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1 Introduction

So far there has been no universal theoretical framework for the damage-fracture
processes 1w selid under external load, which, as a kind of complex pattern evolu-
toi, generafly involve the nucleation and extension of microdamages, coalescence be-
tween mucrodamages and the formation of a main crack that leads to the eventual

fracture:

Pattern evolution is a very common problem in nonlinear systems; it has aroused
o zood deal of attention in recent years. An important characteristic of pattern evolu-
ton - damage-fracture is that the systems are controlled by both deterministic dy-
namies and disorder effects. Fxperimental results and numerical simulation show that
the nucleated microdamages are distributed randomly over a material element, and the
coalescence can occur only for those microdamages whose ligaments are shorter than
ot ol the same order of the scale as the microdamages, suggesting that the nucleation
v Jdosely related o the disordered distribution of meso-structure in materials, and the
coalescence is mainly determined by the local enhancement of stress acting on the
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ligament, following a deterministic rule. In this paper, we discuss the general characteris-
tics of pattern evolution in a system controlled by both deterministic dynamics and
stochastic jumps. We assume that the nucleation is a stochastic jump and the
coalescence follows a deterministic dynamical rule.

For simplicity, we consider a finite-one-dimensional lattice, whose mechanical
background may be a sheet coupon or a bundle of fibres.

Let us examine a chain consisting of N sites. There are two possible states in
each site. One is x,=1, called occupied state, and the other is x,=0, called empty
state. A state, or a pattern, of the system is expressed by X=1{x=0 or 1 | /=12
-, N}. The number of occupied sites in a state is

and p=n/N is the fraction of occupation, p can be regarded as damadge fracuion;
p=0 describes a solid state; whereas for a damage state, the value of p is within the
range of O<p<l1. Moreover, a cluster of occupied sites can be regarded us a
microcrack; p=1 represents the fracture state Xp={x=11i=1, 2.~ N/

The phase space of the system consists of
Q=2" (2)

state points. All the states in the phase space can be devided into (N +1) groups ac-
cording to the value of n (or p). The number of states in group n is

Q=N'/n!(N=n)!. 3)

The fracture state X is the unique one in group n=N.

2 Pattern Dynamics

In the light of observation, it is assumed that the coalescence of microdamages fol-
lows a deterministic, irreversible dynamical rule. The deterministicity implies that a
dynamical trajectory in phase space is uniquely determined by its initial state, while
the irreversibility refers to the fact that the change in a site from x,=0 to x=1 is
permissible but the reverse is forbidden, i.e. the annihilation of microdamages is
negligible.

For a system controlled by deterministic and irreversible dynamics, the states in
phase space can be classified into two classes: transient states and fixed points. A pat-
tern evolution is completed after a system goes through a sequence of transient states
and approaches one of the fixed points. The set of final states is identical to the set
of fixed points in phase space.

The pattern dynamics of the system can be described by the flow and the structure
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in phase space. The flow in phase space refers to the set of trajectories starting
from every state. The structure of phase space is specified by a series of fixed
point attractors and their basins of attraction. In order to investigate the global
behaviour of the system, we shall introduce a statistical description for the dynamical
evolution of the system.

In general, the final states of the evolution starting from (2, states in group n
may belong to several different groups. Letting y,," be the number of evolution pro-
cesses with :starting state in group n and final state in group »’, we get an (N+1) (N
+1) matrix Y with elements y,,’. Hence Y is named evolution matrix.

Due to the irreversibility of the dynamics, the occupation fraction of final state
should not be less than that of the initial state, so we have y,,’ =0 for n>n’. The di-
agonal clement y,, gives the number of fixed points in group n. The total number of
fixed points Z=) y, is the total number of possible final states of the system. The
total number of states in the basins of attractors belonging to group n can be calcu-
Jated by

N n
M, = 2 Yain = 2 Yugn - @)

ny=0

The fracture state X is the unique state in group n=N and it is a fixed point. The
clement y,, gives the number of states belonging to the basin of X in group n, and
the total number of the states in the basin of X is

N
M =2 Yow (5)

Define two probability distribution functions concerning the states as follows:
D(p)=D,=y,/£2, ©)
and
E(p) =&n=yun/ Mg, )

where p=n/N. @ and & describe the distribution of the basin of Xy in the phase
space. @(p) gives the fraction of states belonging to the basin of Xg in total states of
group n, and ¢(p) gives the ratio of the number of states in the basin of X that belongs
io group # to that of the total states of the basin of Xi.

