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VARIABLE POWER SINGULAR INTERFACE ELEMENTS 
FOR A CRACK NORMAL TO THE BIMATERIAL INTERFACE 

WU YONG-LI 

Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080, P.R.C. 

Abstract-Zero thickness crack tip interface elements for a crack normal to the interface between two 
materials are presented. The elements are shown to have the desired r*- ’ (0 < I < 1) singularity in the 
stress field at the crack tip and are compatible with other singular elements. The stiffness matrices of the 
quadratic and cubic interface element are derived. Numerical examples are given to demonstrate the 
applicability of the proposed interface elements for a crack perpendicular to the bimaterial interface. 

INTRODUCTION 

As THE DEMANDS made on the strength and durability of today’s engineering materials increase, the 
advantages of combining the properties of two or more materials into a single member have become 
apparent. However, this same combination of material properties can contribute to failure of these 
structures. Clearly, the integrity of the junction between the materials is of particular interest. When 
the failure of such a structure involves the cracking or debonding of bimaterial interface, fracture 
mechanics provides an excellent method of studying the problem. As the complex geometries and 
loading of many crack problems of homogeneous and composite materials do not lend themselves to 
analytical solutions, the finite element method has gained acceptance as a possible solution tool for 
these problems. Most finite element models that are used currently in the analysis of the fracture 
mechanics incorporate special singular finite elements that model the singular stress conditions at the 
crack tip. The quadratic quarter point singular finite elements developed by Henshell and Shaw [l] 
and Barsoum [2] are the commonly used singular crack tip elements. These elements have the 
theoretical r -Ii2 singularity and therefore aid in the efficient modeling of the stresses near the tip of a 
crack. 

A successful finite element should be able to model the properties of the interface between the 
two materials in a composite material, as the properties of the interface can have a significant effect 
on the strength and the fracture toughness of the composite. Goodman et al. [3] proposed zero 
width linear or quadratic bond interface elements to model the interface region of the composite. 
Tarazi and Mandel[4] developed a special five noded, quadratic, zero width, singular interface finite 
element for modeling the interface of the fiber and the matrix material at the crack tip of an 
interface crack in a composite material. The element has the required theoretical r-“2 singularity in 
its stress field. In this paper special quadratic and cubic zero width singular interface finite elements 
are developed for modeling a crack normal to the bimaterial interface. These elements have the 
desired theoretical ri-’ singularity where ,J(O < ,? < 1) is the lowest root of the characteristic 
equation depending on the elastic constants of two materials [5]. These singular interface elements 
can be used easily and efficiently with the collapsed isoparametric elements which have also the 
variable power singularity of the stress field at the crack tip [6]. Numerical examples are given to 
demonstrate the applicability of the proposed interface elements for modeling a crack normal to an 
interface of bimaterials. The results have also been used to display the effect of the interface shear 
and tensile stiffness on the fracture parameter and deformation of composite materials. 

QUADRATIC INTERFACE ELEMENT 

Consider the quadratic interface element shown as Fig. 1. Using the quadratic shape functions 
N,, the element geometry in the local coordinate system x, y can be mapped into the one-dimen- 
sional normalized space: 

n = i: N,Xi = i Ni,,Xi, 3, 

i=l r=l 
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where 
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N3=N‘$=[(l+[)/2. (2) 

Furthermore the displacements of the elements in the local coordinate system x, y can be 
expressed as: 

%=i$, N,+3U,+3, uuzi$, Nr+3°i+3, 

3 3 
u, = 1 N,u,, v, = c Niu,. (3) 

i= I r=l 

u, and v, refer to the x and y displacements of the upper side of the element (side 4,5,6), while 
u, and u, refer to displacements of the lower side of the element (side 1,2,3). The relative 
displacements of the upper and lower sides can be written as 

r > 

or 

-N, 0 -N, 0 -N3 0 N4 0 N5 0 N6 0 
0 -N, 0 -N2 0 -N, 0 N4 0 N5 0 N6 

1 
(4) 

‘. (5) 

In a first approximation the interfacial zone is represented by one-dimensional extensional and 
shear springs distributed over a surface. For linear behavior in extension and shear the conditions 
across the interface may then be expressed as 

and 

[K] = “d [ 1 
k” ? (7) 

where k, and k, are suitable values for the bond stiffness per unit area between the materials in the x 
and y direction, respectively. 

