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Abstract 

The pattern selection of one-dimensional coupled map lattices is studied in this paper. It is shown by spatiotemporal variable 
separation that there exists a threshold wavelength in pattern selection which possesses wave-like structures in space and periodic 
chaotic motion in time. 

1. Introduction 

As an abstraction of real nonlinear phenomena, 
coupled map lattices (CMLs) are proposed to inves- 
tigate space-time complexity in the current paper, for 
their possible applications to turbulence, pattern for- 
mation in natural systems, etc. Here we would like to 
examine the following simplest model, the one- 
dimensional CML with periodic boundary 
conditions, 

Ukn+l ~ -  (1 --E ) f (u~)  + ½E [f(u~ +' ) + f ( u k - l )  ] , 

uO=un,N Un=Unl U+l, k = l , 2  ..... N ,  (1) 

where e is the coupling parameter, 0 ~< e ~< ½, n denotes 
the discrete time step, k the kth lattice point a n d f i s  
the nonlinear map, here taken as the logistic map 

f ( x )  = 1 - a x  2 , (2) 

in which a is the nonlinearity parameter. Kaneko has 
obtained the following evolution series of space-time 
patterns by numerical simulation when e is not small 
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and a increases [ 1 ]: pattern freezing (space-time or- 
der)--,pattern selection-~pattern competition inter- 
mittence-~fully developed turbulence (space-time 
chaos). 

Although the above space-time patterns are char- 
acterized by some quantifier including spectrum, en- 
tropy and Lyapunov exponents, their dynamical 
mechanism has not been clearly understood yet. We 
have discussed the mechanism of pattern freezing by 
the coarse-grain method [2]. In this paper, we are 
concerned with the mechanism of pattern selection 
in CMLs whose precise description can be given as 
follows: 

(1) The temporal motion in each domain is al- 
most period-2 k, that is, 2k-periodic chaos, in which 
k = l ,  2,.... 

(2) The spatial patterns have wave-like structures 
and there does exist a threshold wavelength or struc- 
tural wavelength L independent of the initial values 
such that the length of each domain is less than ½L. 

Here the method of space-time variable separa- 
tion is used in CMLs such that the space and time 
states are formulated independently. The generalized 
dispersion relation is obtained, which shows that 
temporal motions are dependent on spatial struc- 
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tures. With  these results in mind we can investigate 
the mechanism of  pat tern selection and space- t ime  
periodic  structures. 

2. Space-time variable separation in CMLs 

For wave-like structures of  pat tern selection in 
CML ( 1 ) with periodic boundary conditions,  we may 
introduce the space - t ime  state variable separat ion 
with a drift, 

u~ =,4 +B,, cos (k~o) , (3)  

where A is a constant ,  { o = 2 m r c / N  is the wave nun> 
ber de te rmined  by the per iodic  boundary'  condit ion.  

Subst i tut ing ( 3 ) into ( 1 ), we have 

,I+B~+~ c o s ( k c o ) = l - a A 2 - a B , , ( o e - f l t ~ l , , )  , (4)  

in which 

oe=2A [1 -2~: sin2(½o))] cos(k(o)  , 

fl = ½ [ 1 + ( 1 - 2e sin 2¢o) cos ( 2k(o ) ] . 

L e t A =  [(1 + 4 a )  ~/2-  1 ]/2a. We have 

B,,+, cos(k~o) = - a B , , ( o l +  f lB , , )  . ( 5 ) 

i f cos (ko) )  = 0 ,  ~ u,, =A,  the Mh latt ice is just  a node of  
the waveqike pattern.  I f  cos(keg) ¢ 0 ,  we introduce 
the scalar t ransformat ion  in (5)  as follows, 

R. = - ( a i r ) x , , .  

Therefore 

x.+, =).x,,(.G- 1 )= -.kx,,( 1 -x~) . (6) 
where 

2 =  [ (1 + 4 a ) J / - ' -  1 ] [1 - 2 e  sin=(½o)) ] . (7)  

(6)  is the so-called generalized logistic map with 
- 2 e [ - Z  0],  which represents the temporal  mo- 
t ions of  wave-like structures in pat tern selection. The 
bifurcat ion paramete r  /z in the logistic map 
x--,/av( 1 - x )  is usually taken to be in the range be- 
tween 0 and 4, and we have the well-known bifurca- 
t ion d iagram showing how the steady states depend 
on/x. If  the range of  the parameter /~  is extended to 
the interval [ - 2 ,  0] ,  a s imilar  b i furcat ion diagram 
is obta ined  by numerical  s imulat ion (see Fig. 1 ). As 
a mat ter  of  fact, let 2 = / , - 2 ,  #e  [2, 4] ,  then the bi- 
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Fig .  1 

furcation structures of ( 6 ) arc readily obtained from 
the results of  the logistic map. Especially, for the pe- 
riodic chaotic interval lit = 3 . 5 6 9 9 5 4 < i z < / l = - -  
3.678573 in the logistic map [3] ,  we can find 
the corresponding interval ) . ~ = 1 . 5 6 9 9 5 4 < ) . < 2 ,  
-- 1.678573 in (6). 

( 7 ) shows that the temporal  motions  in CMLs de- 
pend on the nonlineari ty  parameter  a, the coupling 
coefficient ~ and the spatial wave number  co. In fact, 
Eq. (7)  is a generalized dispersion equation which 
reflects the temporal  mot ion  dependence  of  the spa- 
tial wave numbers.  Consequently,  ( 7 ) can be used to 
study the relation of  spatial waves and temporal  
chaos. 

