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Abstract-A detailed analysis of kinking of an interface crack between two dissimilar anisotropic 
elastic solids is presented in this paper. The branched crack is considered as a dist~but~ dislocation. 

A set of the singular integral equations for the distribution function of the dislocation density 
is developed. 

Explicit formulas of the stress intensity factors and the energy release rates for the branched 
crack are given for orthotropic bimaterials and misoriented orthotropic bicrystals. 

The role of the stress parallel to the interface, q, is taken into account in these formulas. 
The interface crack can advance either by continued extension along the interface or by kinking 

out of the interface into one of the adjoining materials. This competition depends on the ratio of 
the energy release rates for interface cracking and for kinking out of the interface and the ratio of 
interface toughness to substrate toughness. 

Throughout the paper, the influences of the inplane stress o0 on the stress intensity factors and 
the energy release rates for the branched crack, which can significantly alter the conditions for 
interface cracking, are emphasized. 

I. INTRODUCTION 

The interface fracture mechanics for two dissimilar anisotropic materials has attracted 
many scientists’ attention. 

Gotoh (1967) analysed the interface crack problem for the anisotropic plate based on 
the Dugdale mode. Clements (1971) presented the general formulas for the interface crack 
between two dissimilar anisotropic solids using the Stroh’s (1958) theory of anisotropic 
elastic media. He introdu~d the six piecewise analytical potentials and established the well- 
known Hilbert problem. 

Several basic problems have been solved by Wills (1971), Ting (1986), Wang and Choi 
(1983), Bassani and Qu (1989), Qu and Bassani (1989), Wu (1990), Gao et aI. (1992) 
among others. A significant progress has been made by Suo (t990). He established the 
general singular fields for the interface crack between two dissimilar anisotropic media 
using the complex function vector. 

The kinking of a crack out of an interface between two dissimilar isotropic materials 
is solved by He and Hutchinson (1989), He et al. (1991) for the case of semi-infinite cracks. 

Using the formulation in Clements (1971) and Wang and Choi (1983), and the Green’s 
function, a solution has been presented by Miller and Stock (1989) for the problem of a 
crack branching off the interface between two dissimilar anisotropic materials. Numerical 
results for the stress intensity factor of the branch crack are obtained for some special cases 
in their paper. 

Wang et al. (1992) developed the concepts of mode mixity and toughness surface for an 
interface crack in anisotropic solids. Explicit formulae for stress intensity factors and energy 
release rates for branch crack are presented in their paper. Many typical numerical results 
are obtained. 

This paper is a continuous development of the work by Wang et al. (1992). The role 
of the stress u. in the substrate parallel to the interface in kinking of a crack out of an 
interface between two dissimilar anisotropic materials is investigated in detail. 

It has been shown that the influences of the stress go on the energy release rate of the 
branch crack are significant when the length a of the branch crack is not very small. A 
thorough analysis for the energy release rates Gki”“ for the branch crack is presented here. 

Explicit formulae for the stress intensity factors and the energy release rates are 
developed with emphasis on the cont~bution of the stress cro. 
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2. BASIC FORMULAE 

The formulation in Suo (1990), Wang et al. (1992) will be used throughout the paper. 
The displacements ai, stresses b2i and resultant forces& on an arc AB can be expressed 

as: 

Ui = 2Re i A,~~(z~)~ 
i= I 

A = -2Rrj$, L,cP,(zj)l~, 

~2i I= 2Re C L<jqj(Zj). 
j=t 

(1) 

Introduce following vector functions : 

The interaction problem of dislocation versus interface crack in anisotropic media has 
been solved by Suo (1990). 

Consider a dislocation line in the direction perpendicular to x, y plane with Burger’s 
vector b at the point (x0, yO) in material 2, as shown in Fig. 1. 

