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Abstract. - We present a direct and dynamical method to distinguish low-dimensional 
deterministic chaos from noise. We define a series of time-dependent curves which are closely 
related to the largest Lyapunov exponent. For a chaotic time series, there exists an envelope to 
the time-dependent curves, while for a white noise or a noise with the same power spectrum as 
that of a chaotic time series, the envelope cannot be defined. When a noise is added to a chaotic 
time series, the envelope is eventually destroyed with the increasing of the amplitude of the 
noise. 

Complex time series are ubiquitous in nature and in man-made systems, and a variety of 
measures have been proposed to characterize them. Among the most widely used approaches 
today are state space reconstruction by the time delay embeddingI11, calculation of the 
correlation dimension and of the K2 entropy[2,3], and estimation of the Lyapunov 
exponents [4,5], for characterizing strange attractors. Since low-dimensional strange 
attractors produce a small and usually non-integer value of the dimension and a converging 
entropy, and a positive largest Lyapunov exponent, in practice these have often been taken 
as aproof,, of the presence of a strange attractor. However, there exist some stochastic 
processes which generate time series with finite correlation dimension and converging K2 
entropy estimates [6-81. Hence, it is very important to develop a method for distinguishing 
noise from chaos in an observed time series and gain an insight into the system under 
investigation. 

There exist several statistical ways of detecting deterministic processes. Kaplan and 
Glass[9] have used a coarse-grained directional vector, and Wayland et al. have employed 
((phase space continuity,, [lo], which is a variant of the Kaplan-Glass method, while Sugihara 
and May [ll] and Kennel and Isebelle [12] have explored prediction to detect determination 
in a time series. In this paper we shall extend the concept of the time-dependent 
exponent[13] and develop a direct and dynamical test for distinguishing chaos from 
noise. 

Having a scalar time series {xi}, i = 1, 2, ..., with sampling time 6 t ,  one can construct 
vectors of this form: Xi = (xi, xi+L, . . . , x i+(m- l )~  ), with m the embedding dimension and L 
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the delay time [l]. Assume a proper reconstruction of the state space has been achieved, i .e .  
m is greater than or equal to the minimal acceptable embedding dimension and L is also 
chosen properly [13-161, then a dynamics F :  Xi +Xi+, is constructed. The time-dependent 
exponent A ( k )  is defined by [131 

(1) 

The angle brackets denote ensemble average of all possible pairs of (Xi, X j ) ,  Y* is a 
prescribed sufficiently small distance, and k8t is the evolution time. 

A is a function of k, m, and L. For fixed small k, by requiring that F be a continuous 
mapping preserving neighbourhood relations, the minimal acceptable embedding dimension 
can be determined by requiring that A(m) does not decrease significantly when further 
increasing m, and an optimal L is obtained by the minimum of A(L)  which implies that the 
orbital motion is uniform and the distortion is small [13]. This is the so-called optimal 
embedding. When this has been achieved, for small values of k, A ( k ) / k @  measures the 
mixture of all local Lyapunov exponents [17]. However, the largest Lyapunov exponent 
eventually dominates the dynamics with increasing k; in other words, the small separation 
vector between Xi and X j  will align with the eigendirection for the largest Lyapunov 
exponent. Actually, A ( k ) / k 6 t  gives the standard estimation of this exponent for large k, 
which is a consequence of the ergodicity of the motion on the attractor [131. Geometrically, 
this is to say that the A ( k )  curve is a straight line for k8t  large and nearly passes through the 
origin when extrapolated, the slope of the linear A ( k )  curve estimates the largest Lyapunov 
exponent. 

As can be imagined easily, a quantity like A ( k ) / k 8 t  calculated from noise may also be 
positive. However, for a stochastic process A ( k )  cannot be expected to be linear in k for k not 
small. Actually for an IID (independent with identical distribution) random variable series, 
we have the following functional forms (l): 

A ( k )  = (In ( k + k  - X,+kll/llXi - X, I/)>, llXi - X, 1 1  S r* . 

f ( k ,  m, r*)  , 
g(m, r * ) ,  k 2 m .  

1 s k s m - 1, 
A = (  

Hence we see that A ( k )  as a whole cannot be linear in k for a white noise. Rather, A 
depends on r* and m. We also note that A ( k )  is always positive if r* is very small, because 
IIXi+k - qtk 11 has greater probability to be larger than llXi - X, ( 1 .  By the same reasoning 
we also know that A ( k )  increases with increasing k when 1 S k S m - 1. When k 2 m, how- 
ever, we conclude that the A ( k )  curve is a horizontal line when there are many pairs of 
(Xi, X j )  to well define the ensemble average. 

An implication is that if we calculate the largest Lyapunov exponent from a white noise, 
we would always have a positive number. However, this number does not imply chaos, since 
it depends on r* and m, and probably also on L for a coloured noise. Actually this number can 
become as large as one desires provided that the data size is so large that r* can be very 
small. 

