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Almtract--A numerical study of turbulent flow in a straight duct of square cross-section is made. An 
order-of-magnitude analysis of the 3-D, time-averaged Navier-Stokes equations resulted in a parabolic 
form of the Navier-Stokes equations. The governing equations, expressed in terms of a new vector- 
potential formulation, are expanded as a multi-deck structure with each deck characterized by its 
dominant physical forces. The resulting equations are solved using a finite-element approach with a bicubic 
element representation on each cross-sectional plane. The numerical integration along the streamwise 
direction is carded out with finite-difference approximations until a fully-developed state is reached. The 
computed results agree well with other numerical studies and compare very favorably with the available 
experimental data. One important outcome of the current investigation is the interpretation analytically 
that the driving force of the secondary flow in a square duct comes mainly from the second-order terms 
of the difference in the gradients of the normal and transverse Reynolds stresses in the axial vorticity 
equation. 

N O M E N C L A T U R E  

CI =Empirical value of 1.5 from Ref. [16] for 
turbulence modeling, equations (5) 

C~ = Value of 0.090 for k-~ modeling, equations (8) 
Cd = Value of 1.44 for k ~  modeling, equations (8) 
Ca = Value of 1.92 for k ~  modeling, equations (8) 
Cf=Dimensionless skin friction coefficient, 2f,,/ 

put 
Dh = Hydraulic diameter of the square duct 

k = Non-dimensional turbulence kinetic energy 
Ll = Streamwise length scale (duct length) for non- 

dimensionalizing purposes, O ( L2/ LL ) = 
/ -2 -  Dh, Transverse streamwise length scale for 

non-dimensionalizing purposes 
L '  = Turbulent characteristic length for non-dimen- 

sionalizing purposes, ( L "/ L2) = t$ '/2 
/~=Mean pressure, non-dimensionalized w.r.t. 

pU .2 
P0fProduct ion  of turbulence kinetic energy, 

equation (28) 
Re -= U*Dh/V, Reynolds number 
Ub = Bulk streamwise velocity 

UIwx = Maximum strearnwise velocity 
Ul ffi Mean streamwise velocity, non-dimensional- 

ized w.r.t. U* 
U2, U3 ffi Mean transverse velocity, non-dimensional- 

ized w.r.t. V* 
u~= Fluctuation velocity component in the i 

direction 
u U ffi Reynolds stresses non-dimensionalized w.r.t. 

(v') 2 
U* = Streamwise velocity scale for non-dimensional- 

izing purposes, U* - U b 

U, ffi Shear velocity at the wall, (fw/p) 1/2 
V* = Transverse velocity scale for non-dimensionaliz- 

ing purposes, (V*/U*)= 
(V')2=Turbulent  characteristic energy scale for non- 

dimensionalizing Reynolds stresses, k and ~, 
( V ' / U * )  ~ = 

x~ -- Streamwise coordinate, non-dimensionalized 
w.r.t. L~ 

x2, x 3 -- Transverse coordinate, non-dimensionalized 
w,r.t. L 2 

Superscripts 

' = Dimensional quantity. 

Greek symbols 

at = Empirical value of 0.7636 from Ref. [16] for 
turbulence modeling, equations (5) 

fl=Empirical value of 0.1041 from Ref. [16] for 
turbulence modeling, equations (5) 

), = Empirical value of 0.182 from Ref. [16] for turbu- 
lence modeling, equations (5) 

o~ = Value of 1.3 for k ~  modeling, equations (8) 
o k = Value of 1.0 for k-~ modeling, equations (8) 

= Non-dimensional turbulence dissipation 
- l/Re 1/2, a small parameter 

p = Density 
v = Kinematic viscosity 

/z t = Non-dimensional turbulent viscosity, equations 
(23) and (24) 

fl = Dimensionless vorticity, equation (34) 
= A stream function, equation (32) or (34) 

~b -- A potential scalar function, equation (31) or (33) 

