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Abstract. In this paper, the analytical model coupling the convective boundary layer (CBL) with the 
free atmosphere developed by Qi and Fu (1992) is improved. And by this improved model, the 
interaction between airflow over a mountain and the CBL is further discussed. The conclusions 
demonstrate: (1) The perturbation potential temperatures in the free atmosphere can counteract the 
effect of orographic thermal forcing through entraining and mixing in the CBL. If UM > aF, the 
feedback of the perturbation potential temperatures in the free atmosphere is more important than 
orographic thermal forcing, which promotes the effect of interfacial waves. If aM < tie, orographic 
thermal forcing is more important, which makes the interfacial height and the topographic height 
identical in phase, and the horizontal speeds are a maximum at the top of the mountain. (2) The 
internal gravity waves propagating vertically in the free atmosphere cause a strong downslope wind to 
become established above the lee slope in the CBL and result in the hydraulic jump at the top of the 
CBL. (3) With the CBL deepening, the interfacial gravity waves induced by the potential temperature 
jump at the top of the CBL cause the airflow in the CBL to be subcritical. 

Introduction 

There have been extensive studies of boundary-layer flows over microscale terrain 
in the past twenty years (Taylor and Teunissen, 1987; Carruthers and Hunt, 1990). 
However, boundary-layer flow over mesoscale terrain greatly differs dynamically 
from that over microscale terrain. For example, the internal gravity waves induced 
by mesoscale mountains may propagate vertically in a stably stratified airflow 
(Gill, 1982), and the effect of thermally-induced horizontal hydrostatic pressure 
gradients is also apparently prominent (Taylor and Gent, 1980). Thus whether the 
theory on boundary-layer flows over microscale terrain is suitable for that over 
mesoscale terrain is still to be discussed. Therefore, many researchers have studied 
the interaction between airflow over a mountain and the atmospheric boundary 
layer by mesoscale numerical models with detailed parameterized schemes for the 
atmospheric boundary layer (Qi and Fu, 1993; Knight, 1992). But numerical 
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simulations often have a poor physical picture in the theoretical analysis, so Qi 
and Fu (1992) attempted to discover the rule of the interaction between mesoscale 
terrain flows and the atmospheric boundary layer by developing an analytical 
model coupling CBL with the free atmosphere. However, in the work of Qi and 
Fu (1992), the potential-temperature jump at the top of the CBL was ignored and 
in order to stress the effect of orographic thermal forcing, potential-temperature 
advection was neglected. In this paper, the analytical model is improved and the 
potential-temperature jump at the top of the CBL is considered in the modified 
model. Some valuable results are obtained by this modified model. 

2 .  M o d i f i e d  C o u p l i n g  M o d e l  

2.1. BAsic EQUATIONS 

For simplicity, the model mountain is presumed to be uniform in the y direction. 
It is assumed that hydrostatic equilibrium is satisfied. Then the basic equations 
a r e  

Ou Ou Ou 1 0 P  O ( - u ' w ' )  
- - + u - - + w  - + f v +  (1) 
Ot Ox c~z Po Ox Oz 

_ _  Ov Ov O ( - v ' w ' )  Ov + u - - +  w - =  f ( U g -  u) + (2) 
Ot Ox Oz Oz 

O0 O0 O0 O0'w'; 
- -  + u - -  + w - -  = ( 2 )  
Ot Ox Oz Oz 

1 0 P  0 
0 . . . .  + - - . g  (4) 

po az Oo 

Ou Ow 
- -  + - -  = o ,  ( 5 )  
Ox Oz 

where u 'w ' ,  v 'w ' ,  O'w' are the vertical turbulent fluxes of momentum and potential 
temperature in the atmospheric boundary layer, respectively. In this paper, the 
atmospheric boundary layer is taken to be a well-mixed CBL. The model atmo- 
sphere is divided into the CBL and the free atmosphere (as shown in Figure 1). 
The variables with subscript "M" are those in the CBL and the variables with 
subscript "F"  are those in the free atmosphere. 

