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A previously published disctete-layer shear deformation theory is used to analyze free
vibration of laminated plates. The theory includes the assumption that the transverse shear
strains across any two layers are linearly dependent on each other, The theory has the same
dependent variables as first order shear deformation theory, but the set of governing
differential equations is of twelfth order. No shear correction factors are required. Free
vibration of simply supported symmetric and antisymmetric cross-ply plates is calculated.
The numerical results are in good agreement with those from three-dimensional elasticity
theory.

1. INTRODUCTION

Shear deformation effects are of great importance in the vibration analysis of laminated
plates. The first order shear deformation theory for laminated plates [1, 2] is the well known
Reissner—Mindlin type theory. It is much more accurate than classical laminated plate
theory for the prediction of natural frequencies. However, there is no improvement in the
accuracy of the modal in-plane displacements and modal stress¢s. Furthermore, shear
correction factors have to be used in order to adjust the transverse shear stiffnesses. To
overcome these drawbacks, several refined shear deformation theories {displacement
based) have been presented. These include the higher order laminate models based on
non-linear through thickness in-plane displacement assumptions [3, 4] and the discrete
layer models based on piecewise linear in-plane displacement assumptions [5-7). As the
number of layers is large in most cases, the discrete layer models are more capable of
modelling the warpage of the cross-section during bending and vibration and of predicting
in-plane responscs. However, since the number of field equations and edge boundary
conditions depends upon the number of layers, the discrete layer models are computation-
ally expensive. In an attempt to overcome this difficulty, another model based upon a
piecewise linear in-plane displacement field has been proposed [5, 8] which allows the
contact conditions for the displacements and the transverse shearing stresses at the
interfaces to be satisfied simultaneously. However, since in that theory the transverse
shear stresses are assumed implicitly to be constant, this is not entirely satisfactory,
Recently, the senior author presented a refined shear deformation theory [9]. The in-plane
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displacements are also assumed to be piecewise linear and the transverse displacement
constant across the thickness. In addition, the transverse shear strains across any two
different layers are assumed to be linearly dependent on each other. The theory has been
used to analyze bending of laminated plates [10, 11]. The solutions of the theory were found
to be in good agreement with the exact solutions of the three-dimensional theory of
elasticity. The present paper deals with the free vibration analysis of laminated plates.
Analytical solutions for simply supported symmetric and antisymmetric cross-ply plates
are obtained. The results are also compared with those from three-dimensional elasticity
theory.

2. FORMULATION

Consider a plate of constant thickness s composed of N + N,+ 1 thin layers of
anisotropic material bonded together. The origin of a Cartesian co-ordinate system is
located within the central plane (x—y) with the z-axis being normal to this plane. The
thickness of the ith layeris r,(i = — N,,...,0,..., N;). The co-ordinate in the z-direction
of the mid-plane of the ith layer is z,. The layer corresponding to i = 0 is determined from
the condition — /2 < z, < ,/2; i.¢., it includes the central plane of the plate. We begin
with the displacement field of the ith layer,

u(ﬂ(x, Y, Z) = u.ﬁ?(x! y) + (2 - Z,-)l/fg)(x, y)s
v?(x, 3, 2) =0@(x, )+ —z WP (x,¥),  wOxp,2)=W(x,p), (0

where u?, v and W denote the displacements of a point (x, y) in the mid-plane of the
ith layer, and y? and {? are the rotations of the normals to the mid-plane about the y-
and x-axes respectively. In fact, we assume that the deflection W is constant through the
thickness of the plate. The transverse shear strain components 33} and y within the ith
layer are

YO= YO+ aW[ax, 0=yl +aW/ay. @

As real transverse shear stresses are continuous between layers, we assume that the
transverse shear strain components across any two different layers are linearly dependent
on each other. Therefore we have