According to the final states of evolution, the flows in phase space belong to two
kinds of evolution modes: globally stable modes (GS modes) and evolution induced



334 SCIENCE IN CHINA (Series A) Vol 37

to fracture. Dynamically, an evolution mode is exclusively determined by its nitiad
state. The states in phase space may also be classified as GS states and EIC states ac-
cording to their evolution modes.

Now we introduce a dynamical evolution rule to model the coalescence between
microcracks. We assume that the stress released by nucleated damage will be cqually
borne by its two sides. and the coalescence of adjacent microcracks will occur if the
average stress on their ligament exceeds the strength. Based on these assumption. the
coalescence rule can be derived as follows!: Let r- and s-occupied clusters be sepa-
rated by an [-empty cluster. Then the [-empty cluster will be occupied if

[<(r+s)*G/2, (8)

where G is a parameter. If the empty cluster is at the end of the lattice. then » or »
is zero in Eq. (8). The rule can be illustrated in a geometric way. There are two influ-
ence regions with size G- r/2 ahead of both ends of an r-occupied cluster. Coalescence
will occur if the influence regions of two adjacent cracks contact or overlap cach
other. The pattern evolution dynamics governed by rule (8) 15 determinstic.
irreversible, nonlinear and nonlocal. The nenlocality indicates that the change 1n a site
is relevant not only to its local conditions but also to distant sites. Eq. (8) represents

ame) U s amens hwAesuassaaAp Ame riewAr s Amiv ey seasm pea wasmeivan ve veivess e v g
tion region because a system will belong to EIC mode if it is fully covered by effec-
tive occupation regions. In one-dimensional lattice, the threshold of eftecuve
percolation is p. =1, which gives the threshold of real occupation fraction

p=1/(1+G). )

However, there are some inherent differences between EIC mode and percolation.
The percolation is an equilibrium phase transition controlled by parameter p. and EIC
mode describes an evolution far from equilibrium, where p is a variable. The cvolu-
tion 1s a pattern-specific phenomenon, which cannot be determined only by the value
of p. One will see that only in the sense of averaging or most probability can the
threshold condition (9) be applicable to EIC mode.

Now, we present several examples of a system governed by the dynamical rule
(8). For a lattice with N =10, we have 2=1024 and all the states in phase space are
divided into 11 groups. In Table 1. we list £, and the elements of the evolution ma-
trix Y for the case of N=10 and G =1. The distribution functions @, and ¢, are
shown in Table 2.

Table 1 shows that the total number of fixed points Z=179. Let it be noted that
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Table 1 Evolution Matrix Y and £,  N=10, G=1

“'E:h‘ ;
Sl 0 | 2 3 4 5 6 7 8 9 10 l Q,
0 I 0 0 0 0 0 0 0 0 0 0 1
| 0 10 0 0 0 0 0 0 0 0 10
2 0 0 35 8 2 0 0 0 0 0 45
1 n ] 0 s W 17 1”7 n ] n b "N
0<@(p)<1 for p <p<py, (10)

@(p)=1 for py<ps<l.

The upper and lower bounds of the transitional region are p;=0.7 and p, =0.2 for
the case of N =10 and G =1, respectively. The total number of states in the basin of
A, 15 M =0682; among them there are M,’ =506 states in the transitional region. We
have M, 'Q2=0.66602 and M,'/M=0.74194; the latter value means that the transition
region plays an important role in fracture phenomena.

Figure | is a schematic diagram of the phase space for N=10 and G =1, where

the hnindarv hetuween (3R ctatee and FI(T ctatee i renrecented hv a enlid line and the
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Table 3 Transition Region in  Different Cases
N 5 6 7 8 9 10 10 n
G 1 1 1 1 1 1 0.5 2
Py 0.2 0.1667 0.2857 0.25 0.2222 0.2 0.4 01
i =1/(1+G2). 12)
NII{I}L p,=1/(1+G2) (12)

The two boundaries of the transitional region are related to the evolution rule

The existence of transitional region indicates that there is no expliéil distinction
between GS modes and EIC modes, and the distribution of these modes in
phase space should be described by probability distribution function @(p) cr &(p).