1. I N T R O D U C T I O N  

T u r b u l e n t  f lows  o f  n o n - c i r c u l a r  c r o s s - s e c t i o n  a r e  f o u n d  in  m a n y  e n g i n e e r i n g  a p p l i c a t i o n s  s u c h  as  

h e a t  e x c h a n g e r s ,  v e n t i l a t i o n ,  a i r - c o n d i t i o n i n g  s y s t e m s  a n d  a i r - i n t a k e  d u c t s  o f  j e t  e n g i n e s .  A n  
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important physical aspect of these flows is the presence of secondary motions in the plane 
perpendicular to the streamwise direction. Unlike laminar flow or flow in a curved duct, where the 
secondary motion is pressure-induced or due to the action of centrifugal forces (sometimes referred 
to as Prandtl's first kind), the secondary motion of the turbulent flow through a straight duct is 
driven purely by turbulent stresses (commonly referred to as Prandtl's second kind). Although the 
velocity of this secondary motion is only of the order of 2-3% of the bulk streamwise velocity, 
its very presence has far-reaching consequences. It causes bulging of the velocity contours towards 
the corners, hence affecting sediment transport and heat transfer characteristics in the flow. 

A considerable number of experimental investigations have been carried out on turbulent flow 
in straight ducts. Nikuradse [1] was perhaps the first to observe the secondary motion in 
non-circular ducts using flow visualization. Hoagland [2] reported the first measurements of the 
secondary motion. Subsequent measurements have also been reported by Brundett and Baines [3], 
Gessner and Jones [4], Launder and Ying [5] and Gessner and Emery [6], among others, for flow 
in a square duct. Flow in a triangular duct has been investigated by Aly et al. [7]. 

The first calculation of secondary flow in straight non-circular ducts was carried out by Launder 
and Ying [5]. The turbulent closure model suggested by these authors, or extended variations of 
this model, have since been used by a number of authors to predict a fairly wide range of flows 
[6, 8, 9]. Most of these calculations adopted the strategy outlined by Patankar and Spalding [10] 
and found in the algorithm called SIMPLE. 

In our work, an order-of-magnitude analysis of the time-averaged governing momentum 
equations gives rise to the parabolized Navier-Stokes equations (Sections 2.1 and 2.2). Together 
with the formulation of the potential stream function and velocity potential (Section 2.3) for the 
description of the streamwise vorticity and the streamwise velocity, respectively, we have a system 
of four parabolic equations and two Poisson equations. This compares favorably with the other 
numerical studies, notably Demuren and Rodi [11], whose scheme involves five parabolic and two 
Poisson equations. 

Our system of equations is then described in a multi-region framework on a plane perpendicular 
to the streamwise direction, so as to reflect the local balance of the dominant physical forces in each 
region (Section 3). The idea is very similar to that carried out in analytical work using triple-deck 
expansion to elucidate better the physics of the flow. As shown subsequently, this expansion enables 
us to depict clearly the origin of the secondary motion in a square-duct section flow, which is unlike 
other schemes offering complete simulation of all the governing terms. In the present turbulence 
modeling, starting from the algebraic Reynolds stress equation adopted from Demuren and Rodi 
[11], the stress components are solved using the Chen and Patel [12] two-layer approach proposed 
for modeling of eddy viscosity relations, which are assumed valid for the primary shear stress and 
other terms. This is different from the approach used by Demuren and Rodi where the eddy 
viscosity based on the k-E model is used throughout. In our application, the no-slip boundary 
condition at the wall is used directly in place of the common wall function approach, since the 
regions close to the wall and the corner are known to influence greatly the characteristics of 
secondary flow. This is also the stand taken by Myong and Kobayashi [13-15], who are concerned 
about the undue influence of wall treatment on the generation of secondary flow; and hence they 
used an anisotropic, low Reynolds number (Re) k-E turbulence model with no-slip conditions at 
the wall. In the latter's work, it is further shown that the commonly adopted wall function approach 
of specifying the variables along the first grid point next to the wall in the logarithmic regime, 
usually taken from 2-D flow, is not completely valid for 3-D flow. The importance of ensuring 
correct boundary conditions and their consequential influence on secondary flow near the 
wall/corner cannot be overstated. The work of Myong and Kobayashi also clearly illustrates the 
successful implementation of an anisotropic k-e turbulence model for predicting the complex 
secondary flow in a square duct. 