Y= A0+ Y, =iy D+ ARy, )

where y® and ¥ represent the transverse shear strain components within layer zero. 47
(rs = 11, 22,12, 21) are undetermined constants. Furthermore, the continuity of interlam-
inar in-plane displacements has to be preserved. Hence, the in-plane displacements of
points in every layer can be expressed in terms of five unknown functions: the displace-
ments of points on the central plane of the plate, U(x, ¥), ¥(x,y) and W(x, y), and the
rotations of the normals to the mid-plane of layer zero, ¥ (x, y) and ™ (x, y). The
expressions are

w®(x, v, 2) = U(x, p) + 2y + s W O (x, p) + sy 2(x, »)
— [z, —zo — st W jéx + s(Dh oW 3y + (z — z)[ATW P (x, »)
+ AP (x, y)— (1 — A oW [ox + A1 oW joy],
v2(x, 3, 2) = V(x5 y) + 2o+ sOB WP (x, y) + sy P (x, y)
— [z, — 2o — s(NR] @W /By +5(D)Q oW [0x + (z — z))[ARY O (x, y)
+ AR O (x, p) — (1 = AR) eW [éy + A5} OW [ox], 4)
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where
i—=1
1.1+ Y At +3A01, i>0
1= k= : (5)
1o.00+ Y A¥f 4340, i<0
k=i+l
1 re=g 1, i»0
(5,5={ o }, sM={ 0, i=0;, rs=11,22,12,21. 6.7
0, r#s
-1, i<0
The sum in equation (5) vanishes in the case of i =1 or —1 respectively. Define
e, = oUjéx, €, = dV/dy, Yo =0U/dy + OV [0x,
K= oy jox, K, =opD/dy, K, = oy jox, K=YV ay,
Ki=—8W[dx},  kl=-3Wdy, ki =kl=—-0W/[éxdy. (8)

Then the expression for the strain energy density per unit area of the central plane of the
laminated plate is

E=3INé,+ N, + Ny + Mixi+ Mok, + Mok, + M k) + Mk
+Mky+ML260)+ Qi + 2121 9
Here N,, N,,...,Q; are all generalized internal forces. Upon defining
[N} =[N, N, N,J. {M}=[M, M, M, M,T,
My=M My ML, (@ =10, O, =l ¢ »l,

h=Ie w, xy w N {x =i xp 200N {pP=DR ¥R1. (0)

TABLE 1
Non-dimensional fundamental frequencies A = 10 w{ph*/E;)'" of cross-ply square laminated
plates
E jEy
— A— Al
Lamination Nt Analysis 3 10 20 30 40
Symmetric 3 Exact [14] 2:6474 3-2841 3-8241 4-1089 4-3006
Present 2-6357 3-3342 3-8457 4:1464 43510

FSDT [15] 26278  3-3192 38268 41303 43415

9 Exact [14] 2-6640 3-4432 4-0547 44210 46679
Present 2:6390 34169 4-0310 4-4008 4:6510
FSDT {15] 2-6384 3-4169 4.0334 4-4058 4-6580

Antisymmetric 2 Exact [14] 2-5031 2-7938 3-0698 3:2705 3:4250
Present 2-5174 2-8129 31011 3-3166 3-4860
FSDT [15] 2:4834 27757 3-0824 33284 3-5333

10 Exact [14] 2-6583 3-4250 4-0337 4-4011 4-6498
Present 2-6329 3-3974 4-0075 4-3774 4-6285
FSDT {15] 2-6335 3-4053 4-0255 4-4023 46577

1 N = number of layers.
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TABLE 2
Corresponding values of A} and 1Y) for symmetric cross-ply square laminated
plates
E, /E;
[ 1
N i 3 10 20 30 40

3 0 +1 0421 0457 0477 0491 0-502

A9 +1 0-477 0-310 0-198 0-144 0-113

9 2 +1 11167 182 1187 1190 1182

+2 0-825 0-844 0-856 0-866 0-868
+3 0717 0-782 0-819 0-844 0-858
+4 0-248 0-312 0-344 0-363 0-375

1 0-778 0-767 0-763 0-756 0-767
2 0-789 0-781 0-782 0-781 0-798
3 0-424 0-386 0-374 0-371 0-378
4 0-138 0-069 0-040 0-028 0-022

i

the expression for the overall generalized force-strain relations becomes

(v} 4] (B (8] (O | | {e}
MY _ BT 21 D] WO | {x} ] a1
(M} BT I D7 © | | {7
g O O o 6] | o}

Except for the zero submatrices, the expressions for the other submatrices are given in
Appendix A.

