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Summary It is shown in this paper thal the laws ofcratcring in a thick target under hypervelocity 
impact by a spherical projectile can be approximately expressed by the so-called iso-deviation law 
and a 2 3 power law. Moreover. hypervelocity impact should be characterized by the isotropic 
expansion of a crater. In the special case. when the projectile and target are of the same material. 
the laws mentioned above reduce to the result of a semi-spherical crater and the energy criterion. 
Generally speaking. a semi-spherical crater and the energy criterion are both approximations. which 
only take projectile density and target strength mto account. and can be used for a rough estimation 
on the order of magnitude. The inconsistency in various fitted power laws in the literature was 
also clarilied and explained in the paper. 

I. INTRODUCTION 

The normal impact of a sphere onto a semi-infinite target has been a typical problem in 
hypervelocity impact phenomena. Herrmann and Wilbeck [I] have summarized the 
essential mechanical processes and phenomena in this area. No doubt, cratering on a thick 
target is the fundamental and most significant feature. Obviously, the scales of a crater 
characterize the damage of the target. Hence, the study on hypervelocity impact should 
provide an appropriate approach for the determination of cratering parameters. However, 
it seems to be too difficult for mathematical analysis to meet this need. This is mainly due 
to the extremely large deformation involved in the phenomenon, which usually induce 
compl;lcated aspects, such as splashing, melting as well as vaporization. Any theoretical 
analysis of the phenomenon would unavoidably include sophisticated equations of state 
or constitutive relations, which should cover all these material behaviors. Numerical 
simulations usually adopt simplified material models, and therefore computational 
experiments can be carried out beyond laboratory techniques. Moreover, the numerical 
approach can reveal the transient and internal processes of cratering, by changing individual 
material parameters. However, the simulation results should be justified through 
comparison with experimental data. In this sense, the information obtained by experimental 
observation is of most significance; whereas the reliability of numerical studies is bound 
to be parallel to the physical understanding of the phenomenon concerned. In the case of 
cratering in thick targets under hypervelocity impact general rules inferred by analysis of 
experimental data should play the most important role. Although this viewpoint has long 
been accepted, the induced formulations still suffer from severe inconsistencies. 

The data obtained in our own laboratory have already been reported [Z]. The intention 
of the present paper is to investigate those experimental expressions, given in the literature 
or by ourselves, and try to look for the essential and intrinsic law of cratering. 

2. DIMENSIONLESS FORMULATION 

The governing parameters involved in the problem are 

where 1~) denotes material parameters, subscripts p and t refer to projectile and target, 
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FIG. I. 

respectively, d, and II are the diameter of a spherical projectile and the impact velocity, 
respectively. Our experimental data concerned with like-material impacts, i.e. aluminum- 
aluminum (p=2.7 g cme3, Y= 30 kgf mm-‘), steel-steel (p= 7.8 g cm-3, Y=80 kgf mm-2) 
and brass-brass (p = 8.5 g cm - 3, Y= 30 kgf mm - 2), are correlated in dimensionless form 

(1) 

where p is the depth of a crater, p is the density and Y the dynamic yield strength of the 
material. The result is shown in the log-log diagram in Fig. 1. It seems to us that correlation 
(1) is a proper approximation in the experimental range for like-material impacts, namely, 
density and strength appear to be the most significant among all the material parameters 
related to impact cratering. Here, elastic parameters are not important because of extremely 
large deformations occurring in hypervelocity impacts. 

For the unlike-material impacts, the above concept can be extrapolated as 

or in dimensionless form 

(2) 

Generally speaking, various dimensionless combinations can be taken to form the 
independent variables. However, their sequence here in the correlation (2) has implied our 
understanding on the importance of these dimensionless parameters. For material 
parameters, both pP and Y, are of great significance, P, is the second and Y, is the least 
important parameter. The reason for this will be elaborated later. 

The reduced case of pP = P, and Y, = x, leads to 
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FIG. 2. 

Similarly, the dimensionless diameter of a crater in the two cases can be written as 

and 

respectively, where d, is the crater diameter. The data are shown in Fig. 2. 

3. SEMI-SPHERICAL CRATER AND ENERGY CRITERION 

Previous studies have put forward two fundamental concepts [l]. 
First, the ratio of crater depth p to diameter d, was suggested to approach l/2 with 

increasing impact velocity. Namely, the crater tends to become semi-spherical. Figure 3 
shows the data obtained in our laboratory. In the literature, similar figures were used to 
illustrate the hypervelocity effect, and, moreover, a semi-spherical crater was taken as a 
feature of hypervelocity impact. Accordingly, 

P 1 
-=- or 

4 2 
(3) 

is used as the identification of hypervelocity impact, where V, and VP are volumes of crater 
and sphere projectile, respectively. 

