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Abstract-The elastic plane problem of a rigid co-circular arc inclusion under arbitrary loads is dealt with. 
Applying Schwarx’s reflection principle integrated with the analysis of the singularity of complex stress 
functions, the general solution of the problem is found and several closed-form solutions to some problems 
of practical importance are given. Finally, the stress distribution at the arc inclusion end is examined and 
a comparison is made with that of the rigid line inclusion end to show the effect of curvature. 

1. INTRODUCTION 

THE PRESENCE of inclusions plays an important role in the fracture behavior of engineering 
materials, especially composites. In analyzing such problems, certain idealizations concerning the 
geometry and the mechanical properties of the constituent materials are usually made in order to 
be tractable mathematically. For an elastic plane problem, if the value of the elastic modulus of 
a flat inclusion is much greater than that of the matrix, it appears reasonable to consider it as a 
rigid line. Furthermore, from the viewpoint of inhomogeneities in solids, a rigid line and a slit crack 
are the two extreme cases of a flat inhomogeneity, i.e. for a rigid line E--t co and for a crack E +O, 
where E is the Young’s modulus. It has been shown that rigid line inclusions also have singular 
fields at the tip (with the same square root singularity as the crack). Since Eshelby’s paper [l], some 
investigations on the rigid straight line inhomogeneity problem have been made. In ref. [2], the 
solution for an elastic plane containing a rigid line under an arbitrary uniform stress state at infinity 
can be found. Recently, Hao and Wu [3] and Jiang [4] studied the elastic plane problem of collinear 
rigid lines, and Markenscoff and Dundurs [5] found weight functions for rigid line inclusions. 
However, to our knowledge, the rigid curve inclusion problem has not been solved as yet. 

In the following an attempt is made to find the solution for an elastic plane with rigid 
co-circular arc inclusions under most general loading conditions, which include both an arbitrary 
uniform stress state at infinity and a concentrated load at an arbitrary point. Applying Schwarz’s 
reflection principle integrated with the analysis of the singularity of complex stress functions [6], 
the general solution of the problem is found and several closed-form solutions to some problems, 
which may have some practical importance, are given. 

In particular, the solution for a concentrated load at an arbitrary point is obtained. In addition 
to providing solutions to such practical problems as rivet loading or wedge loading at an arbitrary 
angle, this solution can be used as Green’s function to obtain the stresses in the elastic plane with 
any given distribution of loads. 

Finally, the stress distribution at the arc inclusion end is examined and a comparison is made 
with that of the rigid line inclusion end to show the effect of curvature. 

2. DESCRIPTION OF THE PROBLEM 

The problem to be considered is illustrated in Fig. 1. In an infinite elastic plane, a series of 
rigid arcs (i.e. rigid circular arc inclusions) are placed along a part, L, of a circle with radius R, 
where L is a union of arcs Lj with the end points uj and bj (j = 1, . . . , n); L’ is the remainder of 
the circle (Fig. 1). A concentrated force P + iQ and a moment m are applied at an arbitrary point 
z,,. c, and Q~ are the principal stresses at infinity and a is the angle between 0, and the real axis. 
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Fig. 1. Rigid co-circular arc inclusion in an elastic plane. Fig. 2. Displacement and rotation of the rigid arc inclusion. 

Let u and u be displacement components in Cartesian coordinates, then the boundary conditions 
for the problem may be expressed as follows: 

i 

~,+k,(z-2,) on& 
(24 + io)’ = (24 + iv)- = *. . . . (1) 

yn + k,(z -z,) on L,, 

where the superscripts + and - refer to the values of the functions on the circle as approached 
from its inside (S+) and outside (S-), respectively. The complex constants yj denote the small 
translations of rigid arcs Lj at certain points zj, and real constants cj the small rotations of Lj 
(Fig. 2). 

Additionally, the equilibrium conditions of rigid arcs must be considered in order to determine 
solely the solution to the problem. Assuming that all rigid arcs are traction-free, then every resultant 
vector of the internal forces, with which every rigid arc acts on the matrix, vanishes and so does 
every resultant moment of these internal forces. Let G,, CQ and fr8 be stress components in polar 
coordinates (r, 0); from Fig. 3, it is seen that 

s 
bj N g,cost? -t,sin8)+i(o,sin8 +r,cos@]+ ds- 
9 f 

’ [(o, cos 8 - td sin e) 
9 

+ i(0, sin 8 + td cos e)l- dr = 0 j = 1, . . . , n (2) 