We use the principle of stationary potential energy [12] to derive the differential
equations of free vibration and the equations that A% must satisfy. The former can be given
as follows:

ON, [/0x + 0N, [ey + O (M U+ MW+ M9+ Mis‘/’,(f)) =0,
6ny/ax +6Ny/6y +a)2(M12V+M23W+M24¢5,0)+M25t[l§9)) =0,

~d(QL+ Q)ox —é(Q, + Q})oy
+ O (MU + My V + My W+ My + MypiP) =0,

M jox + M, [0y — Qi+ 0 (M U + My V + My W + Moy @ + My P)=0,
OM 5, [0x + OMjdy — Qi+ @ (M\sU + My V + My W+ My 0 + My V) =0,
(12)
where

L= 0M[ox + M7, |dy, "= M

p

[ox + dM 3y, (13)

In equation (12) w is the natural circular frequency, and M,,, etc., are coefficients and
differential operators with respect to x and y. The expressions for them are also given in
Appendix A. The set of equations (12) can be expressed in terms of the amplitudes of the
displacements U, V¥, W and the rotations ¢ and {”. It is of twelfth order and no shear
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correction factors are introduced. The consistent homogeneous boundary conditions are
of the form

N,=0 or U,=0, N,=0 or U=0,
Q.+ 0y + M, jds —oH (R — R)U + Ry V + (I + Iy + Lyay — 21,)) 0W dx
+ e+ Loy — ha — B) OW[oy + (I + Ly — L WY
+ Ny + Doy — T WP cos (1, x) — @'[R, U + (Ry — RV
+ T2+ Loy — Do — L)) OW[0x + (I + gy + 11315 — 2015,) OW[By
+ (yia+ By — LW + (g + Dy — L) P cos (n, ¥} = 0,
or W=0, M,=0 or ¢yP=0, M, =0 or yO=0,
M;=0 or éW/in=0. (14)

The expressions for the coefficients R,;, etc., are also given in Appendix A. At each corner
of the plate there is the additional! requirement that

Mi(s+0—M_ (s—-0)=0 or W =0. (15)

Furthermore, two independent sets of simultaneous linear algebraic equations which 19
(i >0 or { <0) must satisfy, respectively, can also be obtained. The coefficients of the

TABLE 3
Corresponding values of A\) and 1) for antisymmetric cross-ply square laminated
plates
E,|Er
— A N
N i 3 10 20 30 40
2 A0 —1 1-003 0-661 0-454 0352 0292
A -1 0-997 1-514 2-204 2-841 3-429

0 A 4 0245 0309 0341 0360 0373
3 0685 0762 0804 0829 0-849
2 0790 0825 0844 0855 0864
t 11131 1-162 11174 1178 1-180

~1 1196 1189 1185 1-184 1183

-2 0897 087 0866 0868 0872

-3 0-882 0849 0848 0-856 0-868

-4 0473 0416 0400 0399  0-403

-5 0166 0082 0047 0034 0026

A8 4 0-139 0-069 0-040 0-028 0-022
3 0-396 0-350 0-337 0-337 0-340

2 0-739 0-715 0-715 0-723 0-733

1 0751 0-7133 0-731 0-733 0-737

-1 0-836 0-841 0-844 0-844 0-845

-2 0-947 0-978 0-990 0-995 0-997

-3 0-661 0-694 0-712 0-722 0-730

—4 0-574 0-641 0:678 0-700 0717

-5 0-206 0-260 0-288 0-304 0-315
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Figure 1. Mode shapes associated with the fundamental frequency for a ten-layer cross-ply laminate with
E [Er=130 and h/L =0-2. —, Exact [14]; ~—-, present; —-—, FSDT [14].

algebraic equations consist of @w? and area integrals defined with respect to the region of
the plate. The integrated functions are expressed in terms of the amplitudes of the
displacements and rotations and the strain components in equation (8). The details are
given in Appendix B. Coupling between the set of differential equations (12) and the two
sets of algebraic equations arises through the coefficients in those equations. We have to
solve them together using iteration methods. A procedure is suggested as follows.