We have : 

W(z) = ~o(z)+c(*)i96(z)+L;‘E7-‘Hh(z), ZEW (2) 

where 

cC2) = L; ‘iI- i (B2 --B,)Ez, 

w4 = [cpo1(z),(P02(Z),(P03(Z)lT 

qoj(z) = djln(Z-Sj),Sj = xo+pj_Yo, 

d= [dl,d,,d,JT = L;‘(Bz+&-‘b/2x, 

h(z) = h,(z)W-th,(z)~‘+h,(z)W,. 

Matrices A, B, L, H and vectors W, %‘, wicI, are introduced by Suo (1990) and Miller 
(1989). The subscript 2 indicates quantities for material 2. 

For the case of a semi-infinite crack, Wang et al. (1992) show that : 

hi(z) = - RTb/2a, i = 1,2,3, (3) 

RT = [prD(Z,s,y,)C+QiTD(Z,~,i,YI)CI(I_Bi)/2, i = i,Z,3, (4) 

LY 

1 

Fig. I. Interaction between a dislocation line with a traction free crack. 



Kinking of an interface crack 631 

where 

B1 = B, 82 = -B, 83 = 0, 

yl = i--i&, y2 = j+i&, y3 = 4, 

P? = wT(J32 + B,)L,/A,, QT = e-2K6flT(B2 +B,)E2/&, 

P;=&T, Q;=p;, 

P? = w:@2 +B2)L2/A3, Q: = W$(B, +B,)t,/A,, 

A0 = %%W, A3 = W;HW3, 

D (z, 3, y) = diag 
[l-(z/s,)-yl I.l-(~/~z)-yl [l-w~,)-yl 

(z-d ’ (2-h) 
_I~. 

’ (z-53) 

Introducing the following matrices : 

T = L; ‘fi- ‘H, 

we obtained : 

C = L;‘(B2+132)-‘, 

Cjk Vj?(z, s) = (z--si) , j no sum 

For the branch crack as shown in Fig. 2, we have : 

2 -‘ tedim, Zj = t’Wj, 

Oj = cos w--y, sin 0. 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

Fig. 2. A branched interface crack. 
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The traction components pi on the branch segment, take the forms : 

p, = a,,ni = criI sin c0+er2 cos (1) 

Noting the branch crack is in the material 2, it follows : 

(13) 

here 

D, = diag [or, 02, 4 

%tal = P’“‘(z) + rp’d’(4. (14) 

The function vector c#“(z) is the potential vector prior to kinking. The function vector 
cpCd’(z) is the potential vector due to the distributed dislocation on the line segment of the 
branch crack. We have : 

(15) 

where s^ = IsI, a is the length of the branch crack. 
Substituting eqn (15) into eqn (13), results in : 

Re i [U$?(z,s)+ U,(~,s)]b~(s)ds^ = --q~jO), s z = tee’“, (16) 

where pI”’ are the traction components prior to kinking : 

(17) 

The eqn (16) is the governing equation for the unknown dislocation density b(s). This 
is a set of coupled singular integral equations. 

The eqn (16) can be represented as : 

Re 
is 

@ Mikbk(T) dr 

0 (r--t) 
+2 

s 
OKtea, 

0 

where r = s^ = IsI, s = r eeiw 

M = (Bz +8,)- ‘, 

2&.(T, t) =,$, (Lij”j)* $, (o”c~>~,t) +f, TjmRmk(zjys) 
i I ’ z = t e-j*. 

m I 

(18) 

(19) 

(20) 

3. STRESS INTENSITY FACTORS AND ENERGY RELEASE RATE FOR BRANCH CRACK 

We consider first the traction components pi (‘) . The stress fields near the interface crack 
prior to kinking are 
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0.. = 1 {Re (Kr”)d~~)(f?)+Im (Kr”)a”~~‘(B)+K3de’(e)>+croSi,6j,, 
” J% 
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(21) 

where CJ,, indicates the stress component in material 2 parallel to the interface go = CT, , . As 
pointed out by Rice and Shih (1965), a jump in the parallel stresses across the interface is 
required in general. We are only interested in the stress component in material 2 parallel 
to the interface CJ, , = oo. 