The second concept assumes that the crater volume becomes proportional to the kinetic 
energy of a projectile but inversely proportional to the strength of a target at sufficiently 
high impact velocities. The dimensionless formulation is 

“cr, 
I/,PpV2 

= const. (4) 
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FIG. 3. 

The equivalence of this concept is that there exists a single projectile parameter governing 
the crater volume, i.e. kinetic energy (~V”/ppPu2). Hence V,=f( k’P/ppPu2, Y,, p,). In accordance 
with the II theorem in dimensional analysis, formula (4) can be easily deduced. V,x can 
be regarded as the effective energy dissipated during cratering, so (4) is simply a linear 
energy relation and may be called an energy criterion. 

Substitution of (4) into (3) gives 

(5) 

where K is a constant. Obviously, a semi-spherical crater and the energy criterion constitute 
a rough model for determining the crater size. Compared with formula (2), expression (5) 
includes only the first argument of (2) and neglects the others. In addition, a simple power 
function is presumed to hold for the undetermined function in (2). 

Looking back to experimental data, unfortunately, a semi-spherical crater and the energy 
criterion are limited approximations. They hold well for like-material impacts, but not for 
unlike-material impacts. In conclusion, the law of semi-spherical crater and energy criterion 
can be used to describe the cratering while the materials of target and projectile are the 
same. However, they can not be straightforwardly extrapolated to other cases. A satisfactory 
unified law is still required. 

4. ISO-DEVIATION LAW AND ISOTROPIC EXPANSION 

Usually, a semi-spherical crater is established according to those curves, similar to that 
in Fig. 3. Indeed, when the materials of the targets and the projectiles are fixed for each set 
of tests with increasing impact velocity, penetration p/d, does approach l/2. However, it 
is evident that most of the data within the experimental range fall far away from the 
asymptote p/d,= l/2, and hence do not follow the assumption of a semi-spherical crater. 
Generally speaking, when the density and strength of the projectile are lower than those 
of the target, the crater is shallow; otherwise the crater is deep, and even much deeper 
than a semi-spherical crater. 
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FIG. 4. 

Perhaps, the intuition of idealized semi-spherical crater leads people to correlate data 
in the form of p/d,. We propose that the law of crater shape should be traced better by 
plotting p versus d, (see Fig. 4). Each set of data can be fitted by a straight line with the 
same slope of two for higher impact velocities, 

(6) 

where A is a dimensionless intercept of the line depending on the material parameters. This 
reveals that for a set of experimental data with fixed projectile and target materials, craters 
expand isotropically with increasing impact velocity as soon as the velocity is high enough, 
namely, the deviation to semi-sphere (d,-2p)/d, remains unchanged. Now, we term this 
as an iso-deviation law or isotropic expansion. Accordingly, instead of the assumption of 
semi-spherical crater, it would be better to adopt the iso-deviation as the identification of 
hypervelocity impact. Obviously, a semi-spherical crater is merely a special case for A =O. 
When the impact velocity increases, the crater will expand, and hence the deviation A 
becomes insignificant in (6) and then p/d, + l/2. Evidently, the iso-deviation law also reveals 
the aforementioned tendency to a semi-spherical crater. 

The dependence of A on the material parameters has the following features: 

when p,,/p, = 1 and Y,/Y, = 1, A = 0 (semi-spherical crater); 
when p,,/p, < 1 and YJY, < 1, A > 0 (shallow crater); 
when pdp, > 1 and Y,/Y > 1, A < 0 (deep crater). 

The data fitting gives the following expression 

A(:, 3 = ,.,[ 1 - (;~‘“($>“‘“] (7) 
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or simply: 
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/4(;. +) = *.4[ 1 - (y(y’]. (8) 

The exact formulation ofdeviation A needs more experimental data and further investigation 
is required. 

5. ““,,,;‘.2” LAW OR 2,‘3 POWER LAW 

The iso-deviation law is just a relation of the crater depth to the diameter, and does not 
reveal the effect of impact velocity (or the primary dimensionless parameter) on the crater. 
Now. let us study this aspect of the phenomenon by examining Figs 5-7, which show the 
experimental relations of crater depth, diameter and volume to projectile velocity in a 
dimensionless form. Here the volume of a crater is assumed approximately to be 

2-P 4' V 

v, C-J -qd,. 
(9) 

According to Fig. 7, it is clear that the error of the energy criterion ranges over + 75%, 
so it can only be used to evaluate the order of magnitude of the crater size. It appears too 
rough to adopt as a quantitative approximation. We also found that the relation of crater 
depth with impact velocity in Fig. 5 can be easily fitted as follows to reveal approximately 
the effect of PJP,: 

! = o.27(y3(&,)2.3 = o.27(~)2’3(&u)2i) = 027($7Ly’3. 