In our implementation, the numerical integration in the cross-plane is based on a bicubic, 
finite-element method with C ~ continuity at the element interfaces, which ensures continuity of the 
gradient across the boundaries of the multi-region (Section 4). The use of the finite element method 
implies that future study of different cross-sectional shapes can be easily implemented. For the 
streamwise direction, a finite-difference marching procedure is employed. Combination of both 
finite-element and finite-difference schemes can also greatly facilitate other future numerical work 
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Fig. 1. Coordinate system with the origin 0 set at the center of the square duct; fl is the axial vorticity. 

on flow through varying cross-sectional shapes in the streamwise direction. Such flow is often 
encountered in turbomachines, where the intake section and the rotary portion of machines are 
different. As will be shown subsequently (Section 5), the present computed results on flow in a 
straight square duct compare very favorably with the available experimental data, and other 
numerical works. 

2. MATHEMATICAL MODEL 

2.1. Governing equations 
The steady-state, time-averaged 3-D Navier-Stokes equations, in Cartesian tensor notation 

(see Fig. 1), may be expressed as follows: 

the continuity equation, 
dV; = 0; (1) 
dx; 

the streamwise momentum equation, 

, ~U~ I dP' au~u~ a2U'l . 
u; ax; = p dx~ ax; ~ v ax; ax-----~j ' (2) 

and 

the momentum equations governing the secondary velocities U'2 and U'3, 

ou; 1 ~p" eu[ u; °2u[ (L = 2, 3). (3) 

Here the superscript prime refers to a dimensional quantity, U~ is the component of the mean 
velocity vector in the xj-direction (j = 1,2, 3), p is the density and v is the fluid kinematic 
viscosity. Note that the gradient OP'/Ox~ originally appearing in equation (2) has been replaced 
by the cross-sectional average pressure gradient aP'/ax~. 

The Reynolds stress components u;u; in the following governing equation are derived by 
Demuren and Rodi [11] from the modeled transport equation given by Launder et al. [16] and the 
assumption of local equilibrium (i.e. convection and diffusion effects are neglected): 

( OU~ ._-77~..,OU;' ( OU',.=OU'L' 

,,/OU; OU;~ ~" 
- ~ ~-7; + d~; / - F [c, u; u5 + ~(I - ~ - ~ - C,)~,jk'] = O, (4) 

where the various symbols take on the usual meanings and the empirical parameters are 
defined as: 

CI = 1.5, ot =0.7636, fl =0.1091, 7 =0,182. (5) 
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Following Demuren and Rodi [11], equation (4) is solved for the various stress components [see 
equations (17)-(22)] with similar simplification of some terms and adoption of an eddy viscosity 
relation, especially for the primary shear stresses. (The interested reader is referred to the original 
work of Demuren and Rodi [11] for details.) However, instead of expressing the eddy viscosity 
solely by the isotropic k ~  model as in the former, we used the two-layer approach of Chen and 
Patel [12]. In the region away from the wall, the turbulent eddy viscosity /a~ is related to the 
turbulent kinetic energy k', and its rate of dissipation E', by 

k ' 2  
tt[ = C, ~ (6) 

and k'  and E' are calculated from 

and 

.Ok'_ ~ I(1 , \ak'7 _ U;Oxj 3xj ~ / ~ t + v J ~ x : . J + P  ~ e' (7a) 

" -  ' ax; j -F Uj dx: ax: /a~ + v + [C,l Pk -- CaE']. (7b) 

Here P~, = -u;u'~(dU;/dx'k) is the production of turbulent kinetic energy. In equations (7a,b), 
i,j, k = 1, 2, 3 and C~, ak, a,, C,, and C,2 are empirical constants, which have been assigned to 
standard values: 

C~=0.090, ak=l.O, a ,=1.3 ,  Cd=1.44,  C,2=1.92. (8) 

In the region close to the wall, the turbulent viscosity and rate of energy dissipation are expressed 
in terms of turbulent kinetic energy and specified length scales, i.e. 

• • #, = e" = k  '3/: ,. It:. (9) 

where lj = CLy[1 -- exp(--Rj/70)], l: = Qy[ l  - exp(-R'fl2Q)],  CL = xC;  3/4, Rj = Rq/kZy and 
x = 0.418. Here y is the distance away from the wall. In the comer region, y is the minimum of 
the two distances from the walls. The turbulent kinetic energy is determined from equation (7a). 

2.2. Dimensional analysis 
In this section we derive a set of parabolic Navier-Stokes equations from equations (1)-(3). The 

following assumptions are made: 

(1) The transverse mean velocities and transverse pressure variations are much 
smaller than the axial velocity and axial pressure gradient, respectively. 