.

3 Stochastic Pattern Jumn

In our damage-fracture model, on the one hand the pattern evolution follows a
deterministic dynamical rule, and on the other hand the pattern evolution may also
be caused by stochastic jumps. The latter models the stochastic nucleation of
microdamages. The dynamical evolution of a pattern can be affected by the stochastic
jump in various ways. It can jump from a trajectory to another trajectory, from z basin
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to another basin, and especially can convert from GS mode to EIC mode, and then
to fracture.

Here, the selection rule of stochastic pattern jumps and the jump probability are
assumed as follows:

(i) irreversibility, i.e. a pattern jump from occupied site to empty is not permissible;
(1) change in occupation number is limited by n=1 in each pattern jump;
(111) all possible jumps have the same probability.

Now. let us discuss the number of a jump from one state to another. There are
(N—=n+1) empty sites in a state with occupation number (n—1), so the number of
possible jumps An=1is (N—n+1). giving rise to (N —n + 1) distinct states with occupa-
von number n.

Since there are 2, , states in group (n—1), the total number of possible jumps
from group (n—1) to group n is

=2, (14)

n=1

v 1s the total number of all possible jumps in the system.

ft 15 easy to see that a jump-driven conversion from EIC mode to GS mode is
impossible. The jumps may be classified into three groups: GS -+ GS, EIC — EIC and
GS - EIC. There are 2, ,@,_, EIC states in group (n—1). The number of all the
possible jumps is (N—n+1)2,_,®,_;and all of them lead to EIC states in group n.
In group n. the number of EIC states is €2,@,, and the number of all the possible
jumps to these states from the states in group (n—1) 1s n£2,®,. Clearly among them
the number of jumps EIC - EIC is (N-n+1)Q2,_,®,_,,
the jumps from GS to EIC. Then, we get the number of the jumps from GS states
in group (n—1) to EIC states in group n as follows:

and the rest should belong to

xun = prr—l_rr:”Qn@n - UV_'n + I)Qn 1¢n—| =((Dﬂ _q’ﬂ—')vﬂ' (15)
Let
= 2 M (16)

118 the total number of all possible jumps GS — EIC.

Define two probability distribution functions concerning jump



338 SCIENCE IN CHINA (Series A) Vol 37

wp) ==y, n=p,/v,=0,—0,_, (17)
and
1!
'?(P) = quE rfn—l.ﬂ '_,U,.,;’r#: ; ((pn—¢n—l)' “8]

Y, is the ratio of the number of jumps GS— EIC to that of all jumps from group
(n—1) to group n; and 7, is the ratio of number jumps GS —~ EIC from group
(n—1) to group n to that of all the possible jumps GS — EIC. , and 5, satisfy the
normalizing condition.

The functions ¥(p) and #n(p) describe the probability distribution of mode conver-
sion from GS to EIC modes through jump; they have a non-zero region:

Y(p)>0, n(p)>0 for p <p<p, . (19)

This non-zero region nearly coincides with the transitional region defined by function

@(p). In general, Y (p) is a single peak function. We let the position of the peak
p=p,. Define

p=2.p¥(p) (20)
and
o=[2(p= PPN, @h
where p and o/p give the global shape of the function ¥(p).

In the case N=10 and G =1, we get v=5120. u=1032, and y= p/v=0.20156. v .
. ¥, and 7, are shown in Table 4. In Table 5. we show p,. p. ¢/p, v and p for
several cases.

