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Abstract The controlled equations defined n a physical plane are changed nto those in a
computational plane with coordinate transformations switable for different Mach number M, The
computational area is limited m the body surface and in the wicinities of detached shock wave and sonic
line. Thus the area can be greatly cut down when the shock wave mowes away from the body surface as
M., — 1. Highly accurate, total variation dmimishing (TVD) finite<difference schemes are used to calculase
the low supersonic flowfield around a sphere. The stand-off’ distance. location of sonic line. etc. are well
comparable with experimental data. The long pending problem concerning a flow passing a sphere at
.32 M., > 1 has been settled, and some new results on M., = 1.05 have been presented
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1 Introduction

The study on the high supersonic flow of a sphere began in the 1950s. Since then
considerable experimental and computational results on 1.2 < M, < “ have been accu-
mulated!" . Later people’s interest has gradually been directed to low supersonic
and transonic flows around a sphere. Summing uvp the laws of the variation of shock
wave stand-off distance and sonic point location with the changing M, , Ref. [4] point-
ed out that when M, 21.5, the results by different approaches agreed well with each
other; in other words, the theoretical calculations coincided with the experimental resuvlts.
However, there were great discrepancies between the results of experiments and em-
pirical formulae at M3 < —1.3, especially at M, — 1. Take sonic line at M,=1 as an
example, in Ref. [5], it extends forward, in Ref. [6] it goes backward near the body sur-
face, whereas in Ref. [7] it moves backward away from the bndy surface, as plotted in
Fig. 1(a)—(c). At that time it was hard to say which of the three was closest to the reali-
ty. The problem of how to calculate the supersonic flow around a sphere at
1.3=2M,>1 has been an important topic in the realm of fluid mechanics since it was
raised in the middle of the 1970s. -

The recent studies are concentrated on the flowfield structure with viscosity. An idea
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to take viscous influence into consideration is to divide the flowfield of a sphere
Into two parts, i.e. the forward flowfield (area 1) and the backward flowfield (area 11"
Their boundary passes through the separation point in the body surface. In this paper,
we are focusing on area I because its solution is the foundation for the viscous flow
and at the same time it ‘s the key point to the research.

Before the 1980s the solutions of supersonic and low supersonic ideal gas flows in
area 1 were classified into the following three catalogues: (i) classical method presented
by Belotserkovskii' and Van Dyke“’, (1) full potential equations method, such as shock
wave capture method presented by Shankar”, and (iii) Euler equation method, namely,
the time-dependent method. With various dispersion formats, there formed different
schemes. such as the MacCormack method, AF method, vector method. Flow field
around a sphere could be calculated ap to M, >1.08 using these methods, and flow
parameters, such as distribution, pressure contours between detacked shock wave and
body surface were obtained besides the detached shock wave and sonic line.

Based on experiments and theoretical analysis this paper suggests that the main diffi-
culty in calculating supersonic spherical flow at M., > 1 originates in the fact that the flow
parameters change very unevenly in the flowfield when the detached shock wave takes
the shape of a straight line and moves away from the body surface by degrees. Hence,
both fairly dense grids and highly accurate schemes are required lest minor errors may
accumulate ieading to numerical dispersion. Therefore, we propose (i) to select proper
curvilinear coordinate in order that the computational area at different M, is limited in
the vicinities of the detached shock wave, sonic line and body surface so as to greatly
reduce the computational area, (i) to change the controlled equations defined in a physi-
cal plane into those in a computational plane with suitable coordinate transformation,
and () to solve the flowfield at M, >1 from Euler's equation with highly accurate
TVD finitedifference scheme designed to compute hyperbolic conservative equations pre-

sented by Harten'".

Generally, compared with wind tunnel, the ballistic range facilities can better reveal
the real situation of shock wave stand-off distance and its shape, especially for the
backward flowfield structure and wave series. A ballistic range with different Mach
number M, and Reynolds number Re was designed and used to demonstrate the
transonic flowfield around a sphere. Photographs were taken at M, =0.8—1.2 and
Rey< 10" to verify the numerical simulations.