(2) The flow is characterized by the predominant streamwise flow direction, along 
which there is no flow reversal. 

(3) The diffusive transport process in the streamwise direction is neglected. 
(4) The streamwise elliptic characteristic of the Navier-Stokes eqtmtion is enforced 

only through the adoption of a suitable mean pressure field OP'/Ox~ [10]. 

For non-dimensionalization, we select U* and V* as the streamwise and transverse velocity 
component scales, respectively. The corresponding length scales for non-dimensionalization are 
denoted by Lm and L2. The turbulent characteristic length and energy scales are denoted by L'  and 
V '2. With these, we define 

u~ u'~ x~ x'~ _u;u~ ~ P(x,)+,~P(xL)= P' U, --- ~-~, UL = ~"~, X, = Ll--' XL = ~-~, U0 -- 7 "'U, ~ (L ---- 2, 3), (10) 

where R U = u,u:(u: u; u:u:)-'/2 are the correlation coefficients of the turbulent velocities. Based on 
the experiments that the secondary velocities are 0(2-3%) of the primary bulk velocity, we set 
6 = O(1/Re l/') as a small parameter, where 

Re U*Dh ~ [ V * '  o {L2 '  ( V ' 2 )  . . . .  ,L Ru = 0(1) .  (11) ' = o 
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We note here that Dh(=L2) is the hydraulic diameter, L~ is the length of the duct and Ub(= U*) 
is the bulk velocity. [In subsequent implementations of the numerics, 6 is set equal to 1/Re ~/2 and 
all the relations expressed in equations (11) are taken to be exact.] The non-dimensional forms of 
the governing equations (1)--(3) can then be written as: 

and 

OUt = O, (12) 
Ox~ 

u OU, dP OUlL l__(Li O 2 ) 
-~,x, = dx, ~XL VRe\L20xZ-axi U,, (13) 

6U, 0U2 aP 01412 OU2L 6 Z / ' L I  02 \ 
Ox, = 0x2 60x"~l Ox----~L+ Ret-~20X-L-~xJU2 (14) 

and 
OUi : ,< FRO<,, )] ro<,:+o<q u~ = - ~ #A 7/t - 26~, . (22) L\Ox~ LOx, Ox~3 

/it is given by the non-dimensional form of equations (6) and (9) for application to the region far 
away and near the walls, respectively. They are expressed as 

/xt = C~ ~ (23) 

and 
/it = C. ~ l~,. (24) 

Here i = 1,2,3, L =2 ,3 .  
In the momentum equations, u U must necessarily be 0(6). It follows that Ou./Oxm is of higher 

order and is neglected in equation (13). For equations (14) and (15), the pressure variation in the 
respective transverse directions must balance the convective and Reynolds stress terms to order 
0(6).  The diffusion terms in the streamwise direction are of order 0(6 2) and neglected in equations 
(13)-(15). 

Next, on defining 
k '  e 'L '  

k=~--;~, e =  V, 3 (16) 

and noting that O(uo) ~- 0(6),  O(k ) ~ O(6), O(C~/Q ~- O(C~fl /C~ ) ". O(1) and O(L'/L2) = 6 ~n, 
the six components of the Reynolds stress tensor can then be expressed as follows on the basis of 
equation (4) [we retain only these terms whose order is required for compatibility with equations 
(13)-(15)]: 

2 2 k 3 F(~Ull 2 (~Ull21, 
u .  = ~-~l (ct + f l  + C , -  l)k - ~--~ C, ~-~ (1 - m )  + (17) L\ Ox2) \Ox,) I 

2 2 k F(oU, yl rosa u22 ffi ~-~1 (at -t-fl + C , -  1)k - ~-~gt ~/~ - (18) LtOxU / 26"'LN]' 
2 2 k r;ou, yl  u rou,1 

u33 = 3C, (a +f l  + C , -  1)k - ~-~m/,it 7 fl - (19) 
LkOxU j 

p u ' l  , (2o) u,2 ffi -St, LOx2 j 

pU'l  (2,) 
" "= -~" L ~ J  

6uiOU3 OP Oum3 OU3L _ 1 /Lm 0 2 \ 
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The dimensionless turbulent kinetic energy k is evaluated from the equation 

Ok Li ~9 [ ( I  k 2 l~Ok I L, 

while the dissipation term E is governed by the expression 

U,~x =L--2Ox--~ __~c"-~ + Re/aXLj + ~ [C,,eO-- c<2E] 

for the region far away from the walls. In the near-wall regions, we take 

(25) 

(26) 

E = k 3 / 2 / ! , .  