Table 4 v,, p,. Y, and n, for N=10 and G=1

n 0 I 2 3 4 5 i} 7 8 9 i
Vn 10 %0 360 840 1260 1260 840 360 90 1l
Hn / 0 0 24 308 474 198 28 0 0 0
Un / 0 0 0.0667 0.3667 0.3762 0.1571 0.0333 0o 0 f)
n / 0 0 0.0233 0.2983 0.4593 0.1919 0.0271 ] 0 0
Table 5 p., p. o/p, 7 and p,

N 5 6 7 8 9 10 10 10
G i 1 1 1 1 1 0.3 2
P, 0.5 0.5 0.5 0.5 0.5 0.5 0.6667 (.3333
Pm 0.6 0.5 0.5714 0.5 0.4444 0.5 0.7 0.3

r .66 0.5278 0.5388 0.5366 0.4714 0.4724 0.6789 0.3010
alp 0.1940 0.2011 0.1802 0.2148 0.2016 0.1949 0.1001 0.2178

Y 0.3125 0.2917 0.2723 0.2383 0.2131 0.2016 0.1762 0.0793
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The meaning of ¥(p) is that if the occupied sites are cumulated stochastically, the
probabikty of mode conversion from GS to EIC at occupation fraction p is given by
¥(p). This is merely a probability of fracture in the case of stochastic cumulation of
microdamages. From Table 5 we can see that p, and p are close to p., indicating a
relationship between fracture and percolation, that is to say, the percolation, of effec-
tive region of occupation, describes the mode conversion from GS to EIC in the sense
of averaging and most probability. However, Tables 4 and 5 show that there is a
broad non-zero region in function (p) resulting from the pattern-specific behaviour of
the dynamical evolution, and the boundary between GS modes and EIC modes cannot
be specified by a threshold value of p. Therefore, as a non-equilibrium evolution phe-
nomenon. the fracture is inherently different from percolation phenomenon.

The conversion from GS modes to E!C modes has a crucial meaning in the proc-
esses from stochastic cumulation of microdamages to fracture. However, only the EIC
states. which can be attained by the jump GS — EIC and are not the intermediate
states in a dynamical flow line. are the true initial states of EIC modes. These states
covern the lifetime of a system decisively. Let ¢, be the number of the initial states of
Fi¢ modes in group n. and f,=1,/Q2,. In Table 6, we show ¢, and f, for N=10 and
=1 We can see that the, initial states of EIC modes are distributed in the area of
ihe transitional region (i.e. f(p)=f,>0 for p <p<p,). It means once more that
the transitional region plays an important role in fracture phenomena. The distribution
of mitial states of EIC modes in phase space is also shown in Fig.1 (the area between
the solid tine and dash-dotted line).

Tabhle 6 The Distribution of Initial States of EIC Modes for the Case of N=10 and G=1

s [ 0 | > 3 4 5 6 7 8 9 10
e .

oo 0 0 8 &S 156 92 12 0 0 0

J 0 0 0.0667 04048  0.6191 0 4381 01 0 0 0

4 Conclusion

In this paper, the fracture is treated as a problem of pattern evolution. A model
governed by both deterministic dynamics and stochastic jump is adopted. In the model,
the coalescence of microdamages is taken into account by a deterministic, irreversible,
nonlocal and nonlinear dynamical rule, and the nucleation of microdamages is de-
scribed by irreversible stochastic jump. Such a kind of pattern evolution involving both
dynanues and disorder is a very common phenomenon.

We lay emphasis on the fracture condition, which should be attributed to conver-
sion Irom GS mode to EIC and the formation of a specific pattern (the fracture state).
As was pointed out, the statistical description is a powerful technique. In this paper,
we have analyzed the flow and structure of phase space, defined an evolution matrix,
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and introduced the distribution function @(p) and &(p) to depict the distribution of
states in the basin of fracture in phase space. We also introduced distribution func-
tions ¥ (p) and n(p) to describe the probability distribution of mode conversion from
GS to EIC. Finally we have given a distribution function f(p) to describe the initial
states of EIC modes, which are related to the lifetime of the materials.

In our evolution model, an important characteristic is the existence of a transi-
tional region in the space of occupation fraction p. In the transitional region,
both GS and EIC modes exist. The mode conversion from GS to EIC has non-zero
probability, where the initial states of EIC modes are also distributed there. The transi-
tional region plays an essential role in fracture phenomena.

The theoretical framework and the results obtained in this paper may serve as a
starting point for a deep-going study of the damage-fracture processes.
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