2 Basic Equations

An aximystric, steady, adiabat supersonic flow around a sphere is presumed. Its

controlled equations can be written as
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in which
U=(p. pu, pv, e)’,
G = (pv, puv, pv’+p, (e +p)v)’.
F=(pu. pu’+ p, puv, (e +p)u)’.
Here, p, p, u, v, e, t represent fluid density, pressure, xdirection component, y<direction
component, intrinsic energy per unit volume and time, respectively. All variables in equa-

"tions are normalized with respect to the following free stream values and the bar is
ignored for convenience:

- __ | P x = - : — i R
= | R = o e = (Jlf' s t=1! )

p f ;’ aln p p / p « P i ,'I a,

U=ula, . v=v/a,. x=x/R, y=y/R.

where p,., a. and R represent freestream pressure, sound speed and sphere radius. A
coordinate transformation is introduced to simplify computation,

x=x(&n). y=yEn. (2)

The controlled equations defined in physical plane (x, y) are changed into those
in a computational plane (£, 7). The equations after transformation are
oU oF oG ~ -

W‘l‘—a?"‘@—q'l'H:U, {3;'

in which U=U/J, F=(&,F +¢,G)/J, G=(1,F+1,G)/J, H=H/J J=¢n, = & 1.

Usually, whether the numerical calculations converge or not is determined by
coordinate transformation (2) in some degree. Grids in (£, #) plane must be orthogonal

and even<distributed in order to ensure rapid convergence.

3 Seolving of Equations

3.1 Explicit TVD Scheme
The following explicit TVD schemes are constructed to solve nonhomogencous

conservative EQUdtl()nbl 3.

I——_j v —

Ul = U0 =AM 1 = ML 1= A, INT, L= N 1= ATH (4)
where A:=At/A¢, 1,=At/Ay . '

n I - I
Mu—;_;:“i‘(]‘ +F+l'+_A_R '—I._j'ﬁ\ﬁ|+—£ j)- (5)
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Bt = 100 L) = vk ek, (8)
Se = sign(gi,L ;) . 9)
ol = Aal 1, (10)
r (Gs e 9‘::‘;'}-’{9‘{::4%; a1 #0,

Viied ;:{ . Wt =0, (n
L= R W= UL [ U+ ), (12)

where 2. is the eigenvector of 4 =CF/CU, R.is the matrix whose columns are
cigenvectors of 4 and R is the inverse matrix of R.; its expression can be found in
Ref. [12].

Simiiarly,
o 1 ot n 1
N, :‘.%:—7_<G:r;'+ G it + i_Rr;ﬁqi‘_j-f-lz-) ’ (13)
- "
Bri o = iy Gyigor = QUi s 1+ Vijel) o jud, (14)
o\ : -~ -V."
g:“ = §, max [O. min (o|g,;,._j+;_| , 08,0, -1,
| ~|
|.gr:|l j——; + gm.j*-—;-] * (15)
qrir gt —,'-_ IQ( ‘q; ,.'-v-—) - (‘?jl ;+— ) ]anr ,'+—I * (16)
S:,J = %lgn ( n;n j+ %) . (17)
D (17")
LN _j'+—:' iy j+—2 *
{ i ! !
i (yr;i' 1+ yq: j).-faﬂi ;+—,t> ar};.j+%:’£0
o=, R (18)
’ ni jf—;
= n n |
=R (UL - UY) —,,— iyt i ) (19)

where %, is the eigenvector of B = 55;’55’, Ry is the matrix whose columns are eigenvectors

of B. and R, is the inverse matrix of R,. In order to satisfy the entropy condition, let
x*+e x| <é

Q(x)= 2¢ ’ ’ (20)

[ x| x| 2 &
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In the calculation, arithmetic average values are taken as centre average values.
Changeable time steps are used to fasten the iterations according to Refs. [13].

Ar=At/(1+J). (20

Yu'" proved that one-dimensional TVD scheme has the maximum precision when

0=2. So o0=2 is assumed in this paper. Nonhomogeneous items in symmetric axis v=1{

are treated with L' Hospital’s principle.
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Fig. 1. Three results of sonic hne with M, =1 (a) Result obtammed by Lin, T I,
(b) result obtained by Beloserkovskii,  (c) resuit obtamned by Hsien, T
D
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Fig. 2. Ilustration of division of Fig. 3. Illustration of curvilinear coordinate and
the computational area. boundaries of computational area.