For all the above equations (23)-(27) 

ou~ o/ ~v, auA Po= - - o f f  , , + 

l .  = Q x d l  - exp(- Rx/70)], 

(j, L = 2, 3); 

l~ = CLXL[1 -- exp(-Rx/2CL)],  Rx = Rx /~XL,  

(27) 

(28) 

CL = ~C# 3/4. 

2.3. A vector-potential function formulation 

The parabolic properties of the governing equations with a suitable pressure-gradient algorithm 
[10] permit us to employ a special vector-potential function formulation in which only the 
streamwise component of the vorticity tensor needs to be taken into consideration. We may express 

U =  U~I+ U2J+ U3K = U~I + Vs, (29) 

where I, J, K are the unit vectors along the x~, x2 and x3 directions, respectively, and V, is a sum 
of vectors in the transverse plane, 

V, = In + So = (/,2 + So:)J + (lo3 + So3)K. (3o) 

Here the vector V,, is decomposed into its irrotational and solenoidal components denoted by In 
and So, respectively, while l,a, So:, lo3 and So3 represent their components along the x2 and x3 
directions, as indicated by the respective subscripts. I, can be defined by a potential scalar function 
~b as 

In = Grad 0, i.e. In2 ---- -~X2' 1,3 = OX3 " (31) 

Another scalar ~O (which can be considered as one component of a vector potential stream function 
~),  is introduced by using the divergence-free condition of So, such that 

s°:=b-~x3' s°3=-W'ox: (32) 

Taking the divergence of equation (29), ~ is found to satisfy 

02~ 0:~ OUI 
Ox: Ox'-~2 + Ox3 Ox3 - Oxl " (33) 

Furthermore, the streamwise component of the vorticity tensor is related to ~, through 

02~/ 02~ 0U 2 OU 3 
Ox2 0x2 40x3 0x-----33 = f~' where f l  = 0x--33 Ox2 " (34) 

With the above, the four mean-flow equations (12)-(15) can be reduced to the following two 
equations: 

u OUI dP Ouiz I__[L, a2 1 
Ox'j = dx, ~ + Re LL2 OXL OXL] UI (35) 
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and 

6u on (ou, n _ o u ~ o u ,  ou~ou, o rou,, Ou,{D o ~ . 
.~=6 to~, ~-7~3 t ~-~~ ÷~L~-7~ ~-~x3J~+~x--~ (u33-u22) 

O -Ox ) u23+6 ReLL 2 02 02 l rLI OxL-OXt]fl 
for i = 1,2,3; L =2 ,3 .  Here 

o~ o, o~ o, 
u2=-~x2+-~x 3 and U3= Ox 3 OX 2 . 

(36) 

2.4. Origin of the secondary motion 
In equation (36), the terms of order 0(6)  represent a balance of higher order effects between 

the Reynolds stresses and the axial vorticity. In order to explain the possible origin of the secondary 
motion, we consider only the case of fully-developed flow. We expand u,,,  m, n ffi 2, 3, as a power 
series of 6: 

um = urn0 + 6umi + ' " .  (37) 
The expansion in powers of 6 enables equation (36) to be decomposed into different orders of 
magnitude: 

30X202 ( 020x'~,X 30X]-~X202) O(1), 0 X ~  (~330 -- Id220) -- ~230 = 0; (38) 

and 

O(6), U, ox ' ReLL20x-~x ~ f~=OZ2-Ox3(U33,-u22,)- O ~ - ~ X  3 OXT-~X 2 1/231. (39) 

Equation (28) expresses the fact that at leading order, the terms representing the gradients of the 
normal and transverse Reynolds stresses balance each other, resulting in the production of zero 
axial vorticity. The convection and diffusion of axial vorticity are of secondary order, and are 
driven by the second-order gradient of the normal and transverse Reynolds stresses. These 
equations clearly demonstrate that the difference between the second-order gradient of the normal 
and transverse Reynolds stresses is the major source for generation of the secondary motion. This 
conclusion is further verified in Section 5, which describes the computations carried out to compare 
the magnitude of the second-order terms depicted in equation (39) and the total term corresponding 
to equation (36). 