It should be noted that eq. (6) includes the case of perfect contact (k, = kf = co), when the stree 
and displacements are continuous, and the case of no contact (k, = ky = 0) when the stresses vanish. 

Using eq. (6) the work done during the deformation of the element can be expressed as 

From eq. (I) we have 

dx =:(L,C +L)di (9) 

where 

Substituting eqs (5) and (9) into eq. (8), we get 

(11) 
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where [K,] is the stiffness matrix of the interface elements. 

KJ = 

Z,,k 

L 

0 Z&x 0 Z,,kx 0 --Z&x 
Z,,k,. 0 Z,,k,. 0 Z,,k, 0 

Lk 0 4&r 0 --Z&r 
42 k, 0 Z&y 0 

Z&x 0 -Z&x 
Z&y 0 

4, k 

Symmetrical 

0 --Z&x 0 
-Z,,k, 0 -Z&y 

0 -Zzzk 0 
-Z&y 0 - 42 k,, 

0 -Zz,k 0 
-Z&y 0 - 43 k, 

0 Z&x 0 
Z&y 0 43 ky 

Z&x 0 
42 ky 

-Z,,k 
0 

-Z&v 
0 

-Z&r 
0 

Z&x 
0 

4&x 
0 

4 , k 

0 

-Wy 
0 

-Z,zk, 
0 

-Z,&, 
0 

4&y 
0 

Z&y 
0 

WY 

(12) 
where 

1 ’ 
‘,,=2 _, 

s 
N:(L+L,i)dr=~(~~-~,), I,=~~~,~~(~+~,od(=isjL, 

1 ’ 
133 = Lj 

s 

_, ML +L,l)dl =@+L,), I,,=;/+W(L +L,[)d[ =&(L -L,), (13) 

zp; 
s 

I 
N,N3(L +L,[)dC = -AL, 

1 ’ 

-I 
43 = Tj 

s 

1 
_, KN3W +&OX =&L +&I. 

It can show that the interface element has the desired strain singularity by choosing adequately 
the location of the side-node. 

Without loss of generality consider the lower side of the element and assume 

x, =o, x*=cix3. 

From eq. (10) L., and L can be expressed as 

L, = 2x,(1 - 2a), L =x3. 

Substituting eqs (2) and (14) into eq. (1) we get 

x =,[(;-.)P+;, +.I. 

Y 

(14) 

(15) 

(16) 

Fig. I. The quadratic singular interface element. Fig. 2. The cubic singular interface element. 



766 WW YONG-LI 

The least-squares method can be used to determine M values for various values of 2 by satisfying 
the condition [7] 

Equation (16) can be written as 

(17) 

(18) 

From eqs (3) and (18) we get 

au ati ay 
x = x Y& = 4&, - 2% + %) ( 2. 

x >( > *A x, z ‘-(3l( -4u,+u,) $ ; i-l. 
( >( > 

(19) 

It is seen that the strain has r*j ’ and r ’ - ’ singularities. The term r** - ’ is the nonsingularity for 
2;1 - 1 2 0. For /z = 1 this is the case for a usual interface element which has no singularity. In the 
case E, = l/2, we get ct = l/4 and L, = L. from eqs (17) and (10). The strains have singularity which 
is the case considered by Tarazi and Mandel [4]. Therefore eqs (12) and (13) can be used with the 
usual and variable power singular interface elements. 

With the above matrix formulations all that remains is to transform the matrix in the local 
coordinate system x, y to the stiffness matrix in the global coordinate system x’, y ‘. This can be done 
through the following transformation [7] 

The angle 6 is the angle between the local coordinate system x, y and the global coordinate system x’. y ‘. 