At first an approximate distribution (e.g., a parabola) of each transverse shear stress
component across the plate thickness is assumed. The transverse shear stress—strain
relations for each layer are

=080+ 0%y, =000+ 00, (16)

If one regards the values of the transverse shear stresses at the mid-plane of cach layer
as the representative ones, then for a parabolic distribution one can obtain the expressions

19=a0(Q00Y - QUOB®, A8 =a"(QBOR - 05OV,
12 =a%(QHOY -~ 0RO, 1§ =a"(QYOY - 04OR)bY,
a®=[1 = Qz;/hYY[1 — Q2z/hY],  b9=Q{0%~ QR (17)

as the initial values for A9, Utilizing them in the calculations, we can solve equation (12)
with determined coefficients. Thus one can obtain an initial solution (analytical or
numerical) for every natural frequency w and corresponding mode U, V, W, ¢ and ¢
of equation {12) and the related boundary conditions. The mode can be so normalized that

Ny z; + 12
2T* = J‘ Z {J‘ p'_(u(oz + p2 4 w(r")2) dz}dQ =1,
Q

i= —Ny =12
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where p; is the mass density of the /th layer. According to each natural frequency w and
corresponding normal mode, one calculates the coefficients in the algebraic equations.
Then one solves the equations to obtain new values of 1© which are different for different
natural frequencies. Thereafter, equation (12) is re-solved by using each new value of 1%
to obtain a new value of each natural frequency and corresponding mode shape, and so
on, In general, the iteration process converges quickly. In some cases other more
approximate distributions of the transverse shear stresses across the thickness can be
assumed, and the initial values of 1% are better. Thus the iteration process can converge
more quickly. If less accuracy is acceptable, the iteration process can be stopped after a
few cycles. Sometimes even the prescribed values of 1% obtained from equation (17) can
be used to give acceptable results [13] and the iteration process can be omitted.

3. NUMERICAL RESULTS FOR SIMPLY SUPPORTED SYMMETRIC AND
ANTISYMMETRIC CROSS-PLY PLATES

The exact analytical sotution of equation (12) for a general laminated plate under
arbitrary boundary conditions is a difficult task. Here the free vibrations of simply
supported, symmetric and antisymmetric cross-ply square plates are to be considered.
Upon introducing a co-ordinate system and defining the edges of the plate to be x =0, L
and y =0, L, the following simply supported boundary conditions are adopted:

x=0,L:
N=V=W=M=yD=M,=0,
y=0,L:
N=U=W=M,=yP=M,=0. (18)
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Figure 2. Modal normal stresses corresponding to the mode shapes of Figure 1.
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Figure 3. Modal shear stresses corresponding to the mode shapes of Figure 1.

To obtain the fundamental frequency and the associated mode shape, one can assume
the following form of spatial variation of (U, ¥, W,¥©, ™) that satisfies boundary
conditions in equation (18):

Ulx, y)= U cos{(rnx/L)sin(ry/L), Vix,y)=Vsin{rnx/L)cos (ny/L),
Wix,y)= Wsin (nx/L)sin (my/L),  ¢P(x, y) = ¢ P cos (nx/L)sin (np/L),

Y P(x, ) =P sin (mx /L) cos (ny/L). (19)

It can be verified that in this case 1{) = 4§} = 0. Substituting equation (19) into equation
(12) for cross-ply plates, one can obtain the solution for w?, U, ¥, W, ¢ and ¢ and
A{] and 14} by the iteration procedure. Cross-ply laminated plates having both symmetric
and antisymmetric laminations with respect to the middle plane were considered. The fiber
orientations of the different laminas alternate between 0° and 90° with respect to the x-axis,
and in the symmetrical laminates the 0° layers are at the outer surfaces of the laminate.
In the antisymmetrical laminates the + N, th layer is a 0° layer. The total thickness of the
0° and 90° layers in each laminate are the same. The material characteristics of the
individual layers taken in reference [14] are considered here and they are (G,;/E;} = 0-6,
(G/E;) =05 and v,y = vy =0-25. Subscript L refers to the direction of fibers and
subscript T refers to the transverse direction. The ratio E, /E; is varied between 3 and 40,
and k/L is fixed to be 0-2. Two layer, three-layer, nine-layer and ten-layer plates were
considered. The non-dimensionalized fundamental frequencies are presented in Table 1.
They are compared with the results of an exact solution [14] (a finite difference solution
of the three-dimensional elasticity equations) and the results obtained by the first order
shear deformation theory (FSDT) [15]. The shear correction factors for FSDT are taken
to be 5/6 in reference [15]. The corresponding values of 1Y) and A%} for symmetric and
antisymmetric cross-ply square laminated plates are given in Tables 2 and 3, respectively.
For these sample examples the iteration processes were operated through dozens of cycles
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until the values of A9 converged to three decimal places. The natural frequencies
converged much faster than the values of A2 Plots of the mode shapes and modal normal
and shear stresses associated with the fundamental frequency for a ten-layered plate with
E, /Er =30 are shown in Figures 1-3. The modal in-plane displacement u was normalized
by dividing it by the transverse displacement w at the surface z = #/2. The modal normal
and shear stresses, o, and t,,, were normalized by dividing them by o.,,,,, . The results show
that the present study is in good agreement with the elasticity solution [14]. However,
the mode shapes and meodal stresses obtained by the FSDT are not as accurate as the
frequencies.