10;Rr,$di -Ia; Rr;ds=O j=l,...,n. (3) 

d0 

Fig. 3. Internal forces between the rigid arc inclusion and the matrix. 
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Let t = Re” be the coordinate on the circle, then ds = R/it dt, and (2) and (3) can be written 

s b/ 
(a, + krs)+ dt - 

9 s b, 
(a,+&-dt=O j=l,...,n (4) 

9 

& s ’ (a., + kle)+ q - R, s ’ (a, + izd)- y = 0 j = 1,. . . ) n. 
3 4 

(5) 

3. GENERAL SOLUTION 

To formulate the problem, we use the complex stress functions Q(z) and Y(z), in terms of 
which the stress components (B,, a8, TV) in polar coordinates and the displacement components 
(u, u) in Cartesian coordinates are given as [2] 

ar + be = 2[@(z) + a(z)] (6) 

-- 
a,+ir,=@(z)+@(z)-f@‘(z)-zP(z) (7) 

-- 
2/+’ + iv’) = iZ[K@(Z) - Q(z) + zqz) + $1, (8) 

where 

au au 
ti=g v’=-&. 

~1 is the shear modulus and K = 3 - 4v for plane strain, K = (3 - v)/(l + v) for generalized plane 
stress, v being Poisson’s ratio. G(z) and Y(z) are holomorphic in the entire plane cut along L, 
except at concentrated load points which are poles of the functions. For the problem under 
consideration we have [2] 

@p(z) = &+r+@o(z) 
0 

Y(z) = 
N 

-+ 
z&f + MO 

+ I-’ + Vu,(z), 
z - zo z - zo 

(11) 

where @,(z) and Ye(z) are holomorphic in the entire plane cut along L and they vanish at infinity, 
and 

MC- 
P + iQ 

2X(1 + K)’ 
N = W - iQ> 

27I(1 + K) ’ 
(12) 

r = F= :(a, + a*), r’ = -$a, - a*) e-2ia, (13) 

where the rotation at infinity is assumed to vanish. 
By applying Schwa&s reflection principle, a new analytical function Q(z) can be defined [6]: 

where 6(R2/z) = &(R*/Z). Thus, (7) and (8) can be rewritten as 

(14) 

(15) 

(16) 
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From (lo), (11) and (14), it is seen that 

m - - 

Q(z)= -f+-- z-z; 
zo* [(z;o-zzy; MO] _ Eg + Q)(z), (17) 

where 

z; = R2/4. (18) 

C&(z) is also a holomorphic function in the entire plane cut along L. 
Taking the derivative of (1) with respect to 8 and noting that z = t on L, we obtain 

where 

(u’+iv’)+=(u’+iv’)-=itH(e ,,..., en) on L, (19) 

k, on L, 
H(q , . . . ) En) = * . . . * (20) 

k, on L,. 

Substituting (16) into (19), we obtain 

r&+(t) - Q-(t) = 2pH on L (21) 

r&-(t) -Q+(t) = 2pLH on L. (22) 

The addition and subtraction of (21) and (22) yield 

[rcQ,(t) -Q(t)]+ + [x@(t) - a(t)]- = 4uH on L (23) 

[~dqt) + fl(t)]+ - [KW) + Q(t)]- = 0 on L. (24) 

Substituting (10) and (17) into (24), we obtain 

[K@g(f) + i&(t)]’ - [do(f) + D(t)]- = 0 on L. (25) 

According to Liouville’s theorem, K@~(z) + Q,( z is a constant in the entire plane: ) 

K@,,(Z) + n,(z) = D. (26) 

Substituting (10) and (17) into (23) and using (26), we obtain 

@l(t) + @; (t) =f(t) on L, (27) 

(28) 

The general solution of eq. (27) is 

x,(z) @o(z) = 271i s L g). & + x,(z)p(z), 

where 

x0(z) = fi (z - uj)-“2(z - bj))“2, 
j- I 

which is a single-valued branch in the plane cut along L and for which 

(29) 

(30) 

(31) ,pm z”xo(z) = 1. 
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P(z) is an arbitrary polynomial consistent with the behavior of aO(z) at infinity: 

P(z) = C,z”-’ + C,z”-2+ - ’ * + C”. (32) 

In the general solution given by (29), complex constants D, C,, . . . , C, and real constants 
El, * * -, en will be determined from equilibrium conditions (4) and (5), as well as from the behavior 
of ‘P(z) at z = 0. From (14) it is seen that 

'y(4 
R2 R2 R* R2 

=-p(z)--p T -y(z)' 
() 

(33) 

