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Abstract 

In this paper the symmetries of coupled map lattices (CMLs) and their attractors are investigated by group and dynamical 
system theory, as well as numerical simulation, by means of which the kink-antikink patterns of CMLs in space-amplitude plots 
are discussed. 

1. Introduction 

Spatiotemporal chaos in spatially extended sys- 
tems, namely space-t ime disordered states, has be- 
come an extremely attractive topic due to its poten- 
tial applications to turbulence, pattern formation in 
nature. As a simple model of  spatiotemporal chaos in 
extended systems, the coupled map lattices [ 1 ] 
(CMLs)  o f  the following form, 

u~+l = ( 1 - - e ) f ( u ~ ) + ½ E [ f ( u ~ + ' ) + f ( u ~ - l )  ] , 

u O = u . ,  • U.=U.1 N+l, k = l , 2  ..... N ,  (1) 

have been intensively studied, where u~, ~ [ - 1, 1 ] are 
the state variables associated with the/ th  lattice point 
at the nth discrete time step, and N is the system size 
or dimension. The parameter ee [0, ½ ] in ( 1 ) is called 
the coupling coefficient reflecting diffusive effects. 
The local mapping function f ( x )  may be chosen as 
the logistic m a p : f  (x) = 1 - a x  2, where the parameter 
a is the nonlinear factor, 0 ~< a ~< 2, 0 ~< x~< 1. Numeri-  
cal simulations [2 ] show that CMLs display a vari- 
ety of  spatiotemporal complex phenomena, includ- 

ing spatiotemporal periodic, quasiperiodic and 
chaotic motions in different parameter ranges of  a and 
e. Although spatiotemporal patterns in CMLs are 
rather complicated, their orbits in phase spaces often 
retain some kind of  geometric symmetries owing to 
the symmetries of  the CMLs themselves. The bifur- 
cations in CMLs are always accompanied with an al- 
teration o f  the symmetries of  their orbits in the phase 
spaces. The increase or decrease of  the symmetries in 
bifurcated orbits is referred to as a symmetry- 
increasing bifurcation or symmetry-breaking bifur- 
cation [ 3 ]. In this paper, the so-called D~symmet ry  
of  CMLs and the associated symmetry of  chaotic at- 
tractors in phase spaces or the spatial return map are 
carefully investigated. Based on the symmetry argu- 
ment, the kink-antikink patterns in physical spaces 
are further examined. 

2. Dn-symmetry coupled map lattices 

To begin with, we rewrite (1) in the following 
equivalent form, 
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\ N P,+1 I 
/l--E $6 0 . . . fe \ 

rEF( U,,) , (2) 

where E is the coefficient matrix and F is the nonlin- 
ear vector operator. 

Let DN={Z, T, T2, . . . . TN-‘, K} be the dihedral 
group, where 
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It can be readily shown that the following commuta- 
tion operations hold even for nonlinear operators F 

since for each element Q in DN it merely implies the 

change of order, 

aE=Ea. (3) 

Then 

au n+,=uEF(U,,)=EaF(U,,)=EF(aU,,). 

Therefore, CML ( 1) is D,+ymmetric or equivariant. 

3. Symmetry of chaotic attractors in CMLs 

As indicated in the previous section, the CML is 
D,-symmetric. In this section, the geometric sym- 
metry of its attractors in phase spaces and its influ- 
ences on patterns in physical spaces are further 
investigated. 

Let A be an invariant set in the CML, that is 
A=EF(A), then the set aA is also invariant. As a 
matteroffact, aA=oEF(A) =EaF(A) =EF(aA). We 
may as well call aA a conjugate set of A. 

IfA is a regular attractor, that is, A represents a fixed 
point, periodic or quasiperiodic orbits, aA is also a 
regular attractor. Now assuming the intersection ofA 

and uA is nonempty, as shown by numerical simula- 
tion, we conclude that A and aA are the same attrac- 
tor according to the uniqueness of orbits in CMLs. 
Therefore A is a-symmetric. Especially, A is D,-sym- 
metric if aA = A for any ITED,. 