3. MULTIPLE STRUCTURE 

The turbulence in duct flows (as well as in channel and boundary layer flows) is not only 
convected along the streamwise direction but also diffuses in the transverse direction; a result of 
the complex interaction between the effects of the kinematic viscosity and turbulent kinetic stresses. 
An outcome of this interaction is the presence of a multi-deck structure, wherein each deck is 
characterized by a balance of its dominant physical forces. 

According to the experiments of Laufer [17], the fully-developed turbulent flows in boundary 
layers may be divided into four regimes. These are the viscous sublayer, the layer between the 
sublayer and the logarithmic layer called the interim layer, the logarithmic layer and the outer 
region. The spatial ranges of these regimes are O<~y<~5(v/U,), 5(v/UO<~y<~30(v/U~), 
30(v/U~) <~ y <~ 0.26" and 0.26" ~< y, respectively, where U~ and 6" are the friction velocity and the 
thickness of boundary layer, respectively. 

By symmetry, we can restrict our analysis to one-quarter of the square duct. The flow region 
in the quarter duct can be subdivided into two viscous sublayers, two logarithmic layers (which 
include the interim layers), a corner region and a center region (see Fig. 2). 

The effect of the kinematic viscosity is most dominant within the viscous sublayer, and the 
turbulent eddy viscosity/~t may be taken as zero. The flow is computed as a laminar flow with 
no-slip boundary conditions applied at the wall. 
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Fig. 2. Sketch of the multi-region of a quarter of the duct. 

In the center region, the effect of turbulence takes precedence over the effects of fluid viscosity. 
It follows that the local flow may be considered as essentially potential, where the viscous damping 
terms in equations (35) and (36) are made to vanish in this region. The turbulence eddy viscosity 
is given by equation (23) (i.e. the "far wall" model of Chert and Patel [12]), while the turbulence 
kinetic energy and rate of dissipation are determined from equations (25) and (26), respectively. 

3.1. Logarithmic region 

The areas between the center region and the two viscous sublayers, are analogous to the 
logarithmic layer in a shear flow, henceforth called logarithmic layers I and II to denote the regions 
near the walls normal to x2 and x3, respectively (see Fig. 2). The flow here is characterized by the 
complex interaction between the wall shear stress and the turbulent kinetic stress. The production 
of local kinetic energy is assumed to be equal to its dissipation. In logarithmic layer I, for example, 
we let 

x2 = -- 1 + 6r/, ~/= O (1), (40a) 

Ut = U,o+6Un + ' " ,  f i =  fio/6 +f i t  + ' " ,  (40b) 

~b = 6 2 ~ o + . . .  and ~' --6¢'o+62¢g + . . . ,  (40c) 

u.~ = 6u~o + 62u,~1" • •, for the pair mn = 12, 13, 23 (40d) 

and 
u~ = u ~  + 6u~, + .  • . ,  for the pair ~ = 22, 23, 

and the governing equations then can be simplified as 

dUl0 O_~lo dP 
u~ ~ + U2o = dx, 

and 

~ .  flo -t 
Ofio OUIo v~ + V~ ~ - - =  

Oxl 

where i = 1 or 3 and 

and 

(40e) 

O 2 
0UmO0r/ ~- ~ UIo (41) 

dU3oOUio 1 [ O 2 63 2 ] 
a,1 + (,,,,o - , ,=o) + ,,,,o 

_ J  

O 2 O 2 l O 2 

~ o  0¢Jo. 
U2o = + 0x3' 

U~ = 0¢Jo. 
0r/ 

c,,  re)  +yEeo-,]. 

(42) 

(43) 
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The expressions for Reynolds stresses u~ or u~ take after 

I-~U,o-I .,~o= -~L~-~ jRe, (44a) 

LL )- Ro ; u,,,-Ue2,=-2/~ L 0rl 0x, J 

and 

k' rfau.oa..q-i rau o aU.o I "='o=-~,c.?/~L\ ~ ~x3/J Re; u=3,=2~L-~-=3 + or/=j, (4~) 

where the eddy viscosity and the rate of dissipation of turbulent energy are determined by equations 
(24) and (27), respectively, of the near-wall model. 