The function vector cp(“‘(z) corresponding to the singularity stress fields is taken in the 
form : 

O”“(z) = L;%-‘HI+‘)(z), ZER-, (22) 

h(O)(z) = en’ Kz”W+e-“” fi-‘“W K3W, 

2&z cash rr& 
+- 

2& 

= h\O’(z)W+hp(z)w+hyyz)W~. 

(23) 

It follows (including the contribution of ao) : 

3 

pi” = 2Re C (L,Uj)2T$hj”)(zj) 
j= I 

(24) 

where 

T* = T*[W,W,W,], 

h\‘)(z) = e”“ICz”/Z& cash zs, 

h\‘)(z) = e-““i&-“/2& cash ICE, 

h\‘)(z) = K,/2,/%. 

We discuss only the inplane problem. 
Following the work of He er al. (1991) and Wang et al. (1992). The stress intensity 

factors at the kink tip can be represented as : 

K:‘“k+iK:Fk = cKa’“+dKa-‘“+ 6go&, (25) 

where c, d, 6 are the complex coefficients. They are the function of o and elastic constants 
of materials 1 and 2. 

Equation (25) can be rewritten as : 

Kkink = 
I CII Re (Kai”)+c12 Im (Ka’“)+ E ,a,,/& 

Kkink = c II 21 Re (Ka’“) +c2? Im (Ka’“) + 6 ,oo& 

here 

c,, = Re (c+d), cl2 = -Im (c+d), 

c2, = Im (c-d), c22 = Re (c-d). 

The coefficients cij have been given by Wang et al. (1992). 
The energy release rate of interface crack is : 

Gi = ~=(H+fi)WK~/LL cosh2nc. (27) 

(26) 
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Introduce the equivalent elastic modulus E, for the interface : 

;; = W’(H+IS)W/4 cosh2ns. 

Equation (27) can be rewritten as : 

G, = (K:+ K:)/E,. 

The energy release rate Gktnk for the branch crack takes the form : 

where 

Gkink = k; (B-k B),k,/4, 

B, = R,BR; 

cot-3 w 

[ 

-sin w 

R* = sinw a cos w 1 

(29) 

(30) 

(31) 

(32) 

Substitute eqns (30), (31) into eqn (29), we arrive at? 

G kink = f ((B,, cos2 o+ B22 sin’ ~)(~~~k)z+2(~~, -B22)cos w* sin w K:‘“‘#FT’ 

+ (B, , sin’ w+ B22 cos2 w)(K:~“~)~) 

= i(B,,(sin c~K:‘“~ + cos o KFpk) 2 + B,, (cos w KFink - sin o Ktpk) 2 > . (33) 

Using the eqn (26), it results : 

where Bgi are the elements of matrix B2 : 

1 
el I = cos o*c,, -sin w*cI?,, 

e12 = cos o*cIz-sin 0*cz2, 

e2i = sin w*c2, +cos~*c~,, 

ez2 = sin ~~c~~+cos e.~*c~~, 

i 

Ei,=coso* I+-sine. fj2, 

151;=sinw* t;,+cosw* E2, 

KT = Re (Ka”), Kf = Im (Ka”). (37) 

The stress intensity factor K has the form K = IKJ e’* L-“. Therefore we have : 

KT = JK( cos t/t*, Kf = IKI sin fcI*, 

$I, = i//+sLz-. 
L 

(35) 

(36) 

(38) 

tAssumeReB,,= 0 for the sake of simplicity. 
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Substitute eqn (38) into eqn (34), we obtain : 

G kink 

_ =fm+~fw+q2f(2) 

Gi 
, 

635 

(39) 

where 

E* f(O) = 2 (B,,(e,, cos $*+e 12sin11/,)2+&,(e2, cos$,+e22sin$,)2} (40) 

f”‘=~,(~22(e,,cos~,+e,2sinICI,)B,+B,,(e2,cos~,+e22sin1/1,)B8} (41) 

P2) = +lB,, E;+B,, St}, (42) 

v = oo&/lKI = oo&lJE,Gi. (43) 

The dimensionless parameter q is introduced by He et al. (1991) in the analysis of the 
kinking of a crack out of an interface for isotropic materials which characterizes the 
comprehensive effects of the stress cro and the length of branch crack. 