To gain an insight into the dependence of the A ( k )  curve on r* for a noise and to deal with 
noise-contaminated data with unknown noise level, we extend formulation (1) by defining 
A ( k )  on a series of shells, ri+, S llXi - 4 1 1  S ri, and calculate the corresponding A ( k )  curves. 
We take the Lorenz equations (2 = d y  - x), = x(r - z )  - y, i = xy - bx, Q = 10, b = 8/3, 
r = 45.92, 6t = 0.06) and the Mackey-Glass equation (2 = az(t + T)/[ 1 + x(t  + r)'I - W t ) ,  

(l) Proof will be given in a longer report. 
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a = 0.2, b = 0.1, c = 10, r = 30, 6 t  = 6), which have one and two positive Lyapunov 
exponents, respectively, as two examples to illustrate some results which are typical for 
other model chaotic systems. We notice from fig. 1 that there exists a linear envelope to the 
A ( k )  curves. The slope of the envelope estimates the largest Lyapunov exponent of the two 
systems to be 1.50 and 0.007, which are quite standard[131. As a matter of fact, the linear 
segment of the A ( k )  curve for the smallest shell (which is a ball) is just the A ( k )  curve 
calculated from expression (l), and the existence of the envelope reflects the fractal nature of 
the attractor. Also we see that a time scale of dynamical correlation (corresponding to the 
linear increasing segment of the A ( k )  curves) is associated with each of the shells, which is 
important for prediction. Beyond that time scale, the chaotic motion is indistinguishable from 
a stochastic process. 

We now turn to discuss stochastic processes. Figure 2 gives a typical result for a white 
noise with uniform distribution, which shows all the features pointed out through expres- 
sion (2). Figure 3 shows the result for the surrogate data of the Lorenz system, i.e. a data set 
with the same spectrum but randomized Fourier phases. The qualitative features of fig. 3 are 

10 20 30 
evolution 

i 
0 10 20 30 

time k 
Fig. 2. - The A ( k )  curves for a normalized uniformly distributed white noise (a)  m = 4, 6) m = 5). 6000 
data points are used. Curves 1) to 9) correspond to shells (2-i-1,  2 - i ) ,  i = 4, 5, ..., 12. 
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Fig. 3. - The A ( k )  curves for the surrogate data of the Lorenz system (a)  m = 4, L = 1; 6) m = 6, 
L = 2). The time series is normalized to  (0,l) and 6000 data points are used. Curves 1) to 9) correspond 
to shells (2- i -1 ,  2 - i ) ,  i = 4, 5 ,  ..., 12. 

similar to fig.2, with the new characteristics that A ( k )  depends on L and a time scale 
corresponding to the increasing of A ( k )  slightly larger than the embedding window (m - 1) L 
which is due to the conditional probability caused by the embedding procedure and the 
colourness of the noise. The most important fact is that due to  the dependence of the A ( k )  
curves on the radii of the shells, an envelope to the A ( k )  curves no longer exists, and the 
largest positive Lyapunov exponent cannot be defined. Another important fact is that if the 
time scale corresponding to the increasing of A ( k )  is taken as the prediction time, then it is 
significantly smaller than the time scale of dynamical correlation given by fig. 1. 

A note on the value of m used to obtain the results of fig. 1 needs to be made. Both for 
the Lorenz system and the Mackey-Glass equation, m is chosen to be the minimal acceptable 
embedding dimension plus one. The results of fig. 1 do not change when m is further 
increased. However, if m is smaller than the minimal acceptable embedding dimension, then 
the A@) curves behave more or less like that of a noise, and the envelope no longer 
exists. 

Having distinguished clean chaotic signal from pure noise, we now discuss time series of 
this type, {xi} + a{ vi}, {xi} is a clean chaotic signal and {vi} is a pure noise, both of which 
are normalized to (O, l ) ,  and a is the noise level. Intuitively one can imagine that the A ( k )  
curves for shells of smaller radii will take the characteristics of fig. 2 and 3, while for shells of 
larger radii, the characteristics of fig. 1 will be preserved, i .e.,  there will only exists a kind of 
envelope to A ( k )  curves of larger-radii shells. The higher the noise level, the more the 
envelope is destroyed. When the noise level is too high, it may be difficult to extract the 
characteristic of the chaotic motion, since the largest acceptable radius of the shell is bounded 
by the upper bound r,, meaningful for the calculation of the fractal dimension, as pointed out 
by Eckmann and Ruelle[5]. Figure 4 shows typical results for the Lorenz system 
supplemented with its surrogate data, which confirm the qualitative features described 
above. We also note that when a 2 0.2, the characteristics of the chaotic motion are already 
very difficult to identify. The characteristics of fig.4 remain similar when a white noise of 
Gaussian distribution or uniform distribution is added. 

In conclusion, chaotic motion is characterized by a linear A ( k )  curve, the slope of the curve 
yields an estimate of the largest Lyapunov exponent. Hence, there exists an envelope, which 
is linear or nearly linear, to  the A ( k )  curves defined on a series of shells. For stochastic 
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Fig. 4. - The A ( k )  curves for the Lorenz system added with its surrogate data (a)  m = 6, a = 0.5; 
b)  m = 6, a = 0.2). The time series is normalized to (0,l)  and 6000 data points are used. Curves 1) to  8) 
correspond to shells ( Z i - l ,  2-i), i = 5 , 6 , . . . , 12, respectively. 

processes, A ( k )  cannot be linear in k, and the value of A depends on the radii of the shells. 
Therefore, there no longer exists an envelope to the A ( k )  curves. This clear difference 
provides a direct and dynamical method of distinguishing chaos from stochastic processes. 
When a noise is added to a chaotic signal, the envelope to the A ( k )  curves of smaller radii for 
the underlying chaotic system is destroyed. The higher the noise level, the more the envelope 
is destroyed. 

As a final remark, we point out that when the noise level is high up to 20%, the envelope to 
the A ( k )  curves is destroyed (fig. 4). However, the time scale corresponding to the dynamical 
one of fig. 1 is nearly preserved. We expect that an appropriate statistic which incorporates 
the significant difference between the dynamical time scale of fig. 1 and the embedding time 
scale of fig. 2 and 3 can be developed to deal with noise-contaminated data with much higher 
noise level. 
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