The condition that Y(z) is holomorphic at z = 0 leads to 

b = G(O). (34) 

Substituting (15) into (4), we obtain 

5 
’ [a+(t) + C(t)]dt - 

i 
” [W(t) + n+(t)] dt = 0 j = 1, . . . , n, (35) 

o/ 4 

which can be reduced to integrals along closed contours: 

$ 
[e(z)-R(z)]dz =0 j = 1,. . . ,n, (36) 

f% 

where Ai are clockwise closed contours encircling rigid arcs Lj with poles (z = z,, z$, 0) outside. 
Similarly, the substitution of (15) into (5) yields 

& 
I 

&j(z)-a(z)]dz=O j=l,...,n. 
Aj ' 

(37) 

The set of (2n + 1) linear algebraic equations given by (34), (36) and (37) determines the 
remaining constants D, Cl, . . . , C,, and Ed, . . . , E,,. 

On the other hand, for large values of ]z], we have 

(38) 

From (lo), (29) and (38), it is seen that 

c, = 0. (39) 

It can be shown that (39) may replace one of eqs (36) if rigid arcs are traction-free. 
Finally, we point out that if tractions, which have resultant vectors Pi* + iQ7 and resultant 

moments about the origin, MT, are applied on rigid arcs Lj, the following equations 

[G(z)--n(z)]dz=-Qj*+iP,* j=l,...,n (40) 

R, 
f 

‘[o(z)-n(z)]dz=-3 j=l,...,n 
Aj z 

(41) 

will take the place of (36) and (37). 

4. EXAMPLES 

In the following, we consider the application of the general solution given by (29) to the case 
of a rigid arc, which may have some practical importance (Fig. 4). For this case, (28) and (30) 
become 

D 2pq r+;+y (42) 

x0(z) = (z - CI)-“2(z - 6)-l’* = (z’ - 2Rz cos 8 + R2)-I'*. (43) 
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b = Reie 

Fig. 4. Integral round a contour 

To integrate (29) we consider the following integral: 

where LI is a clockwise closed contour encircling the rigid arc with poles (z = 0, z,, z$) outside, as 
shown in Fig. 4. According to Cauchy’s formula for the infinite region, we have 

I(z) =f(z)/x,(z) - G(z), (45) 

where G(z) is the sum of the principal parts off(z)/x,(z) at the poles and at infinity. It should 
be pointed out that the constant term of the expansion of a function in the vicinity of z = co is 
included in the principal part. Noting that 

x:(t) = -x,(t) on L (46) 

xl(f) = x;(t) on L’, (47) 

we see that the integral in (29) can be achieved by shrinking the contour ,4 to the rigid arc: 

J_ 

2ni 
-._ 1 =&z). (48) 

Finally, from (lo), (17) (26), (30), (39) (45) and (48), we obtain 

G(z) = &+-if(z)-ho(dW) (49) 

m 
n(z)= -;+-- 

z;[(z,, - z,*)li;i+ ii;i,] R2F-’ 

z -zo* qz - zo*)2 
--++D +z)+;x,(z)G(z). (50) 

Example 1. An arbitrary uniform stress state at injinity 

For this case, (42) becomes 

f(f) = _T -r+P+$ 

Noting that l/x,,(z) has the expansions 

(51) 

sin’ 8 
l/x0(z)= -R +z cos6 -=z 2+ ,.. (52) 
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in the vicinity of z = 0, and 

R2 sin28 
I/x,(z)=z-Rcose+~+ .-* (53) 

in the vicinity of z = co, G(z), the sum of the principal parts off(z)/x,,(z) at z = 0, co is easy to 
separate: 

G(z) = 
R3p R2i+ cos 0 
2- + 

KZ iCZ 
(54) 

Hence the general solution given by (49) and (50) becomes 

e(z)=; -- ( R2r D 2yi 
Kz2 +I-+;+- 

K 

R3r R2r’ COS 8 
-2+ 

KZ lCZ 

(Z -R COS 6) (55) 

n(z)=; -- ( R2r 
-- z2 +Kr+D-2@ 

R’p + R2i+ cos 8 

Z2 Z 

- y (ICY - D - 2pci) (z - R cos 0). (56) 

Substituting (55) and (56) into (37) and using the residue theorem, we obtain 

8 
(r ’ - F)cos2 - 

2 D-D 
c=- 

4pi -w* 

From (34) it is seen that 

Z,,,D=O 

(57) 

(58) 

(59) 

Equation (57) becomes 

(r ’ - P)cos2 ; 
c=- 

4pi * (60) 

For the case of uniaxial tension at infinity (a, = Q, c2 = 0), 

r = % fi’ = _$e-2ia, 

so that 

8 
cr sin 2a cos2 - 

2 CC- 
4P . 

(62) 

Example 2. The resultant moment of tractions which are applied on the rigid arc is M* 
(the resultant vector vanishes) 

Noting that (39) still holds for this case, (42), (49) and (50) give 

f(t) = E + T (63) 
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Q(z) = ; - ,uEi + T (D + 2 pci)(z - R cos 13). 