3.2. Corner region 
In the comer region, the flow appears to be the result of a delicate balance between the turbulence 

dissipation and the induced secondary motion based on balance of the higher order terms. For this 
reason, we introduce the following scaled transformations: 

and letting 

x2=- - l+ f i r / ,  r/=O(1); x3=- - l+ f iG ,  ~=O(1) ;  (45a) 

Ut=Ulo+fUt l+" ' ;  f l=D.o+ f~ l  + " ' ,  (45b) 

and 

~b--6O0+'" and ~ - - 3 5 0 + ' "  (45c) 

u .  = 6u~0 + 62u~.1 . . . .  for the pair mn = 12, 13, 22, 23,33, (45d) 

the leading order of the governing equations become 

OUio OUIo OUIo dP OUi2o OUlao 

0 ~  + O ~  O~ OU, o OU2oOU~o 

r 02 d 2-] 
- -  + L~-~ + b-~j  U,o, 

OU3o OU, o 
Oxt O~ 

O 2 O 2 02 

+ o- -~+o-~  no, 

O~o . O0o O~o O0o 

and 

(46a) 

(46b) 

(47) 

Ok Ok ak O I ( 1  c k 2  l \ O k ]  U,o~+U~+u~=~ ~ .7+~)~ 
[ (  l \ O k l  ° ' +-~ (48) 
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With #t and E, following equations (24) and (27), we have 

[-OUlo-] 
U,~o= -NL--~ j Re, (49a) 

I-aura0 l 
U,~o= -u, [--g(-J Re, (49b) 

r:..oy ,..oy7 u'° - "°=-E~-gP L\-~-,/-\-Tg-~ / J Re; U331--U221=--  'LN - - . . , '  (49c) 

2 k F(OU, od~.~,o) ] L \  Oq [-~ ~ + OU~IOr I j. (49d) u2,0 = -~-~P-t~-/~ Re; u23, = 2#t 

The solutions satisfying the equations for the different regions require matching at the interfaces. 
In the present numerical work, the higher polynomial finite-element method ensures C t continuity 
at each node. This implies continuity (smoothness) in the solutions, its first-order derivatives and 
mixed second-order derivatives at the interface between the different regions. 

4. FINITE-ELEMENT APPROACH AND SOLUTION PROCEDURE 

The mathematical model described in Section 3 has four equations of parabolic type [equations 
(25), (26), (35) and (36)] and two Poisson equations [equations (33) and (34)], for the dependent 
variable set {U~, fl, k, E, ~ and ~ }, which may be written as 

Q, = [U¿, t ,  k, E, ~, ~k] T. (50) 

In general, the governing equations can be reduced to the form 

and 

OQ, OQ, 02 { F Q' "~ Qi ~ D (5 la) 

and 

The Poisson-type equations may he treated as a special case of equation (51a). Here i = 1, 2, 3 and 
L = 2, 3; St represent the source terms corresponding to equations (25), (26) and (33)-(36); q, r and 
s are specified coefficients and n is the outward unit normal vector. The solution domain of equation 
(51 a) is D (-= R 2 × [xj (0), xl ]) and its boundary is aD [ -  0 R 2 × [Xl (0), xl ]). To start the calculation, 
an initial distribution for Qt on Do(= R 2 × xl (0)) is required. 

The Galerkin finite-element approach is to find Qh E H~(D), which satisfies the equation 

(51b) 

where 

a(Q~, U~,Nk)+b(Q h, Uh, Nk)=c(Qh, Nk)+e(Q~,Nk), VNk~H~(D), (52) 

Io aQh 
a(Q h, U h, Nk) = Nk U, ~x~ dxL, 

Io OQh b(Q h, uh,  Nk) = Nk Uh-~xL dXL, 

c(Q h, Nk) = fo ~aNk FL dQ~oxL + N~[SpQh + Sp] dxL, 

e(Q h, Nk) = fad NkL(Qh) do 

04, h ' 0 ¢  h 0 ¢  . o 0  h 
V h = ~ * ~  and V hf0x3 Ox2" 

(53a) 

(53b) 

(53c) 

(53d) 

(54) 