3.2 Grids Generation
The curvilinear coordinate (£, n) and four boundaries of the computational area are
shown in Fig.3, where {=0 4B is the symmetric boundary, {=¢,, CD is the out-flow
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boundary. n=0 BC is the body surface and n=1 AD is the entrance boundary. To
acquire a computational area as small as possible, curves AD and CD should have
similar shape of detached shock wave and sonic line, respectively. Their shapes are
functions of free-stream Mach number M.. Through an analysis of the experimental
results in ballistic ranges ¢t different Mach number M, the following coordinate
transformations are chosen:

. x=—fcosk, y=—fsink, (22)
where

f=1+nlstk) - G(&.n)—1t] (23)
s(k)=R,(1 +&)/(1+ ccosk), &€= 1.4/(M>—1)"*,
R, = 1+ 0.46¢'", (24)
k=¢cy/g(n) 25)
g(m)=Ani + Ay, +1, (26)
A= fi— A, — 1,
Av=[fH=1=(f=Ds]T/si(1=s1),
G(E.n)=1+0cecosk 27)
LEI:?“'[\/I+CI(2Q+0:)§—]:|, 28)
n o=n-Psin2ny. 29)

hen computing free-stream Mach number M, (M, 2 1.05), we chose parameters as
ollows: o = 1,2, f#=0.05 f,= 132, f,=1.26,s,=0.8, ¢ =0.001. Quite satisfactory
grids are obtainable. The curvilinear coordinates, grids and computation results corre-
sponding to M, = 1.1, 1.05 are plotted in Figs. 4 and 5, respectively. Although the grid
numbers increase when M, — 1, our scheme can achieve satisfactory results with fewer

grids and less computation time.

33 Boundary Conditions
3.3 1 Entrance boundary AD. For supersonic freestream, all upstream parameters P, ,
p..a,, M, are presumed.

3.3 2 Symmetric boundary 4B. Values in this boundary can be calculated by mirror-

image method.

3.3.3 Body surface boundary BC. In order that the arc coincident with body surface is
a stream line. & mirror-image method in curvilinear coordinate form is adopted to

calculate the wvalues in this arc.
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Fig. 4. Mach contours and detached shock Fig. 5. Mach contours and detached shock
wave with M.=1.1 wave with M., =105

3.3.4 Out{low boundary CD. Assuming that the outflow boundary has no eifect on the
location of sonic line, all values are first-order extrapolated.

3.4 Initial Conditions

Boundary 4D should be obtained at first. With given M, , let M, <M, put it mnto
(24) and get the curve AD. For example let M., =1.08 when computing M, =1.1. Then
fit a bow-shaped shock wave in an iso- line. Crrvilinear grids can be computed by ex-
pressions (22)—(29) when the grid number is given. Flowfield of shock wave layer can
be calculated by intrapolation with behind-wave values and body surface values. Usually
a small subsonic flowfield area near the stagnation point of sphere is assurned with
other area being even flowfield having freestream values. After several iterations. the
subsonic area increases and finally reaches steady state.

3.5 Shock Wave Simulation

Because of the artificial viscosity term introduced, the calculated shock wave 1s a rel-
atively wide layer. The flow parameters change from freesiream values to behind-wave
values in this layer. In fact, shock wave is a very thin layer, so it is important to
locate shock wave for precision requirements. The following formulae defined in meridian
plane are chosen to simulate shock wave. P

Py _ W [y _y—l)
e " (M.r_ sin” f§ 3 ) (30)
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ctg f (snrﬁ - 5 )
tga = Masl 31)

] —(sin:[}— lez)
Iy

2
= — 7
lga = — (32)

in which p, and f represent behind-wave pressure and shock wave angle, respectively.
LY

The shock wave is normal in symmetric axis, viz. f#=90. Substituting it into expression

. 2y y —
(30) yields -;:' = '_": ](M?,_ - *—7—1) Compared with calculated pressure values, the
fy 2y

stand-off distance of shock wave can be obtained. Then using the following formula in
Ref. [14]
& +cost

sin ) (33)

tg f =

we get finitial value and then insert it into expression (30) to obtain p,/p.. Thus the
initial shock wave location can be given. Putting f# in expression (31), we obtain tga,.
Velocity components u, v corresponding to the initial shock wave location are utilized

to calculate tga,. Comparing tgo, and tgoo, rectifying g till their difference is smaller

than mincr number p, namely, |[tgo, —tga,|< u, the shock wave location is obtained
finallv. The simulated shock waves are plotted in Figs. 4 and 5, respectively. It can be
seen from the figures that flowfields behind simulated shock wave are well comparable

with experimental results.