(1) Perturbation equations in the CBL 
In the well-mixed CBL, auMlOz = OVM/OZ = O0~tlOz ---- 0. Equations (1)-(5) are 
vertically integrated over the whole CBL: 

d u .  = ( 10P~.~  + f vM - ( u ' w ' ) i -  (u 'w')o (6) 
dt Po Ox / d 
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Fig. 1. The model vertical structure. 

dv_____M~ = f(ug -- UM) -- (V 'W') i -  (V'W')o (7) 
dt d 

dO~/= _ (O'w')~- (O'w')o 
(8) 

dt d 

1 0 P M \  1 0 P M  g_d_d 00~ + (9) 
Po Ox / Po Ox Ih 200 OX 

I 

WM[h = WMIzs- d Ou____~, (10) 
Ox 

where d/dt = O/Ot + UM O/OX, and < > indicates the average vertically integrated 
value in the CBL. The subscript "0",  " i "  respectively indicate the values at the 
surface and the top of the CBL. 

The variation of the CBL height can be expressed as (Stull, 1988) 

dh 
- -  "~- W e J r  w~l~ 0 1 )  

dt 

where We is the speed of entrainment; it must be >0.  
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(O'w')i 
I,t]e ~ - -  ~ 

8 

where 6 is the potential-temperature jump at the top of the CBL, 

a = OFI h - -  0 M (12) 

o r  

d 6 _  OOedh + dOF h d0~ (12') 
dt Oz dt dt dt 

We use Equation (12') in the present model. This differs from the approach 
adopted by Nieuwstadt and Glendening (1989) who assumed that the equation 

d 6 _  OOv dOM 

dt Oz dt 

would apply as in the case of a uniform underlying surface (Tennekes, 1973). We 
consider this as incorrect since it ignores movements of the CBL top caused by 
vertical velocities within the CBL. 

For simplicity of analysis, each variable is assumed to be composed of two parts: 
an average quantity over a uniform underlying surface (with superscript . . . . .  ) 
and a perturbation quantity induced by the mountain (with superscript ..... ), i.e., 

OM= ~u + yzs + O'~ 

U m = fil m q" IgrM 

v~ = 9a~ + v 

d = d + d  ' 

h = d + z ~ + d '  ( h ' = z s + d ' )  

6 = 6 + 6 '  

W e = I,~ e -t- W re, 

where y = OOF/Oz. Average quantities satisfy the following equations, 

oOM _ ( o ' w ' ) i -  (o'w')o 

ot d 

od 
- -  -~  W e  
Ot 

(O'w'), 
w~-- 
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OaM _ 1 0 P M  d + fOM -- ( U ' W ' ) i -  (U'W')o 

Ot Po Ox d 

oo_..___~ (v'w') ,-  (v'w')o 
ot = f (Ug-  aM) - d 

It is assumed that the perturbation quantities are much smaller than their average 
quantities and that the heating of the mountain surface is distributed uniformly. 
The Rossby number is presumed to be great enough to neglect Coriolis force. 
The momentum friction for the perturbation quantities in the CBL is neglected 
(Nieuwstadt and Glendening, 1989). Then the perturbation equations can be 
deduced as following, 

DU'M 1 0 P b  + g ' r d o z ,  + g d  oO'u (13) 
D t  po Ox h 200 OX 200 OX 

DO~u _ yuMOZS + (O'w')i  -- (O'W')o . d'  
D t  Ox d 2 (14) 

D d '  _ _ d ou'M + we' (15) 
D t  Ox 

a' = o ) l h  - o;~ + vd'  (16) 

(O'w') i  . 8' 
We'= g2 , (17) 

in which D / D t  = O/Ot + aM O/OX and it has been assumed that WMlzs = aM OZs/OX. 