4. CONCLUSIONS

A refined shear deformation laminated plate theory first developed in reference [9] has
been used here to analyze the free vibration of laminated plates. The theory contains the
same number of dependent variables as first order shear deformation theory, but the set
of governing differential equations is of twelfth order. No shear correction factors are
required. The theory can be used to analyze the free vibration of arbitrary laminated plates
without limitation on the materials and the number of layers and the direction of the ply
angle. The numerical results for simply supported, symmetric and antisymmetric cross-ply
laminates have been compared with those given by elasticity theory. From the results it
can be concluded that the present theory gives accurate predictions of both the natural
frequencies and the modal shapes and modal stresses even for fairly thick laminates with
a span-to-depth ratio equal to 5. Although the analytical solution of the equations can be
obtained only in a few cases, one can use approximate methods, e.g., finite element
methods, to obtain numerical solutions in other cases.

If one prescribes A} =A% =1 and 1= A{] =0, then the displacement model in the
present theory becomes identical with that of the first order shear deformation theory.
Therefore the present theory can be regarded as a direct generalization and improvement
of the first order shear deformation theory.

In the present theory the undetermined constants A% may be regarded as average values
for the whole laminate. The values of 1% are different for each normal mode. As every
normal mode of a laminated plate can be approximately obtained with the present theory,
then the orthoponality relations between any two different normal modes also exist
approximately. If the responses of the laminated plate to dynamic loads have to be
calculated, they can be described by the sum of the product of the response of each normal
co-ordinate of the plate with the corresponding generalized force and the corresponding
normal mode. Using the present theory, one can predict accurately not only the transverse
displacements but also the in-plane stresses, which are also important for dynamic analysis
of laminated plates.
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APPENDIX A: ELEMENTS OF THE STIFFNESS MATRIX AND EXPRESSIONS OF
COEFFICIENTS AND DIFFERENTIAL OPERATORS M;

The expressions for the non-zero submatrices in equation (11) are as follows:

Ay A Ag B, By Bg By
[4]= Apn Ax|> [B']=|By By By By |-
symm. Ags By By By By

[D]=

Dll'_‘Dl’l' D21’_D|'2' Dﬁl'_%Dl'é'_%Dl'S"
Dl2'_Dl'2' DZZ'_DZ’Z’ DGZ'_%DZ'()'_%DZ'S'
Diy—Dyg Dy —Dyy Deg—3Dgy—14Dee
‘Dlﬁ”_Dl'ﬁ' DZG"_DZ'G" DM"_%DO'G" _%Dﬁ"é"

[D]=
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Dy =20+ Dy Djy—Dyy—Dy+ Dyy
[D”] = Dzz - 2Dzz' + DZ'Z’
symm.

D]ﬁ_%‘Dlﬁ'—%Dlﬁ"—D61'+%D1'6'+%D]'6”
xD2ﬁ_%DZﬁ‘_%D26"_D62'+%D2'6'+%D2'6" '
Dgs — Dgg ~ D + 4 D + 3 Dggr + & Dggr

61-| o oo (A1

The elements in the submatrices are expressed as follows. Define a notation Z'(+ ) to
designate a sum which is given by summing all the quantities associated with their
superscripts or subscripts of all the non-zero numbers i Denoting by Q9 the usual
transformed, plane-stress-reduced elastic constants of the ith layer, then we have

A, =094+3 (081, D, =09J,+3 (Q%J) pg = 11,22, 66,12, 16, 26,
(A2)
where

J=rzl+ 58, i20, i<0. (A3)