4 Conclusion and Discussion

The strategy presented in this paper enables us to calculate the supersonic flowfield
around a sphere at M, > 1.5 quickly and accurately. Similarly, the flowfield at
| 22 M, > 1.05 can be calculated with enough precision and fastness if the coordinate
transformations presented in this paper are adopted. As examples, here three grid
schemes 19X27, 29x47, 29%x47 are used to calculate the flow around a sphere at
M,=1.2. 1.1 and 1.05. The results are shown in Figs. 4 and 5, respectively, from which
we see that the grids numbers vary with M., ; when M., =1.2, they can be immensely cut
down while the precision is the same. As M, — 1, the grid numbers should be gradually
increased.  The coordinate transformations presented in this paper make the
computational area include properly the detached shock wave, sonic line and body sur-
face. Therefore. the computational area is much smaller and the computation time is
greatly saved.

A continuous increase in as velocity from symmetric axis of sphere to sonic line can
be seen from the velocity distributions. But since they are far from both the body sur-
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face and the detached shock wave so that the gas has a relatively slow acceleration.
there are depressions in 0.8 -—0.9 is0-M , lines. It can be seen that longer distances are
demanded when the local Mach number accelerates from 0.8 to 0.9 and 1.0 at M, »
1. This means that adjacent grid point AM, should be very small and if grids are not
dense enough, the errors may accumulate easily in iterations and finally lead to diver-
gence of numerical results. The conventional numerical schemes require the flowfield to
extend to infinity and need much more grids in order to get enough dense grids. That
is why they meet difficulties in solving flowfield of a sphere when M, — I,

0

Fig. 6. Comparison of result of the current scheme Fig. 7. Comparison of result of the current scheme
and experimental data with M., = 1.1. and experimental data with M, = 1.05.

Fig. 8 (a) Comparison of backward flowfield result and experimental data with M. =1.05; (b) photograph
of ballistic range for flowfield around a sphere with M. =1.12.

The shapes of detached shock wave and sonic line are characteristic marks of the
flowfield around a sphere. Figs. 6 and 7 give a comparison between the results on de-
tached shock waves and sonic lines at M, =1.1, 1.05 by our scheme, other methods and
experiments. There are many numerical results when M, =1.2, but some numerical
schemes are no longer applicable when M., — 1. OQur scheme can calculate M, as high
as 1.05, and the results agree well with the one of ballistic range. The sonic lines at
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1.22M>>1.05 are also plotted in Figs. 6 and 7. They start at sphere surface, extend
to the stream direction at first, then move forward slowly departing from the body sur-
face, and finally bend to the detached shock wave quickly when they approach it. In
Ref. [15] the supersonic characteristic line methods were used to solve the backward
flowfield with the calculated sonic lines as initial values. The calculated results on sepa-
rated shock wave, base flow iso-pressure boundary and tail shock wave locations are
well comparable with those of ballistic range, as shown in Fig. 8, indicating that the
sonic line calculated with our scheme is in accordance with the reality of flow. From
the comparison of the three sonic lines at M, =1 in Fig. | with ours, we think that the
soni¢ line in Fig. 1(c) deviates from the real situation, the lines in Fig. I(b) are consistent
with our results in the near body flowfield and seem reasonable, whereas the line in
Fig. 1(a) is convincing in farther flowfield, which can be explained physically as follows.
The detached shock wave moves away irom the body surface when M, — 1 and its
departure velocity increases slower than gas velocity between the detached shock wave
and body surface, so the sonic line inclines to the detached shock wave more quickly,
leading the subsonic flowfield between detached shock wave and body surface to
avoid tending to infinity. Thus we see that the flowfield around a sphere at M« 1
can be solved numerically.

To sum up, our numerical simulation method can solve the flowfield around
a sphere till M, 21.05 with smaller computational area and less computation time. It
can be extended to solve low supersonic forward flowfield around hemisphere<compounds,
sphere<one compounds and blund body such as elliptic sphere and flat-headed cylinder,
thus opening up a way for solving viscous backward flowfield.
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