Based on the previous argument,  the space- t ime  
per iodic  structures of  CMLs are easily investigated 
by means of  (6)  and (7) .  When N = 4 ,  a = 0 . 9 6  and 
e=0 .2 ,  for example,  numerical  calculation shows 
u,a, =0.9981849 and u},~ =0.0438170,  k =  1, 2, 3, 4, 
which is the period-2 pat tern with wavelength L = 1 
or ~o = 2~. On the other hand, the corresponding pa- 
rameter  2 =  1.2 from (7)  just  falls in the range of  the 
period-2 mot ions  in Fig. 1, which explains the rela- 
t ion between space- t ime  mot ions  of  CMLs. 

3. The mechanism of pattern selection in C M L s  

The mechanism of  pattern selection in CMLs is 
s tudied by means of  (6)  and ( 7 ) in this section. For 
pat tern selection in a CML, x,, in Eq. (6)  remains in 
the per iodic  chaotic state. Therefore,  2 satisfies the 
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following inequalities according to the discussion in 
section 2:21 ~<2~<22. Then 

1 - 2 ) / [  ( 1 + 4 a )  w 2 - 1  ] ~>sin2(~o) 
2E 

1--22/[ (1 +4a )  l / z -  1 ] 
~> 

2e 

which leads to the bounds of the circular frequency 
by the above inequality, 

O)max ~ O) ~ O)mi n , ( 8 )  

where 

°)max= 2 a r c s i n ( 1 - 2 ) / [  (1 +4a)1 /2-1  ])1/2 
2E 

Ogmin = 2 aresin(1 _22 / [  ( 1  + 4 a ) 1 / 2 _  1 ]))/2 
2E 

In order that inequality (8) holds, we have to set 

1--21/[ (1 +4a )  1/2- 1 ] 
1>/ >/0, 

2E 

1 --22/[ ( 1 +4a )  w2- 1 ] 
1>~ >/0, 

2e 

that is 

( 1 - 2 e )  [1 + (1 +4a))/2],.<2) , 

a>~ ~ [(22 + 1 )2-  1 ] = 1.543689. (9) 

Inequalities (9) determine the parameter region of 
pattern selection in CMLs (see Fig. 2) which is pro- 
duced by numerical simulation in Ref. [ 1 ]. 

Then the range of wavelength is given by (8), 

2 g / ( . O m a  x ~< L ~< 2 g / ( - O m i n  , 

from which the threshold wavelength can be derived, 

L = 2 7 ~ / O ) m i  n . 

The curves forL=2g/Ogmin(a, e)=5 ,  10, 15, 20, 25, 
30 on the parameter plane (a, e) (see Fig. 3) illus- 
trate how the parameters a and e determine the larg- 
est structure wavelength. Satisfactorily enough, it is 
in good agreement with the results ofKaneko [ 1 ] that 
there exists some special L in the parameter region of 
pattern selection. 

The stability of the pattern in the form ( 3 ) can be 
examined according to the maximum eigenvalue p of 
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the coefficient matrix in the following linearized 
equation of ( 1 ), 

k - e f t  (Un)aUn 6u,+1 = (1 , k k 

1 t k +  )6Unk+ 1 t k - - I  k - - I  +~e[f  (u. ' + f  (u. )6u° 1, 

0 N 1 N + I  k = l ,  2, N,  
b l n ~ U n ,  U n ~ b l  n , . . . ,  

where u ~ = A + Bn cos (k~o). The pattern in the form 
(3) is stable if and only if the modulus of p is less 
than 1. Although it is very difficult to determine p 
analytically, we can estimate its upper limit. Based 
on the well-known Gerschgorin theorem [4], we 
obtain 
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IPl ~ max,l I ~ 1 - e)f ' (u ,a , )  I 

+ ½ e [ I f ' "  a+~ tu,, )I + l l " ( . g - t ) l  ]I 

_-2amax. [ ( l -e ) lu ,~ ; l+~e( lu ,~ ;+ i l+ Izd ,  '1)* 

= 2 a  m a x { ( 1 - e ) l . l + B , ,  cos(kco) l  

+½e[IA+Flocos((k+l )o)) i 

+ IA + B,, cos( ( k -  I )oJ)i ]'~, 

which leads to the conclusion that i f  the fol lowing 
inequal i ty ,  

2a max{(  1 - e ) I A + B ~  cos(k~o) 

+½~[ [A + B,, cos( ( k +  1 )(o)1 

+ I . I+B, ,  c o s ( ( k -  1 ) o ) ) l ] l  < 

holds, the pa t te rn  in the form ( 3 ) is stable. It is easily 
found  from the above inequal i ty  that the stabil i ty of  
the pa t te rn  in the form of  (3)  depends  on a, ~ and  
the selected f requency  (,~ or the wavelength L. 

4. Conclusion and remarks 

The me thod  of  s p a c e - t i m e  var iable  separa t ion  
seems to be an effective approach  to s tudy spa t io tem-  

poral  complexity.  The  key poin t  is to der ive  a gener- 
alized d ispers ion  relat ion which l inks the paramete rs  
a, e, (o. As an example,  the one -d im ens iona l  C M L of 
the logistic map  with per iodic  b o u n d a r y  cond i t ions  
has been examined  in detail.  Ou r  theory has been 
employed  to f ind the pa ramete r  range and  threshold 
wavelength,  which turn out  to be in good agreement  
with Kaneko ' s  numer ica l  resuhs so that  the mecha-  
n i sm of  evo lu t ion  from pat tern  selection to fully de- 
veloped tu rbu lence  is part ial ly elucidated.  Fur ther  
inves t iga t ion  is absolutely  needed to reveal why tur- 
bulence  occurs in the present  CML model .  
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