(2) Perturbation equations in the free atmosphere 
The prevailing wind is assumed to be vertically uniform in the flee atmosphere. 
The increase of average potential temperature with height is assumed to be a 
constant, 0F = 00 "j- ~/Z. Then the perturbation equations in the free atmosphere 
a r e  

OU__~'F + arOu'e  = _ l O P ' e  (18) 
Ot Ox Po Ox 

+ RF O0---L*'~ = -- yW) (19) 
Ot OX 

1 0 P ~  + O'F 

oo o z  ~o g = ~  (20) 
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Ou 'F Ow '~ 
- -  + = O. (21) 
Ox Oz 

(3) Coupling conditions 
It is assumed that the kinematic and dynamic continuity conditions are satisfied 
at the interface between the CBL and the free atmosphere. 

W'FIh = W'MIh (22) 

P'FIh = P'MIh,  (23) 

or Equation (23) can be replaced by the following equation; 

1 ~P~  _ 1 0e~v~+ g 6 0 h .  

p0 0x Ih PO aX 00 aX (23') 

Equations (13)-(23) therefore make up a group of basic equations coupling the 
CBL with the free atmosphere. 

2.2. REDUCTION OF THE BASIC EQUATIONS 

It is assumed that the horizontal characteristic scale of the mountain L - 1 0  4 m, 
/~M, /~F are of the same order of magnitude with a geostrophic wind ug ~ 10 m/s. 
The local variation with time is mainly affected by sunshine, so z = 86400 s - 104 s. 

( 5 )  u" o o = ! < o ~  aM -L-  

0t) o 0 =1<o, -Z-' 

so the time tendency terms can be ignored in the perturbation equations. From 
coupling condition (22) and Equation (11), we deduce 

Dh '  od' Ozs 
W ~ [  h - -  - -  W ~  = 1A M - -  -}- 17-t M - - - - W  e . '  (24) 

Dt  Ox Ox 

From Equations (14), (19), (16), (24) and (17), neglecting the time tendency terms 
and the small quantity O0'F/OZ [h D h / D t ,  we can deduce 

aa' a~r(O'w'), a' [(O'w'),-(O'w')o 
a M  . . . .  

ax a,~g 2 L d-~ 
"d'+ 

(I) (II) (III) (25) 

In the CBL, O(OOM/Ot) = yd /~ ,  O ( ~ [ ~ e )  ~- d [ T ,  0 ( 6 )  --- c/(1 + 2c) yd, where 
c = - (O 'w ' ) i / (O 'w ' )o .  The orders of magnitudes of term (I) and term (II) in Equa- 
tion (25) are 
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o,i,= 

O ( I I ) = O ( 8  Y 6 ' ) = O (  1+2cc ~ ) "  

In term (III), 

(OOMd' o((O'w')i-~--(20'w')~ d ' ) : O \  ~ ~ ) = O ( ~ ) : O ( ' y d ' •  -4) 

oC#"+~ ) \ \ Ox -~x/ /= 0 d' = O(yd' x 10-4). 

Because O(ae) = O(t~M), 

\ l~ F \ OX -~X/I/ 

O(I I I )=O(  O~Md' ) ( ~ - )  ~ 0 
\ Ot d 

In Equation (25), the solution of 8' would be an exponential distribution if term 
(III) were neglected. This is not reasonable in the physical sense, so term (Ill) in 
Equation (25) must be a large term. If O(III) - O(II), then 
0(8') ~ O(c/(1 + 2c) yd'); if 0( I I I )  - 0(I ) ,  then 0(8') ~ O ( L / u g T - y d ' ) .  Since 
c -~ 0.2 - 10 -1, O(L/ugr) = 10 -1, we can always get 

8' ~ M' 

I~ e , 8t 1 + 2C 8' __  W ~e . . . . . .  ~ Ug d' . 
yc r L 

Accordingly, Equations (15) and (16) may be simplified to 

Od' Ou'~ 
a M  = - d ( 2 6 )  

Ox Ox 

o~1~ - o ~ ,  + e d '  = 0 .  