4 

(10) 

Figure 8 represents the comparison between the experimental data and the fitting formula 
(10). It indicates that under hypervelocity impact, namely the impact velocity is high enough 
that the crater may be described by iso-deviation law (as compared with Fig. 4) the 

0 0 Same Mat&al 
* St-Cu 
’ AI-St 
+ St-Al 

FIG. 5 
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0 

compound projectile parameter governing uniquely the crater depth is V,pio’, which is 
neither kinetic energy nor momentum of a projectile. More directly, the depth of a crater 
is proportional to (P~u)~‘~, i.e. 2/3 power of specific momentum of a projectile, therefore, 
according to dimensional analysis inversely proportional to (~,x)“~. We call it the “VP/pp~u2” 
law or 213 power law. 

As a matter offact, this law has been discovered by numerous investigators [l]. Herrmann 
and Jones [3] collected over 1700 data obtained in 15 laboratories and established a 
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TABLE I 

Authors P-Pp p-t K-P, y-1 Quoted from 

(a) Summers and Charters (1958) 
(b) Charters and Summers (1959) 
(c) Summers (1959) 
(d) Herrmann and Jones (1961) 
(e) Christman and Gehring (1966) 
(f) Goodman and Liles (1963) 
(g) Eichelberger and Gehring (1962) 
(h) Loeffler er ul. ( 1963) 
(i) Bruce (1961) 
(j) Sorenson (1965) 

213 213 Ref. [I] 
213 2/3 Ref. [I] 
213 2,'3 312 2 Ref. 143 
213 Z/3 5/3t 2 Ref. 133 

213 213 Ref. [5] 
0.7 213 312 2 Ref. 163 

{l/3) 213 i i 1 2 Ref. [7] 
(l/2) 2/3 Ref. [8] 
; l/2; [2/3' i 312: 2 Ref. [4] 

(0.45) (0.56; 1.35 1.69 Ref. [9] 

t In Table 2 of Ref. [I] it was 3/2 by mistake. According to the original Ref. [3] it should be 5/3. 
$ In Table 2 of Ref. [I] it was 2/3 by mistake. According to the original Ref. [4] it should be 3/2. 

fitting law as 

where strength of target was replaced by the Brine11 hardness H or the static yield strength 
S. If the following simple correlations exist 

H = 3.6s. Y= 1.5s 

the two fittings will be in good consistency. 
However, some authors use different exponents. To establish 2/3 power law as a universal 

law, these contradictions should be satisfactorily explained. We list here in Table 1 some 
so-called experimental exponents for p, including those in Table 1 of Ref. [l], together 
with V, in order to clarify the contradictions. 

If the difference in the fitting exponents was due to different data, the power law would 
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not be a proper formulation for the phenomenon and would only be valid in a limited 
case. Generally speaking, scatter in experimental data will lead to certain scatter in the 
fitting parameters even for an exact fitting form. Clearly, if the values of a fitting parameter 
given by different authors are within the scatter range, they should be considered as 
consistent and the obtained fitting parameter should be universal; otherwise the proposed 
fitting form would be invalid. In the concerned case, PJP, ranges from l/5 to 5, hence the 
variation of its logarithm is about 1.4. Provided the scatter of a fitting exponent is taken 
to be from 2/3 to 0.7, given by (f), the fitted data should be within a relative error of 6% 
(i.e. f3%). Suppose the absolute error of the fitting exponent is f0.05, then the relative 

error of the fitted data is about + 8.4% (see Appendix). As for another argument m D 
(some authors used the nondimensional impact velocity U/C, instead, where c, is the sound 
velocity of the target), the variation range of its logarithm is roughly 1.4 too. Therefore, it is 
reasonable to assume the accuracy of the exponent is at decile, so the fitting law of p from 
(f) is actually in agreement with the 2/3 power law. Now, we should examine the last four 
cases, which seem to be different from the 2/3 power law. 

The authors in (g) in Table 1 gave the exact formulation of a semi-spherical crater and 
the energy criterion, as discussed in Section 3. In the case of like-material impacts, 
iso-deviation law and the 2/3 power law reduce to the semi-spherical crater law and the 
energy criterion. In this special case, the l/3 power of p,, shows only the joint effect of 
densities of the projectile and the target, but not the individual effect of projectile density 
itself. In fact, it is the sum of the 2/3 power of the projectile density and (- l/3) power of 
the target density, and is really not inconsistent with the 2/3 power law. 

For (h) [S], the proposed l/2 power was actually a compromise between the 2/3 and 
l/3 powers in different references. The misunderstanding for the l/3 power has been clarified 
in the last paragraph. 