CUBIC INTERFACE ELEMENT 

Consider now the cubic interface element as shown in Fig. 2. 

x = i NJ,= i N,+G,+~ 
I=1 r=l 

4 4 

u,= c N,+4~,+4t vu= 1 N,+4~,+4 

i-1 i=l 

UI = ,$, N,u,, 1’1 = ,i, Rt’, 

where 

N, = Ns = (1 - [)(9l’ - 1)/16 

Nz = N, = 9(1 - 32;)(1 - [*)/I6 

N3 = N6 = 9(1 + 31)(1 - [*)/16 

N4=NS=(l +[)(9c2- 1),‘16 

From eqs (21) and (24) we get 

dx = (L + ~5,; + ~5:~) di, 

where 

L = (x, - 27x, + 27x, + x,)/16 

L, = 9(x, - X? - ~3 + x4)/8 

(21) 

(22) 

(23) 

(24) 

(25) 

L,=27(-x,+3x2-3x3+x,)/16. (26) 

Following the procedure outlined before, the stiffness matrix of the cubic interface element can be 
obtained. 



Modeling element behavior at the bimaterial interface 167 

II 
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where 

1” = J ' -I N:(L+L,i+bC*)dC =&(128& 109L,+98L2), 

I 
122 = 

s -I 
N:(L +L,C +L,?)dt =&(8L -3L,-2L2), 

I33 = I’ N:(L +L,l +U’)dT 
-I 

= $8L + 3L, - 2L*), 

I, = J ' -1 N:(L +L,C +&Z2)dC =&(128L + 109L1 +98L,), 

J 
I 

42 = 
-I 
~,~2(L~+L,~+L~~2)d~=~(llL-10L~+7L2), 

J 
I 

43 = N,&(L +L,l +L2i2)& 
-I 

==&-(-4L + 5L,- 2L2), 

J 
I 

44 = 
-1 
N~N,(L+L~i+L,i2)dr=~(19~+11~2), 

J 
1 

12, = ~*~~(L+L,~+L2~2)d~ = -280 %+L2h 
-I 

J 
I 

124 = N2N4(L +L,i +Lzi')dC = --!- f4L + 5L, + 2&j, 
-I 

280 

J 
I 

134 = 
-I 

N,N,(L+L,i+L2iz)di=&(llL+10~,+7~~). (28) 

Consider the lower side of element and assume 

xl =O, x2=ax4, x,=fix,. 

Substituting eqs (24) and (29) into eq. (21) we obtain 

X4 

(29) 

x=~[9(l+3a-3~f~3+9(l-a-~)~2+(27~-27a-l)~+(9a+9~-1)]. (30) 

The least-squares method associated with a simplex method can be used to determine a and /I values 
for different 1 values by satisfying the condition [7] 

Equation (30) can be written 

=; ‘/i, for 
-1 Gi G 1. (31) 

(321 

In that case we obtain 

(33) 
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h 

t 
h 

1 

where 

2a 

t 

X 

Pllh Pl,Y 

Fig. 3. Cracked bimaterial strip. 

A, = f ( - 22u, - 45u, + 63u, + 4~~) $, 

A, = (18u, - 45u, + 36u, - 9~) k, 

A,=;(-27u,+8lu,-81u1+27+. (34) 

Equation (33) above shows that the strain of the cubic interface element has rL-‘, r”-‘, r”-’ 
singularities. The terms r31- ’ and rzi. - ’ are the nonsingularity for 21 - 1 2 0. The term r3’- ’ is the 
nonsingularity for 3A - 1 2 0. For the case I = 1 we have a = l/3, /I = 2/3, L, = 0 and L2 = 0 from 
eqs (31), (29) and (26). It is the usual interface element which has no singularity. For the interface 
crack the eigenvalue is l/2. It can show 

a = l/9, /I = 419 

L = x4/2, L, = 3x4/2, L2 = 0. (35) 

This cubic singular interface element is compatible with the cubic singular isoparametric el- 
ement [6]. 

NUMERICAL EXAMPLE 

Consider a bimaterial strip with a crack normal to and terminating at the interface as shown 
in Fig. 3. The crack surfaces are subjected to uniform pressure. Because of the symmetry of the 
geometry and load along the x-axis only half the model was analyzed. The finite element mesh 

, 1 

, 

Fig. 4. Finite element mesh. 



770 wu YONG-LI 

Fig. 5. Mesh in crack location. Fig. 6. Crack surface displacement (k, = 1.0 psi/in.). 