Defining

f‘;3={i§+s(f)z"’ i:g}, IO =s5()z,1,i0 + 54013,

JO = 0f00 4 5A0203 0 pg,rs =11,22,12,21, (Ad)

we have

Dy, =000+ Y (@RI + oRJ), Dy = Q94+ Y (ORI + 02JD),

D= QRN +Y (ORI + 00D,  De=004+Y (© W +QRJM),
Dy = Q00+ Y (QOJ1+08J%),  Dp=090+ Y(QBIN+ 0QIY),
Dy = QRN+ Y QB/H+Q%IE), Do =004+ T (@974 + Q81
Dy = QWA+ L @RI+ QWIN),  Dar=0R7+L QR0+ 0R7Y),
D= Q@1+ Y (QQT+00ID),  Dee = QR+ Y (QUIR + 0RJY), (AS)
Dy = Q0+ Z (0778 + Q8T + 200 7%2],
Dy = Q9+ Z (@370 + Q@RI + ORI+ Q82 JIE,],
Dy =00+ E (@001 + QLTG0 + QR + T1h)),
Dyg = Q)T+ Z (@R + 2D + 00 + 09T,
Dy = QW1+ Z’ (@878 + 08I0, +20974,,],
Dye = QR+ 3 (OB + 0D+ QIR + 00T ),
Dye = QRJo+ Y (09T + Q8T + QR (U0 + T,
Dyy = @RI+ Y (0078 + Q0TS0 +2007%1),
Dy = QQJo+ 2, [Q1 0 + 08I0+ Q0BT R, + Q2 T8:),
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Do = Q@i+ Y [Q4T% + QRI0 + 200701, (A6)

Defining
Si=1z, iz0, i<, (A7)
SO =s(iyfy,  pg=11,22,12,21, (A8)

we have
B, =QR S+ 3 (QfS), (A9)

The expressions for B,,, etc., are similar to those for D,,, etc., in equation (A5) but with
Jo and JO replaced by S, and S¢. Then

Gss= 0%t + 2. [1(QRA07 + 0040 +20840129)),
Gu= 0010+ Q4257 + QR4 + 2004541,
Gis= Q%10+ Y {1[QB2028) + Q820 AH + QBN G+ 20201} (A10)
The coefficients and differential operators M,,, etc., are
M,=p,, Mj3=(R,—R)dfdx + R /[0y, Mi=R,, Mis= R,
Mep=p,, My=R,2/0x+ (Ry— R)0/dy, Mu=Ry, Mu=Ry,
My =+ Iy + By — 20)) 8%0x* + 2015 + Iy — 13— Iyy) 8%/0x dy
+ (I + Doy + Tiaps — 205,) 3%/0y* — pa4s
M=+ Iy — 1) 8/0x + L0+ Ty — L) 8/,
My =+ Doy — 12)8/0x + (L + Fip1— 1) 8 /8y,

M44=IIIII+IZIZI! M45=IH]2+122215 M55=12222+1]2I2’ (All)

where
Pa=polo+ 2 (it),  R=pSi+Y (0S),  Ru=pSo+y (050,
Ry=pSo+ Y (0S8, Ro=Y (589, Ry=Y (oS,
T=podo+ Y (pd),  Ta=podo+ 2 (pIN).  In=podo+Y (0:JHD),

I =z’ (Pfﬂg): Iy =Z’ (pf‘fgl))’ I =P0J0+Z‘ (Pi-fﬁn),

Iy = podo + Z’ (Pff(zgzz ), lna= Z (Pf-fﬁu); by = Z’ (P,‘ng: )

I =Y (0JdB3),  hia=Y (p.J%). (A12)
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APPENDIX B: SIMULTANEOQUS LINEAR ALGEBRAIC EQUATIONS WHICH 19
MUST SATISFY

Two sets of simultaneous linear algebraic equations that the unknown constants A1