It is inferred from Equations (23'), (27) and (13) that 

A1 L OP'v h 
Ox Po Ox h 200 OX 200 OX 

(27) 

A4 g~ Oh' , 
Oo Ox 

( 2 8 )  

where A,, m2, m3, A 4 are trace coefficients. The term with m 1 reflects the feedback 
of forced perturbation pressures in the free atmosphere to the CBL, which is 
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substantially the feedback of the internal gravity waves forced in the free atmo- 
sphere. The  term with A2 reflects the feedback of the perturbation potential 
temperatures entrained into the CBL from the free atmosphere. The term with 
A3 reflects the thermal forcing induced by the horizontal gradients at the top of 
the CBL, which is substantially the role of the thermal forcing source caused by 
the horizontal difference of mountain heights. The term with A4 reflects the 
restoring force caused by the potential-temperature jump at the top of the CBL, 
which is substantially the role of the interface gravity waves. 

According to Equations (26), (22) and (8), we can deduce 

Od' Oz, 
aM = W'FIh -- a M - -  

Ox Ox 

o r  

Oh' 
W'Flh = a M - - .  

OX 

From Equations (29) and (19), ignoring the time tendency term, we can get 

(29) 

00;  0h__ 2 
OX h = - -  ~/ a F  OX 

It can be shown from this equation that the two terms with m 2 and A3 in Equation 
(28) counteract each other. This means that the perturbation potential tempera- 
tures of air entrained into the CBL from the free atmosphere counteract the effect 
of the orographic thermal forcing. If aM > av,  the term with A2 is greater than 
the term with A3; that implies that the feedback of the perturbation potential 
temperatures in the free atmosphere caused by entraining and mixing from the 
CBL is more important than the orographic thermal forcing caused by turbulent 
transfer. In this case, the sum of the term with A2 and the term with A3 is of the 
same sign as the term with A 4.  If aM < aF, the term with A 3 is greater than the 
term with A2; that implies that the orographic thermal forcing caused by turbulent 
transfer is more important. In this case, the sum of the terms with A2 and A3 is 
of opposite sign to the term with A4. For simplicity, assuming aF = /iM = a, only 
the effects of the feedbacks of the internal gravity waves in the free atmosphere 
(term with A1) and the interface gravity waves at the top of the CBL (term with 
A4) are left in the perturbation wind field in the CBL. 

From Equations (18) and (21), we can infer 

1 0 P ' F _  OW'F a (30) 
Po Ox Oz 

From Equations (10), (22), (30) and (28), we can deduce 
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(1 - A 4 F r - 2 ) W ) [ h  = Aid OW'F + a OZ----Z~, 
OZ h OX 

(31) 

in which Fr 2 = Ooa2/ggd.  

From Equations (18)-(21), we can also deduce 

OZw'F + lZw'v = 0 (32) 
OZ 2 

in which 12 = g'g[Oo a2. 

It is assumed that the upper boundary of the free atmosphere is a radiation 
boundary. Equations (31)-(32) together with this condition make it possible to 
obtain definite solutions to w )  in the linear system coupling the CBL with the free 
atmosphere. 

3.  S o l u t i o n s  over  an  I so la ted  M o u n t a i n  

In this section, we shall solve the problem in the linear coupled system over a 
typical isolated mountain. The topographic function is taken to be 

ab 2 
zs(x) + x2 

where O ( a ) = 1 0 2 m ,  O ( b ) = 1 0 4 m .  We have O ( a / H F ) = I O  -1,  where HF = 

((g/Oo) (aOe/Oz)/aZF) I/2 "~ 103 m is the vertical characteristic scale of the free atmo- 
sphere; so the nonlinear effect of the interface between the CBL and free atmo- 
sphere can be neglected. This means that the lower boundary condition (31) can 
be written as 

(1 - A4Fr-2)w)ld = A i d  Ow'v + a Oz___~ (33) 
Oz d Ox 

Equations (32) and (33) are Fourier transformed for x: 

02rv) t- l a ~ ) =  0 
Oz 2 

(34) 

(1  --  A 4 F r - 2 ) l ~ l d  = A i d  Ol~rF q- aik~s .  
Oz d 

(35) 

The general solution to Equation (34) is 

r _ x l e i l z  x 2e - i l z  W F -- + . (36) 