The author in (i) thought that the power laws for p and V, obtained directly from 
experimental data, e.g. by (c), did not agree with the assumption of a semi-spherical crater, 
and therefore he suggested that a power law for a crater depth was deduced from that for 
crater volume and the assumption of a semi-spherical crater [4] according to expression 
(3). Sorenson in (j) repeated the same argument as (i) [9]. In short, the power laws for 
crater depth by (i) and (j) were not fitted directly to experimental data but were just 
deductions from the power laws for crater volume and the assumption of a semi-spherical 
crater, (3). 

If we discard the exponents, in ., , r ’ in Table 1, which were either from deduction or only 
a misunderstanding from the special cases of like-material impacts and not directly based 
on experimental data, we can conclude the discussion as follows. 

1. The 2/3 power law is general and proper fitting for crater depth. 
2. Crater volume can not be fitted by a simple power law properly. 

It has been confirmed that the 2/3 power law is a proper representation of the crater depth. 
If the crater volume could be fitted by a power law, the crater diameter could also be fitted 
in the same way, but on the contrary, Figs 6 and 7 show that it is quite impossible to fit 
all data by a family of parallel straight lines. In fact, the formula (6) also indicates that it 
is unsuitable to fit the crater diameter by a power law. Some authors [3] have pointed 
out that power fittings for crater volume are much rougher than those for crater depth 
and the fitting powers obtained are inconsistent. Data in Fig. 7 show a rough ( f 75%) 
average slope of 2 (f 0.35), as shown in Table 1. 

3. The assumption of a semi-spherical crater does not hold in general. 

6. PHYSICAL IMPLICATION 

Now, what enlightenments about the cratering process can we obtain from the derived 
laws? The &o-deviation law describes the loci of terminals of cratering processes in the 



76 Yu SHANBING et al. 

plane of d,-p. This law unveils the feature of isotropic expansion of craters, at relatively 
high impact velocities. Generally speaking, locus of terminals of processes cannot be 
confused with the processes itself. However, this feature of isotropic expansion demonstrated 
by terminal craters of cratering processes should be considered as the characteristics of 
cratering in the later stage of the process, because it is unimaginable that only the craters 
just in the terminal have the feature of isotropic expansion. In other words, the plot of 
d,-p of terminal craters may be supposed to represent the cratering processes at least in 
the later stage. 

If so, the major material parameters affecting the crater size are density and strength. 
One might think that the initial stage of cratering should be affected by the shock wave, 
therefore by the wave impedances of the materials. However, any cratering process should 
rapidly go into a stage, in which the density and strength dominate the process. The 
iso-deviation law characterizes an isotropic expansion stage in cratering, and the 2/3 power 
law implies that the strength of a projectile might not affect the development of the crater 
in this stage. It can be imagined that the projectile at high pressure manifests itself as a 
fluid. With the fluidized projectile the development of the crater is not affected by the 
strength of the projectile. The distribution of the fluidized projectile on the surface of the 
crater gradually becomes isotropic, and then the crater expands isotropically. But the crater 
in the earlier stage, in which cratering is heterogeneous, is not semi-spherical in general. 
The deviation A, which remains constant during the later isotropic expansion stage, is just 
the reflection of the influence on cratering in the earlier stage. If the impact velocity is high 
enough that the cratering process comes into the isotropic expansion stage, the impact 
process is defined as hypervelocity impact. 

7. CLOSING REMARKS 

1. Experimental laws of crater under hypervelocity impact can be expressed by an 
iso-deviation law and a 2/3 power law. All so called empirical “facts”, such as a semi-spherical 
crater and the energy criterion in a special case, the tendency to semi-spherical crater as 
well as inconsistencies in the power law of crater volume etc., are just representations of 
the iso-deviation law and the 2/3 power law. 

2. In the special case of like-material impacts, the two laws reduce to a semi-spherical 
crater and the energy criterion. These two reduced “laws” keep the first argument of the 
function only and can be used for an estimation of the order of magnitude of the crater size. 

3. Density and strength of materials are the most significant material parameters in 
cratering under hypervelocity impact. It is generally believed that at very high impact 
velocity, melting and vaporization of materials may play an unavoidable effect [lo]. This 
has not been taken into account in this paper. In addition, some experiments indicate that 
p/d, may be still dependent on d, [l 11, hence the geometry similarity might be invalid. 
This implies that the rate effect of materials on cratering exists. This is also not considered 
in this paper. 
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APPENDIX 

Experimental data of y depending on x, which ranges over the interval (a,h), would be 
fitted by a power function y=ks”. In the log-log diagram, this is a straight line fitting, 
and the exponent a is the slope of the straight line. Scatter in the experimental data should 

FIG. Al. 

lead to scatter in the exponent as (see Fig. Al) 

$(log b - log a) = log 
( > 

1 + 2 
Y 

where Acr is the scatter range of the exponent (i.e. + absolute error), Ay/y is the relative 
scatter range of the data. 


