gurtin [15] to 
bimaterial bodies proved that the crack surfaces are free from traction and the interface is a straight 
line. The J-integral is related to stress intensity factors of an interfacial crack by 

J = (K: + K;,)/H, (6) 

MATERIAL 1 
Y 

Table 1. Material property ratios for numerical study 

Case no. 4 I.‘% “I I”2 

1 lOO/lO 0.310.3 
Fig. 1. Coordinates and typical contour used to evaluate the 2 220110 0.310.35 

J-integral. 3 looo/10 0.3/0.3 
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4 
KI, 

ref. [5] 

1.7903 
-0.2216 

Table 2. Stress intensities and phase angle in degrees 

case1 Case 2 Case 3 
Author Err.% ref. [S] Author Err.% ref. [5] Author Err.% 

1.8110 1.16 1.7916 1.8107 1.07 1.7987 1.8165 0.99 
-0.2193 1.04 -0.2240 -0.2265 1.11 -0.2625 -0.2652 1.03 

+” -6.8982 -6.9057 0.11 -7.1270 -7.1304 0.05 - 8.3038 -8.3066 0.03 

where 

H = 16 cosh2(xs)/(c, + c2), 

ci = (K, + l)/pi * 

Following Parks [16], the energy release rate definition of the J-integral can be used to develop 
a numerical method for its evaluation. As a result 

J= --@UPa),= -(1/2){u"}T(a[sl/aa){u,>. (7) 

Here, U is the potential energy of the body and differentiation with respect to crack length a is 
carried out at fixed load. The vector (II,,} contains as elements the nodal degree of freedom for 
a finite element calculation and [S] is the stiffness matrix for the crack problem. In the virtual crack 
extension method [16] the crack problem is first solved to obtain the vector {u.}. Then a small 
virtual crack extension is caused in the plane of the crack and a new value of the stiffness computed. 
Usually the crack is extended by rigidly moving a core of elements around the tip and distorting 
only one ring such as the shaded one shown in Fig. 2. That is, all elements outside the distorted 
ring are also held rigid. As a result, the computations of changed stiffness required are limited and 
the multiplication involved in eq. (7) involves small vectors and matrices. 

Now consider a bimaterial problem A for which it is desired to compute K, and K,,. First, 
solve the problem by the finite element method to find {II,} and 8 [S]/&X Then add to displacements 
{Au!,} for a problem in the same geometry for which K,, = 0 and K, = AK,. This set of displacements 
can represent any problem desired and it should be noted that the field is actually needed only for 
the part associated with the distorted ring of elements. In view of this, the asymptotic crack tip 
displacements can be used everywhere as a suitable field. That is 

Auf = AK& 
4/&,/(2rc)cosh(xe) 

{ [1 ( “) . ( “) di ZK,cos a -? +sKism a -? +2rlisintIsin 

-&[icos(a +i)+e sin(a +;)]I (84 

Fig. 2. A typical ring of elements to be distorted in the J-integral. 
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Av; = AKrJ;- 
4/&,,‘(2n)cosh(rrs) 

{[l.( “) (6) ai -2K,sin ~-2 +EK,COS a--_:! 

t8b) 

where 

a = E ln(r/i), Pa) 
4, = e-W&, & = e’n+@e, (ob) 

A; = 0.25 + El. @4 

The vector {Auf} is obtained by evaluating eqs (8a) and (8b) at the required nodes. For the 
superimposed state we have 

[(K, + AK,)2 + K:,]/H = -(l/2)@, + Au!JT(8[S]/i?a) * (u, + Au:}. 