The functionsf”’ depend on the load phase @*, kink angle and the coefficients cij, B i, 
but are independent of the magnitude of K and the parameter q. 

4. NUMERICAL RESULTS 

The singular integral equations in eqn (18) can be represented in the dimensionless 
form. The numerical method proposed by Erdogan and his colleagues (1973) is used for 
solving eqn ( 18). 

The singularity at the root of the branch is considered to be less than l/2. This 
assumption seems to be consistent with the results of Bogy (1971) for the similar geometries 
of anisotropic media. 

4.1. Aligned orthotropic bimaterials 
Consider two dissimilar orthotropic materials bonded with the principal axes aligned. 

The interface is on the X axis and the crack is on the negative X axis. The components of 
Hare: 

H, 1 = Pn~“4JsMsZzl I + Pn1”4Js,s,,l 2, 

H22 = [hl- “4dG], + [2nll- “4,/&i32, 

HIZ = i{[~~+s1211 -_[,/'~+~1212}, 

u = (2:-1)/(~+1), S = iH12/,/%%, 

Here [ ] 1 designate quantities for material 1, and [ I2 for material 2, Sij are the elastic 
compliance tensors. The dimensionless parameters A, n are given by : 
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The matrix B is : 

Eigenvector W takes the form : 

W=k[-i&,l]T. 

The traction on the interface can be described as : 

When E = 0, we have : 

K2 = liix~~~, 

(46) 

(47) 

(48) 

(49) 

(50) 

It is worth noting the complex stress intensity factor K defined here in general is 
different from the conventional definition. For the aligned orthotropic bimaterials, when 
and only when the parameter E equals zero and parameter H, I/H22 is equal to unity, the 
stress intensity factors K, and K2, defined here is coincident with the conventional stress 
intensity factors. 

For orthotropic materials, the two parameters ;1 and p measure the anisotropy. If both 
parameters I and p approach unity, the material becomes isotropic. 

In order to check our program, two sets of parameters are chosen : A, = A2 = 1, 
p, = 1.001, p2 = 1.003, a = fi = 0, II/, = 45”, q = 0 and q = 0.25. 

It means that the materials have very weak anisotropy and eventually they can be 
considered as isotropic materials. 

2 r 

-_ 
0 40 SO 120 

Kinking angle. co 

Fig. 3. Curve of 5, and IS2 as a function of w. 
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0.5 
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0 40 $0 120 

Kinking angle. 03 

Fig. 4. Coefficientsf”’ as a function of the kinking angle o. 

Our calculations result for Gkink/Gi, E ,, b z as the functions of kink angle o agree 
within 1% with the results given by He et al. (1991). 

In the following computation, the elastic constants for the two materials are taken to 
be il, = 1.0, p, = -0.19, A2 = 0.12, p2 = 6.4 which are corresponding to those of a typical 
Cu single crystal and the boron/epoxy composite. 

The values of the coefficients Cij are given by Wang et al. (1992) for six different 
combinations of a and 8. 

The values for the El and IS 2 as the functions of the kink angle o are plotted in Fig. 
3 for the case CI = j? = 0. The coefficientsf”) vs o are shown in Fig. 4 for the case a = j? = 0, 
* = 45”. 

For the case a = /I = 0, tj = 45”, the influence of c,, on the ratio Gkink/Gi is shown in 
Fig. 5. Here G, = Gkink. 

The ratio Gkink/Gi is increased when q increases. When q = 0.5, the ratio Gkink/Gi is 
increased by about 80%. 