If A is a chaotic attractor, that is, the closure of all 
the unstable periodic orbits [ 41, and the set B con- 
sists of all the unstable periodic orbits in the CML, 
then BEA. Notice that aB is also the set of unstable 
periodic orbits in the CML, so we obtain CTBEA. As a 
result, the closure aA of OB belongs to A, which means 
that A and OA intersect. According to the uniqueness 
of chaotic attractors in deterministic dynamical sys- 
tems, aA and A must be the same invariant set. Now 
it is shown that the chaotic attractors of the CML are 

D,-symmetric or they keep all the symmetries of the 
CML. 

Define the projection operator Pu satisfying PijU= 

( ui, Uj)‘. The flip K restricted on the subspace 
PO A = { ( ui, Uj)‘} can be represented as 

It is readily verified that 

K(PijA)=P,A ) 

in which 

(4) 

K(PuA)={(u,, u;)=: (Ui, u,)TEPijA}. 

In fact, for every ( ui, Uj)=E P, A, there always exists a 
WA such that PM= (u,, Uj)=s Then KuEKA =A. Mak- 
ing the projection P, on the above equation, we have 

P,(KU)= (Uj, ui)TEPijA ) 
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Fig. 1. Phase diagrams with N= 2. (a) a = 1.5, (b) a = 1.8, (c) a = 1.9, (d) a = 2.0. 

and mult ip ly  by K 

K(uj ,  ui )T= (Ui, u:) T~K(PoA ) , 

which means P o A ~ K ( P o A  ). For  the same reason, we 
can verify K(PoA ) ~ (Pj:A). Therefore (4)  holds. 

(4)  shows that  the project ion of  the invar iant  set 
A on the subspace PoA is D2-symmetric  in which 
D2 = {L K}. Especially, we have P~a+lU = (ui, ui+l)X 
for the spatial  return map  such that  the at t ractors  o f  
the CML are symmetr ic  about  the diagonal  line of  
the first and third quadrants ,  which theoretically ver- 
ifies the numerical  results given by Kaneko [ 2 ]. 

As an example,  the CML with N =  2 is given by 

1 u , + ,  = (1 - e ) f ( u ~ )  +e f (u  2) , 

2 u,,+, = ( 1 - e ) f ( u ] ) + E f ( u ~ )  , 

which is D2-symmetric.  According to the above re- 
suits, its chaotic at t ractors  are symmetr ic  about  the 
diagonal  line of  the first and  third quadrants .  Nu- 

merical  calculations have been conducted for ~ = 0.1, 
and a - -  1.5, 1.8, 1.9, 2.0. The at tractors  in the CML 
evolve from the symmetr ic  per iodic  points  to ears, 
and finally to the black rhombus  about  the diagonal  
line of  the first and third quadrants  (see Figs. l a -  
1 d) .  The D2-symmetry suggests that  there must  exist 
states (u~, u~+ ~ )X if  there exist states (ui+ 1, u~) x in the 
CML, which is responsible for the various kinds of  
k ink-an t ik ink  structures in space-ampl i tude  plots for 
the CML. 

4. Conclusion 

We have discussed the symmetr ies  of  the CML and 
its at t ractors  by numerical  s imulat ion and theoretical  
analysis. It is found that  the CML is D, - symmet r ic  
itself, and these symmetr ies  are re ta ined by the at- 
t ractors of  the CML such that  the orbits  in spatial  re- 
turn maps are symmetr ic  about  the diagonal  line o f  
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the  first and th i rd  quadran ts .  The  k i n k - a n t i k i n k  pat- 

terns o f  C M L s  in s p a c e - a m p l i t u d e  plots  s tem f i o m  

just  this k ind o f  s y m m e t r y  about  the d iagonal  line. 

The  above  a rgumen t s  are appl icab le  for lhe C M L  ( 1 ) 

with the non l inear ly  coupled  t e rms  like J ( x ) -  

1 - a x  2, as well as for  the coupled  maps  with l inear ly  

coupled  t e rms  like Eq. ( 1.1 ) in Ref. [ 5 ], since thei r  

coupl ing  fo rms  are Dn-symmetr ic .  The  class i f icat ion 

o f  pa t te rns  o f  C M L s  with  s y m m e t r y  based on group 

theory  is a useful m e t h o d  to s tudy spa t io t empora l  
chaos. 
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