The upper boundary is presumed to be a radiation boundary, so X2 = 0 (Durran, 
1986). Bringing (36) into (35), we get 
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, } (1  = 

ftikG e itd 

(1 - A4Fr -2) -- Alild " 

Therefore 

s  + ik(1 - Fr-2A4)] ^ ei(Z_d) 
i f ) =  ~ = ~ 4 F r 2 T ~ +  ( A l / d )  2 Z s  �9 

(37) 

(37) is Fourier convert-transformed, 

( f o  - A l l d k  + i k ( 1 -  Fr-2m4) abe bk+i(t~-,d+~x)dk) 
w )  = aRe (1 - A4Fr-2) 2 + (add): 

ti [(x 2 - b2)ab 
= (1 - A4Fr-2) 2 + (Al/d) 2 L ~2-+- x - ~  sin (lz - ld + X) - 

2abZx ] 
(b 2 + x2)2 cos(/z - ld + O) , (38) 

where ~ = Al ldl (1  - &Fr-2 ) .  
From (38), we can also obtain the horizontal perturbation speeds in the free 

atmosphere and the CBL and the interface height between the CBL and free 
atmosphere: 

a__ F abxl 
u ) =  (1 - A4Fr-2) 2 + (A~/d) 2 [ b 2 ~ x  2 c~ - ld + O) + 

ab2l ] 
+ ~b2 + sin(/z - ld + ~) (39) 

aab 2 + _  a ( abx 
u '~  - d (b2  + x2 ) d[(1 - A4Fr-2) 2 + (Al/d) 2] \b  2 + x2 sin t p -  

ab2 ) 
- -  cos O (40) 
b 2 -t- X 2 

h ' =  1 { ab z abx sin ) 
(1 - A4Vr-2) 2 + (Al/d) 2 ~b 2 + x - - - - - -5  cos 0 b2 + ~b . (41) 

Equations (38)-(41) are the solutions over an isolated mountain. 

4.  I n t e r a c t i o n  b e t w e e n  the  C B L  a n d  A i r f l o w  over  a M o u n t a i n  

In order to discuss the physical picture of the interaction between the CBL and 
airflow over a mountain, we take a = 7 m/s, 3, = 0.0033 k/m, a = 10 z m, b = 10  4 m, 
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Fig. 2. 
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g = 9.8 m s -2, 00 = 289 k, 6 = c/(1 + 2c) yd, c = 0.2. Figure 2 demonstrates the 
maximum perturbation speed's variation with CBL depth in the whole perturbation 
wind field. This figure shows that the perturbation speeds in the airflow over a 
mountain decrease with CBL deepening. This shows that the existence of the CBL 
restrains the effect of the orographic perturbation in the airflow over the mountain. 
This result is similar to that in the case of inviscid flow with prescribed temperature 
structure (Gill, 1982), so neutural stratification caused by turbulent mixing in the 
CBL is a very important factor. Queney (1948) discussed inviscid fluid of uniform N 
and a over a similar isolated mountain and showed that the horizontal perturbation 
speeds at the lowest level of the fluid are u(x, O)= abx/(b2+ x 2) al when the 
mountain is wide enough to satisfy hydrostatic equilibrium but when Coriolis force 
can be ignored, that is, there is a maximum perturbation speed at x = b on the 
lee slope. In the present model, it can be also found from Equation (39) that if 
A4 = 0, i.e., neglecting the feedback of the interfacial waves, and in the limit as 

d approaches 0, the location of maximum speed is x = b, which is the same as 
Queney (1948)'s results. However, when the lowest part of the inviscid fluid is 
considered to be the CBL, the solid line in Figure 3 shows that the maximum 
perturbation speed at the lowest level of the free atmosphere gradually moves 
upstream from the lee slope with the CBL deepening. Therefore, the existence of 
a CBL not only suppresses the effect of orographic forcing but changes the phases 
of the internal gravity waves propagating vertically in the free atmosphere. In the 
CBL, Figure 4 shows that a strong downslope wind occurs above the lee slope 
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Fig. 3. The variation in position of maximum horizontal perturbation speeds at the lowest level of 
the free atmosphere with CBL depth. - . . . .  , the case of only internal gravity wave feedback. 