Figure 5 shows that there is a favorite rrc, at which Gkink reaches maximum G&. 
The ratio Gkink mm/Gi as the function cp is plotted in Fig. 6 and Fig. 7 for the case 01 = fl = 0. 
Figure 8 and Fig. 9 indicate the effects of parameter a on the ratio G$t:/Gi. It can be 

clearly seen that the ratio Gkii/Gi will increase when a increases. 

4.2. Bicrystals with tilt grain boundary 
Figure 10 shows a tilt grain boundary of an orthotropic crystal, i.e. the two grains are 

misoriented but otherwise identical. The principal material axis x, is tilted from x by angles 

*r 
S- 

oy 
0 40 80 120 

Kinking angle, 0) 

Fig. 5. Energy release rate ratio as a function of the kinking angle o. 
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10 r 

8 

Phase angle of loading, y 

Fig. 6. Ratio of the maximum energy release rate of kinked crack to interface energy release rate as 
a function of the loading phase. 
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Fig. 7. Energy release rate vs the loading phase. 
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Fig. 8. Ratio of the maximum energy release rate of kinked crack to interface energy reiease rate as 
a function of the loading phase. 
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Fig. 9. Ratio of the maximum energy release rate of kinked crack to interface energy release rate as 
a function of the loading phase. 

Fig. 10. A schematic of a smah-scale kink problem. The principal direction X, is tilted from x-axis 
by 6, and &, respectively. 
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Fig. Il. Energy release rate ratio as a function of the kinking angle o. 
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Fig. 12. Ratio of the maximum energy release rate of kinked crack to interface energy release rate 
as a function of the loading phase. 

0, and e2, respectively. The (x, y) plane is a plane of mirror symmetry, and the tilt axis and 
the crack front are normal to (x, y) plane. The matrix H for such a grain boundary crack 
is real (see Wang et al., 1992). 

Consider zinc single crystal (hexagonal system) at room temperature. The material 
properties for zinc in crystal axes are : 

s ,, = 8.0, sZ2 = 28.2, se6 = 25.0, s12 = -6.1, s13 = -0.5 

with the unit 10e6 m2 MN- ‘. 
The corresponding parameters for plane strain are : 

I = s; ,I& = 0.338 

p = (2s; 2 +&6)/2,/z = 0.439. 

The calculation was carried out for the case 8, = 30”, e2 = 75”. 
The calculated values of parameters CL and fi are TV = 0.0583, /I = 0.0. 
The values of the coefficients Cij have been given by Wang et al. (1992). 
Figures 11 and 12 show the influences of the stress cro on the ratio G$i/G,. 

5. CONCLUSION AND DISCUSSION 

A thorough analysis of kinking of a crack out of an interface between two dissimilar 
anisotropic elastic solids is presented in this paper. The coupled singular integral equations 
for distributed dislocation along the branch crack is obtained. 

Explicit formulas of the stress intensity factors and the energy release rate for the 
branch crack are developed for aligned orthotropic bimaterials and misoriented orthotropic 
bicrystals. 

The role of the stress parallel to the interface, co, is emphasized. Inplane stress com- 
ponents can have a significant influence on the behavior of interface cracks. In particular, 
the tensile stress co will enhance the energy release rate Gkink for the branch crack, and 
causes the interface crack to depart from the interface. On the other hand, compressive 
stress co will reduce the Gkink and deactivate flaws around the interface. 

The interface crack can advance along the interface or kinking out of the interface into 
the substrate. Broadly speaking, the tough substrate will result in the crack to extend along 
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the interface. Kinking is favored if: 

641 

Here the r, and Ti are the fracture toughness of the substrate and interface respectively. 
For anisotropic substrate material, the toughness r, depends also on the kink angle 

CO. Therefore the condition (5 1) can be rewritten as : 

r,(o) < ri(lC/)Gtink(w $)/G. (52) 

This paper provides the computation method for the ratio Gkink/Gi. The fracture 
resistance ratio T,(o)/T,(JI) should be quantified by the interfacial fracture testing and the 
fracture testing for the anisotropic substrate material. 
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