For the problem A and additional state we have 

(K: + K?,)lH = -(l/2){u”}T(a[s31aa){u,f, 

AK:/H = -(1/2)(A~~}~(a[slla~){Au~}. 
Subtracting eqs (11) and (12) from eq. (lo), one obtains the following expression 

(10) 

(11) 

(12) 

(13) 

It is obvious that K, is independent of the AK, because {Au:} is proportional to AK,. 
The procedure can then be repeated for an added vector such that K, = 0 and K,, = AK,, , if 

desired. 
These displacements are such that 

Au” = 6 , AK& {s,[ -f . ( “) ( “) 
4,~&/(2n)cosh(7r.s) 

K,sm a-2 +qcos a -? +2Ltsin6cos a+? 
( I 

AKrrJ; “” = 4p,A;J(2n)cosh(rre) 
jd,[--lfc,cos(a -i)-0cisin(a+~)+21~sin0sin(a +;)I 

Then it follows that 

fG, = -H ,Au;‘}~~$) (u,}. 
2AK,, 

(15) 

K,i is independent of AK,, . 

NUMERICAL STUDY 

To study the applicability of the proposed method for calculating stress intensities in 
bimaterial fracture, a bimate~al plane stress plate that contains an interface crack of two length 
units and is subjected to unit biaxial tensile stress was investigated (Fig. 3). For simplicity, units 
are omitted implying that an appropriate normalization has been carried out. The scaling length 
i is one length unit. Because of the symmetry of the geometry and the load, only half the model 
was analysed. One of the meshes used in this analysis to obtain the finite element elasticity solution 



Evaluation of stress intensities for interface cracks 759 

u 

t 

U- 

MATERIAL 1 

(Pll Vl) 

t-+ 
2a 

MATERIAL 2 

(P2, u2) 

-U 

Fig. 3. Bimaterial cracked plate subjected to biaxial tension. 

in a plate of 20 x 20 length units is shown in Fig. 4. It has 5 17 nodes and 160 isoparametric 8-noded 
elements with 64 distributed in the square focused mesh of 2 x 2 length units surrounding the crack 
tip. The collapsed singular quarter point elements molded the crack region. A 2 x 2 Gaussian 
quadrature integration scheme is employed to evaluate the element stiffness matrices. The 
theoretical expressions for stress intensity factors A, and A,, for infinite body were given by Rice 
and Sih [5] as 

A, = (~J(R(I)(cos fl + 2s sin /I) (16) 

Al, =aJ(7ta)(sin/3-2~cos/?), (17) 
where 

/I = E ln(2a/i). (18) 

Table I lists the material properties ratios for three cases. A comparison between results by 
using eqs (7) and (9) and the analytical solution is shown in Table 2. Numerical study has shown 

Fig. 4. The finite element mesh. 
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96 elements 128 elements 

Fig. 5. Meshes with different number of elements in focused region. 

Table 3. Results for different number of elements in the focused mesh 

Number of Case 1 Case 2 Case 3 
elements 4 K,, * K, K,, JI 4 K,, !b 

64 1.8110 -0.2193 -6.9057 1.8107 -0.2265 -7.1304 1.8165 -0.2652 - 8.3066 
96 1.8108 -0.2190 - 6.8965 1.8109 -0.2261 -7.1155 1.8i69 -0.2648 -8.2914 

128 1.8107 -0.2189 - 6.8940 1.8109 -0.2260 -7.1148 1.8169 - 0.2647 -8.2904 

that the same results are obtained with different values of AK, and A&. It is a natural outcome. 
Several calculations were done using different meshes focused at the crack tip to test the 
convergence and mesh dependence. Figure 5 shows the two focused meshes with 96 and 128 
elements. The number of elements for the rest of the mesh was kept constant at 96 as shown in 
Fig. 4. Numerical results for different numbers of elements in the focused mesh are shown in 
Table 3. As Table 3 shows, K,, K,, and II/ are insensitive to the number of focused elements. 

CONCLUSIONS 

A new method has been presented for calculating K, and K,, in bimaterial fracture. The method 
produces very accurate results, even for relatively coarse meshes, and has a low sensitivity to the 
degree of mesh refinement near the crack tip. 

The cost of computing Kr and K,, is generally less than a few per cent of the cost of initial 
elastic analysis. Furthermore, the modularity of the new algorithm permits it to be easily 
incorporated in any existing finite element code without changing the main body of the program. 
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