, the case of both internal gravity waves and interfacial waves' feedbacks. 
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Fig. 4. Variation of horizontal perturbation speeds in the CBL with horizontal distance (x) under 
the condition of extensive feedbacks of internal gravity waves and interfacial waves. - - ,  a~ = 
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Fig. 5. Variation of the displacement of the interface between the CBL and the free atmosphere with 
CBL depth. 

because of orographic forcing, and the downslope wind gradually moves towards 
the top of the mountain with the CBL deepening. The interface between the CBL 
and the free atmosphere varies correspondingly; as shown in Figure 5, the hy- 
draulic jump of the interface gradually weakens with CBL deepening, finally 
changing into a subcritical flow. 

According to the discussion above, internal gravity waves in the free atmosphere 
and the interracial waves at the top of the CBL are the two most important 
characteristics which reflect the interaction between the airflow over a mountain 
and the CBL. In order to further discuss the rule of the interaction, we shall 
analyse the actions of the two characteristic factors. 

(1) Act ion  o f  interfacial waves 

In Equation (31), we take 2h = 0, A 4 = 1 and then amalgamate Equations (29) 
and (31): 

(1 - Fr - z )  Oh' = Oz__~ ( 4 2 )  
Ox Ox 

This formula is similar to Durran (1990)'s formula (4.33). It can be seen from (42) 
that if Fr > 1, the airflow in the CBL is supercritical; if Fr < 1, the airflow in the 
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Fig. 6. The same as in Figure 4, except for the case of only interfacial gravity wave feedback. 

CBL is a subcritical flow and dc = Ooa2/gg or dc = [0oU2(1 + 2c)]g'yc] 1/2 is a critical 
depth of the CBL. Therefore, in the case of a small orographic perturbation (that 
is, a linear approximation can be presumed), the interfacial waves make the CBL 
either a supercritical or a subcritical flow. And the interfacial waves can not cause 
a hydraulic jump in the CBL unless nonlinear advection is included and the depth 
of the CBL is near the critical depth according to Long (1954)'s conclusions. 

In Figure 6, when d < dc, the perturbation speed at the top of the mountain is 
a minimum, that is, the airflow is a supercritical flow; when d > dc, perturbation 
speed at the top of the mountain is a maximum, that is, the airflow is subcritical. 
In the free atmosphere (as shown in Figure 7), the phases of the internal gravity 
waves are identical with Queney (1948)'s result when the airflow in the CBL is 
supercritical (d < dc); conversely, when the airflowin the CBLis subcritical (d > de), 
the phases of the internal gravity waves are opposite to Queney (1948)'s result. 

(2) ACTION OF INTERNAL GRAVITY WAVES 

In Equation (31), we take A1 = 1 and • = 0. Figure 8 is the distribution of the 
perturbation speeds in the CBL, induced only by the feedback of the internal 
gravity waves. It can be seen from Figure 8 that the feedback of the internal 
gravity waves always makes a very strong downslope wind appear above the lee 
slope and the maximum speed of the downslope wind gradually moves towards 
the top of the mountain with the CBL deepening. This distribution is quite similar 
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to that in Figure 4. However, by contrasting the solid line with the dashed line in 
Figure 9, that with CBL deepening, the maximum speed of the downslope wind 
moves toward the mountain top under the role of only internal gravity waves' 
feedback slower than under the roles of both the internal gravity waves and 
interfacial waves' feedbacks ~. In the free atmosphere, the rules of the maximum 
speeds' moving at the lowest level of the free atmosphere towards the upstream 
are also different in the two cases of only the internal gravity waves' feedback and 
both the internal gravity waves and interracial waves' feedbacks, it can be seen 
from contrasting the solid line with the dash line in Figure 3 that under the role 
of only feedback for the internal gravity waves; the phases of the internal gravity 
waves finally become different from Queney (1948)'s result by 7r/2, while under 
the role of both internal gravity waves and feedback of interracial waves, the 
phases of the internal gravity waves finally become opposite to Queney (1948)'s 
result. 