(i >0 or i <0) must satisfy, respectively, can also be obtained in accordance with the
principle of stationary potential energy. They are as follows:

cifh Ccfh, cfh ¥ Y dfp 0
N
Z': c¥ CcH, c¥, C¥, A + d¥ 10 , k=12_..N, (BD
i= C‘]’??l CV‘Z’: C(I?IZ Cﬁkz’%: ’1({3 dﬁkz) 0
C#h Ch Cfh CH A9 dy 0
. cfh cfh i, ¢y, i) af
22 Cz i1 ng;.z C{z'??z C(l?%l Ag% + dgkz)
J=-1 |2]1| CY?L (1?12 C(l’f".gl AY% d(llf'!)
Cih ¥, %, Ci ig a$
0
|0 k=—1,-2 N,, (B2
= 0 3 =Ly =4, ... — ¥y, ( )
0
C¥ = CH —®C¥,.. k>0, rs,pg=11,221221, (B3)
d% =d® — id¥ | k>0 or k<0, rs=11,22,12,21. (B4)
Defining
r.=K,—Kr, r,=K,— Ky, Py =Ky — Ky, Fyx =Ko — Ky, (BS)
we have

¢ .
C¥e= 084G ( J(k;)dQ ki>0, rs,pg=11,22,12,121, (B6)

Pq

b=t}

s =
6—{ Z[ 10808+ 4,37 (1.0%, )m m]} kj >0,|jt < |kl
d [ O0E
m(m)= < tk{ZZ[ 109 R +1.30 (1,09, )mr.r .. ]+ai§§q} j=k <
Py vrs m on
rk{ZZ[ 1O+ 14,27 (00 ) ]} ki >0, |jl> k|
\ m n J

mn=126, (B7)
dn=r. d, =0, dgy = Tyxs dpn=0, dyy = T

de.zz =Ty,
diy =1y, dy =0, dg1a =Ty, dia =0, dyo1 = Py deay =r.. (B8)
We perform area integrations with respect to the region 2 of the plate in equation (B6).

The notation Y (---) designates a sum which is given by summing all the quantities
associated with their superscripts or subscripts of the numbers i the values of which satisfy
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both the conditions of ik > 0 and |i| > lk|. «¥%) in equation (B7) are corresponding ¢lements
of the matrix

k) (@) 2 (k) o) {0} o, (D) )y (), (0 (k) (U) 2
QSS‘YX: Q4 Vxz ?_}z QSS szy)z Q
0 OBy oy (B)
Q(k)-},(mz Q(k)-},gcﬁz)-y;g)
symmetric QY92
o [oT*
C& _— —
Tzrqu J. 52% (615’;)) dQ’ (BIO)

0 oT* (ffﬁ ©)2 u or* i E = Jthd, @2
sanlem) © ag\ng)Tag\ag) T

oT* oT* aT* 8 [oT*
= Y’ (611("’) ‘{? ( m) 6&8’ (azgk)) = 5@ (55?‘?) = J%ly 5_9‘)},;2:, (B11)

" =
f;[%ﬂktﬁ+lkzz(mﬁ)] kj >0, |i|<lk|
1% = < tkl:%pktﬁ'l- sz;:(psfi)} . J=Kk, = (B12)
tk[%pjtjz' + tjz;r (pl'[f)] * k] > 03 l]l > Ikl
~ J

All other (¢/8A9)(8T*/0A%) are zeros. Also,

(.Ek:r)s_ ders{s(k)l: Qg:}tlzc_'_ ti: :(thg;)] )][£x+(20+%s(k)t0)rx]
+ s(k)[ Q8+ 1,37 (1,09 :|[€J. +(zo+3 s(k)tp)r,]
+ s(k)[ Qute+ 4, 1k (0% ][?xy + (2o + 350N (ry + 1)l

08 e stm+ 5 1) + st T (208 )}c;

| 08 s)z 12 + 51 + s iz 100 ]

+{ QWG sk)z 1 + 513 + skt Y i (z,4,09) ]2192}}(19, m=1,2,6,

(B13)
at= [ y2(n0v w5+ e )aa,
o X

dify = J 7 (n"" V—nf aaW + n""?‘“’) d,
Q
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o | 00 0 oo
dtty = | 70(npv—n® 2% 4 0y ) de (BL4)
0 dy
nd = s(k)[% Prli+ thZ (Pffx):l ) ¥ = S(k)[% Putize+ 1, H(Pi’fzf):l + épkf?u

o= :o+s(k)zo1[%pkz5+zkz;(p,-z.aj. (B15)