1 
2.00 i 

ooaw kp 1.0 psi/in 
uaa kp lO.O,, psi/in 
*--h= 10.0 
- Cook and P 

sl/in 
rdoaon 

is shown in Figs 4 and 5. The total mesh involved 479 nodes, 132 quadratic isoparametric elements 
and 13 quadratic interface elements along the bimaterial interface. The present singular interface 
element was placed at the crack tip along the interface. The collapsed singular elements [6] modeled 
the remainder of crack tip region. The numerical calculation was carried for epoxy-aluminium with 
the following properties 

p, = 0.1667 x lo6 psi, v, = 0.35, 

p(2 = 3.846 x lo6 psi, v2 = 0.3. (36) 

The eigenvalue 1 of the strain singularity for the material combination is 0.6619. In order to obtain 
the desired strain singularity r’- ’ for singular interface element and collapsed singular elements 
at the crack tip we have a = 0.35021[7j. 

The finite element analysis was conducted for various values of tension stiffness k, and shear 
stiffness k,. Figures 6, 7 and 8 show the crack surface displacements for k, = 1 .O, 10.0, 10” psi/in, 
respectively. The result of the singular integral equation obtained by Cook and Erdogan [8] for the 
perfect bonded interface was also shown. It can be seen from the results, as the stiffness k, and 
k, increases the crack surface displacements decrease and approach Cook’s result. The present result 
for k, = kt = 10” psi/in. agree well with the result of the singular integral equation [8]. 

Fig. 7. Crack surface displacement (k, = 10.0 psi/in.). 
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1 &/a 
4.00 

0.00 

0 
/a 

Fig. 8. Crack surface displacement (k, = 10.Oto psi/in.). 

The stress intensity factor generalized for both the embedded and bondline crack tip is defined 

as PI 

K=Jmir'%&,0). (37) 

To deduce K from the displacement data the following equation was used 

K = &p *U,(r, 7r)/r”, (38) 

where 

pe=p (1--2l)(m +kd+(l+21)(1 +mk,) 
2 

(m + k,)(l + mk,)sin KA 

m=p21h. 

K’ 
tom - ,~r__--__u-.------- _,--_-----a 

P’ 
rm- r( 

- / 
1 / Y*Y 
3.’ 

kt= 1.0 
am- taco kl = 5.0 

w*= h = 10.0 
-+* h = 10.0’ 

7m - o-00-0+ kt = lO.O’O 

am- 

%00- ,______*---_______-_---___-* 

: /JI 
‘m_ / 

pi______*__--_---__--____---* 

1( 
: P” 

3Ao- / 
r 

,*_-_---C----===============~ ,Ss*____--w---- 

OM,“1,,,1,, ,,,,,,,,,,,,,,,,,,,,,,,,‘,,,.,,,.,,,,,.,’OSkn 
0.0 2.k w 6.0 8.0 IOA 

(39) 

Fig. 9. K* vs logk, curves (unit for k, and k,: psi/in.). 



772 WU YONG-LI 

From eq. (38) the normalized stress intensity factor K* = K/o&a ‘--I at the bondline crack 
ends from the finite element data at r/a = 0.001 can be found. Figure 9 shows curves of the K* 
vs k, for various values k,. The value K for k, = k, = 10” psi/in. was found to be 2.752 which agrees 
well with 2.7845 computed by use of the singular integral equation for a perfect bonded interface 
[8]. It is interesting to note that each curve in Fig. 9 is similar to the curve in Fig. 12 given by Tarazi 
and Mandel for the interface crack [4]. The stress intensity factor increases as tension stiffness k, 
increases. But the stress intensity factor increases more rapidly as shear stiffness k, decreases. 

CONCLUDING REMARKS 

The quadratic and cubic interface element can have the desired strain singularity by choosing 
adequately the location of the side-node. The stiffness matrix of the element is derived. The elements 
are shown to be compatible with the other singular isoparametric elements. The numerical results 
show that the element adequately models the deformations near the crack tip for a perpendicular 
interface crack. The numerical results also show that the tension stiffness and shear stiffness of the 
interface have different effects on the stress intensity factor. 
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