To sum up, the strong downslope wind above the lee slope in the CBL and the 
hydraulic jump at the top of the CBL are mainly caused by the feedback of internal 
gravity waves in the free atmosphere; with CBL deepening, the airflow in the 
CBL finally evolves into subcritical flow and the phases of the internal gravity 
waves in the free atmosphere finally become opposite to Queney (1948)'s result. 

Finally, we must point out that since the terms with A2 and with A3 differ only 
in their coefficients from the term with m 4 in Equation (28), only the case of aM = 
aF is discussed. In this case, the effects of the internal gravity waves and interracial 

waves are similar to those when turbulent entrainment and mixing are neglected 
except that due to the development of mixing and entrainment in the CBL, there 
exists a relationship between 8 and d. This relationship demonstrates that the effect 
of the interracial waves at the top of the CBL becomes more and more obvious 
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with CBL deepening. In addition, the roles of turbulent entrainment mixing can 
be further analysed by the present model. 

In Equation (28), assuming A1 = 0, from Equations (10), (19), (22), (28) and 
(29), we can get 

1 - A 4 00a~M "a t- A3 - -  A 2 20ot2-----~J 3x Ox 

When aM~OF> 1, the effect of the term with A 2 is more important than that of 
the term with A3; and the sum of the terms with A 2 and A3 is of the same sign as 
the term with A4. Therefore, the feedback of the perturbation potential tempera- 
tures in the free atmosphere caused by turbulent mixing and entrainment promotes 
the development of interfacial waves; with CBL deepening, it can rapidly make 
the flow field in the CBL evolve into subcritical flow. When aM/OF < 1, the term 
with A3 is more important; and the sum of the terms with A 2 and A3, is of opposite 
sign to the term with A4. And if (OF -- a~)12av > 6 /yd  = c/(1 + 2c), the orographic 
thermal forcing caused by the turbulent heat transfer restrains the effect of the 
interfacial waves and makes the interface at the top of the CBL become of the 
same phase as the shape of the mountain and the maximum horizontal speed 
appears over the top of the mountain. 

5. Conclusions 

In this paper, Qi and Fu (1992)'s linear analytical model coupling the CBL with 
the free atmosphere is improved. By this modified model, it is further proved that 
the CBL suppresses the effect of orographic dynamical forcing on the airflow over 
a mountain and it is also demonstrated that the CBL can change the phases of 
the internal gravity waves propagating vertically in the free atmosphere. In ad- 
dition, some new results are obtained as follows: 

(1) Perturbation potential temperatures in the free atmosphere can counteract 
the effect of orographic thermal forcing with the help of turbulent entrainment 
and mixing of the CBL. 

(2) Under the condition of a linear approximation, the interfacial gravity waves 
induced by the potential-temperature jump at the top of the CBL make the CBL 
either a supercritical flow (d < dc) or a subcritical flow (d > de). Only when the 
CBL' s depth is near the critical depth d c and nonlinear advection is considered, 
do the interfacial waves lead to the occurrence of a hydraulic jump in the CBL. 
With the CBL deepening, the interfacial gravity waves cause the airflow in the 
CBL to evolve into a subcritical flow. 

(3) The internal gravity waves propagating vertically in the free atmosphere, 
by the perturbation pressures, exert a feedback influence on the wind field in the 
CBL. This effect causes a strong downslope wind to form above the lee slope in 
the CBL and results in the hydraulic jump at the top of the CBL. 
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(4) If tiM > aF, feedback  of the p e r t u r b a t i o n  po ten t i a l - t empera tu re s  in the free 

a tmosphere  is more  i m p o r t a n t  than  orographic  the rmal  forcing, which p romotes  

the effect of  interfacial  waves.  If  aM < tiF, orographic  the rmal  forcing is more  

impor t an t ,  which makes  the interfacial  and  the topographic  heights ident ical  in  

phase  and  the hor izonta l  speeds b e c o m e  a m a x i m u m  at the top of the m o u n t a i n .  
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