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Abstract

In this paper the symmetries of coupled map lattices (CMLs) and their attractors are investigated by group and dynamical
system theory, as well as numerical simulation, by means of which the kink—antikink patterns of CMLs in space-amplitude plots

are discussed.

1. Introduction

Spatiotemporal chaos in spatially extended sys-
tems, namely space-time disordered states, has be-
come an extremely attractive topic due to its poten-
tial applications to turbulence, pattern formation in
nature. As a simple model of spatiotemporal chaos in
extended systems, the coupled map lattices [1]
(CMLs) of the following form,

1= (1—)f(uz) +3€[fun™") +fur )],
LV-{—I’ k=1’2a"'sN’ (1)

ul=ul, ul=u

have been intensively studied, where u’,e [ -1, 1] are
the state variables associated with the ith lattice point
at the nth discrete time step, and / is the system size
or dimension. The parameter e [0, 1] in (1) is called
the coupling coefficient reflecting diffusive effects.
The local mapping function f(x) may be chosen as
the logistic map: f (x) = 1 —ax?, where the parameter
a is the nonlinear factor, 0<a<2, 0<x< 1. Numeri-
cal simulations [2] show that CMLs display a vari-
ety of spatiotemporal complex phenomena, includ-

ing spatiotemporal periodic, quasiperiodic and
chaotic motions in different parameter ranges of ¢ and
€. Although spatiotemporal patterns in CMLs are
rather complicated, their orbits in phase spaces often
retain some kind of geometric symmetries owing to
the symmetries of the CMLs themselves. The bifur-
cations in CMLs are always accompanied with an al-
teration of the symmetries of their orbits in the phase
spaces. The increase or decrease of the symmetries in
bifurcated orbits is referred to as a symmetry-
increasing bifurcation or symmetry-breaking bifur-
cation {3]. In this paper, the so-called Dy~symmetry
of CMLs and the associated symmetry of chaotic at-
tractors in phase spaces or the spatial return map are
carefully investigated. Based on the symmetry argu-
ment, the kink-antikink patterns in physical spaces
are further examined. ‘

2. D,-symmetry coupled map lattices

To begin with, we rewrite (1) in the following
equivalent form,
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where E is the coefficient matrix and F is the nonlin-
ear vector operator.

Let Dy={I, T, T? .., T""', K} be the dihedral
group, where
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It can be readily shown that the following commuta-
tion operations hold even for nonlinear operators F
since for each element ¢ in Dy it merely implies the
change of order,

oE=Fo. (3)
Then
0U,+, =0EF(U,)=EoF(U,)=EF(aU,) .

Therefore, CML (1) is Dy-symmetric or equivariant.

3. Symmetry of chaotic attractors in CMLs

As indicated in the previous section, the CML is
D,-symmetric. In this section, the geometric sym-
metry of its attractors in phase spaces and its influ-
ences on patterns in physical spaces are further
investigated.

Let 4 be an invariant set in the CML, that is
A=EF(A), then the set g4 is also invariant. As a
matter of fact, sA=0FF(A) =EcF(A)=EF(0A4). We
may as well call 4 a conjugate set of 4.

If 4 1s a regular attractor, that is, 4 represents a fixed
point, periodic or quasiperiodic orbits, g4 is also a
regular attractor. Now assuming the intersection of 4
and o4 is nonempty, as shown by numerical simula-
tion, we conclude that 4 and g4 are the same attrac-
tor according to the uniqueness of orbits in CMLs.
Therefore A4 is o-symmetric. Especially, 4 is D,-sym-
metric if 4 =A for any geD,,.

If 4 is a chaotic attractor, that is, the closure of all
the unstable periodic orbits [4], and the set B con-
sists of all the unstable periodic orbits in the CML,
then BeA. Notice that oB is also the set of unstable
periodic orbits in the CML, so we obtain gBeA. As a
result, the closure g4 of B belongs to A, which means
that 4 and o4 intersect. According to the uniqueness
of chaotic attractors in deterministic dynamical sys-
tems, 04 and 4 must be the same invariant set. Now
it is shown that the chaotic attractors of the CML are
D,-symmetric or they keep all the symmetries of the
CML.

Define the projection operator P, satisfying P,;u=
(u;, u;)T. The flip K restricted on the subspace
P;A={(u; u;)T} can be represented as

()

It is readily verified that

K(P;A)=P;4, (4)
in which »

K(PjA)={(u;, u;)T: (u;, ;) Te P; A} .

In fact, for every (u,, u;)Te P; A, there always exists a
ueA such that Pu= (u,, u;)". Then Kue KA=A. Mak-
ing the projection P; on the above equation, we have

Pij(Ku)= (uj, ui)TGPijA s
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Fig. 1. Phase diagrams with N=2. (a) a=1.5, (b) a=1.8, (¢) a=1.9, (d) a=2.0.

and multiply by K
K(uy, u)T=(u;, ;) TeK(P;A) ,

which means P; Ae K(P;A). For the same reason, we
can verify K(P;A)e (P;A). Therefore (4) holds.

(4) shows that the projection of the invariant set
A on the subspace P;A4 is D,-symmetric in which
D,={I, K}. Especially, we have P, u= (1, t;1,)"
for the spatial return map such that the attractors of
the CML are symmetric about the diagonal line of
the first and third quadrants, which theoretically ver-
ifies the numerical results given by Kaneko [2].

As an example, the CML with N=2 is given by

Uper=(1—€)f(uy) +ef(uz),
Ui =—=e)f(ud) +efluy),

which is D,-symmetric. According to the above re-
sults, its chaotic attractors are symmetric about the
diagonal line of the first and third quadrants. Nu-

merical calculations have been conducted for e=0.1,
and a=1.5, 1.8, 1.9, 2.0. The attractors in the CML
evolve from the symmetric periodic points to ears,
and finally to the black rhombus about the diagonal
line of the first and third quadrants (see Figs. la-
1d). The D,-symmetry suggests that there must exist
states (u,, u;, )T if there exist states (1, ;)T in the
CML, which is responsible for the various kinds of
kink-antikink structures in space-amplitude plots for
the CML.

4. Conclusion

We have discussed the symmetries of the CML and
its attractors by numerical simulation and theoretical
analysis. It is found that the CML is D,-symmetric
itself, and these symmetries are retained by the at-
tractors of the CML such that the orbits in spatial re-
turn maps are symmetric about the diagonal line of
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the first and third quadrants. The kink-antikink pat-
terns of CMLs in space—-amplitude plots stem from
just this kind of symmetry about the diagonal linc.
The above arguments are applicable for the CML (1)
with the nonlinearly coupled terms like /(x)=
1 —ax?, as well as for the coupled maps with linearly
coupled terms like Eq. (1.1) in Ref. [5]. since their
coupling forms are D,~-symmetric. The classification
of patterns of CMLs with symmetry based on group
theory is a useful method to study spatiotemporal
chaos.
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