The substitution of (64) and (65) into (34) and (41) yields 

DC- 
M*i 

2aR’(l+ rc) 

E= 

4np(l 

jW* 8(x +sin24). 

+ x)R2 sin2? 

Example 3. A concentrated force P + iQ and a moment m at an arbitrary point z,, 

In the same manner as in the above two examples, we obtain 

f(t)= -&-;+x(t fzb)- z$ [(z. - zz)A?i + Ho] D 2@ 

0 le,(t -zo*y 
+;+K 

O(z)=2 m A-- + m .z$ [(z. - z$)i@ + MO] D 2pci 

0 KZ K(Z -zo*)_ Kzo(z -zo*y 
+;+y 

x0(z) 1 M 1 m 

-- --.-- 2 xo(z0) z - zo M+Z+-. 1 xo(z,*) x(z - zl?) 

x0(z) + 2xo(zd) zo*[(zo-zo*)hz+ it%)] 1 1 -[ 2zd-a-b -. 
lC& (z -zu+)2+ z - z$ 2(z: - a)(z,f - b) 1 

-ixo(z)(t +F)(z --ia -ib) 

zo* [(ZfJ - zd)M + a)] 
2O(Z -zo*)' 

+ D - 2pci 

1 ICM Rfl 1 m --.-- 
x0(z) z - zo 

KM+T+-‘- 
X,(Zd) z -zo* 1 

x&z) zo*[(zo-zg*)w+A20] 1 1 2z,*-a-b 

--. -. 2xo(zd) zo (z -z$)2+ z - z$ 2(z$ - a)(z$ - b) 1 
+ixo(z)(D +2pci) z -ia -ib . 

> 

Similarly, D and 6 can be determined from (34) and (37). 

(64) 

(65) 

(66) 

(67) 

(68) 

(69) 

(70) 

5. STRESS DISTRIBUTION AT THE RIGID CIRCULAR ARC END 

It is of interest to examine the stress distribution in the immediate vicinity of the rigid circular 
arc end to show the effect of curvature. It is shown that the singular behavior of the stresses remains 
proportional to the inverse square root of p (i.e. P-I/~), as in the case of the immediate vicinity 
of the arc crack tip, where p is the distance from the rigid arc end. As an example, we discuss the 
case of a rigid circular arc subjected to a uniaxial tension at infinity (a, = G, c2 = 0). Introducing 
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,a 
\ , \ , 

-I__** 

Fig. 5. Polar coordinate near a rigid circular arc end. 
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~ 

X 
s 

Fig. 6. Polar coordinate near a rigid line end, 

the Polar coordinates (p, fl) at the rigid arc end b (Fig. 5), from eqs (6), (15), (33), (55) and (56), 
and noting (59)-(62), we obtain 

+ [~~~~~~e] [ * ( o “) (3+x) cos 45 -1 - COS(~ -p)-~0~(45v-e -@8) ]] 

=&l(y{:[ ( 2) 
cos 450 -t- e + !f - COS(B - ~)COS(~SO + g) 1 ( + 2 cos 450 - 28 + Lf 21 

+ 

3 
cos2 e - - sin2 0 

8# 

e 
K - sin2- 

2 I 

- c0ge - ~)COS 450 - e + z fl >I1 for a = 90”, p CR. (71) 

Letting R *co, e -0, but keeping R sin 8 = (I, we arrive at the case as shown in Fig. 6, and 
as b,+q,, CQ+O;,, T~+"c,,,, by (71) we have 

c~=&tI(:- >, ( * “) ( ‘> K an 45 +2 + l+; cos/3sin(45”+& I 
@y =&@[( 

4+7c+- sm 45 +- - l+- cos~sin(45”+$) 
5) * ( 3 3 ( :> ] 

7 ,~~=-~~(~)[(2+~+~)sin~5’-~)+(~+~~os~sin(45~-~~)] 

(72) for a = 90”, pea. 
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Letting 8 = 90” + fi, and noticing the difference of the convenients, from (72), we obtain 
results in agreement with ref. [5]. 
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