0 
L(Q,)=qQi+r-~xLQi'n+s=O, QiEaD. 
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Here [Nk(xL)] T is a row matrix whose elements are polynomials on xL (L = 2, 3) constructed to form 
a cardinal basis, d~r is the line integral element, H~(D) denotes the Hibert space of all functions 
possessing square integrable first derivatives and satisfying the boundary conditions (51b). In the 
present work, rectangular elements utilizing bicubic Hermite polynomials are used and the integral 
in equation (52) is carried out using a Gauss routine based on 5 × 5 Gaussian points. For a typical 
100-element representation in a quarter-square duct, I layer of elements is used for the viscous 
sublayer (x~,x'3<<.5(v/Ut), 3 layers of elements are used for the logarithmic region 
(5(v/Ut) ~< x~, x~ ~< 0.2Dh) and 16 elements are used to represent the corner region (see Section 3 
and Fig. 2). After the respective matrices are assembled, a direct-banded matrix solver is employed 
for matrix inversion. For other details about the finite-element solution procedure, the reader is 
referred to Brooks and Hughes [18]. 

Those differential equations introduced above which are parabolic in the streamwise direction 
imply that influence is only permitted in the downstream direction. An efficient forward-marching, 
finite-difference procedure can thus be employed for numerical integration downstream. 

For the initial conditions, the numerical solution of steady-state laminar flow in a square duct 
was used for the streamwise velocity, while the functions ~, ~ and 0 took on null values. The 
distributions of the turbulence quantities k and E were established using the standard wall function 
approach. 

Boundary conditions are specified as follows. Along the plane of symmetry of the square duct, 
the velocity component normal to the surface was set equal to zero, while for the quantities k and 
E, the gradients normal to the surface were taken as zero; thereupon, the quantities f~, the normal 
gradient of 0 and the tangential gradient of ~ had to be set to zero on this surface. Along the solid 
walls, the velocity components and Reynolds stresses are set equal to zero. The normal gradient 
of ~ and the tangential gradient of ~ assume null values along the walls. The axial vorticity is hence 
evaluated from equation (34). 

The forward-marching step size is set to 0.01 of the duct hydraulic diameter Dh. Since the 
initialization for turbulent quantities was inaccurate, integration was first carried out to the location 
x~/Dh = 5, solving only for Urn, k and E, with the assumption of a Boussinesq eddy viscosity. With 
these data as Q0 (which are UI, k or E), the streamwise velocity U1, followed by f~, k and E, and 
finally ~, and ~, were solved for subsequent downstream values. 

Evolution of the flow in a square duct was calculated for Re = 50,000, 65,000 and 250,000 until 
a fully-developed state was reached. In all our computations, the fully-developed state occurred 
at a downstream location of x;/Dh >1 80. The accuracy of the computations was checked using 
different element sizes. It was found that the solutions obtained with a different number of elements, 
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notably 64, 81 and 100, agreed well and consistently with each other. With 64 elements, a typical 
run to steady-state took about 280 min of CPU time on the NEC SX-IA supercomputer. 

5. RESULTS AND DISCUSSION 

5.1. Comparison with other experimental and numerical results 

The contours of the streamwise velocity distribution for fully-developed flow are shown in Figs 3 
and 4 for Re = 50,000 and 250,000, respectively. The present calculation is in good agreement with 
the experimental measurements of Melling and Whitelaw [19] at x;/Dh = 36.8 for different primary 
velocity quantities, with U~/Ub varying from 0.7 to 0.95 (Fig. 3). [It should be noted that judging 
from the numerical works by Demuren and Rodi [11], hereafter abbreviated to D&R (subsequently 
shown in Fig. 7), and Myong and Kobayashi [14, 15] (not shown), which indicate relatively little 
variation in the secondary velocity profiles at x;/Dh = 40 and 84, they suggest that the data of 
Melling and Whitelaw [19] at xj ~Dr = 36.8 is asymptotically close to the fully-developed state for 
comparison.] In Fig. 4, two contours of primary velocity evaluated (U'l/Ulmax = 0.8, 0.9) by the 
present model compare favorably with the experimental data of Gessner and Emery [6] at 
x~/Dh = 84 for Re = 250,000. In fact, our numerical prediction, on comparison with the D&R 
calculation, shows increased bulging of the velocity contours towards the corner and agrees better 
with the experimental data. As can be seen subsequently in Fig. 7, underprediction of the secondary 
motion in the D&R scheme has resulted in the less-pronounced bulging of the isovels. 

The secondary flow velocity vector distribution for Re = 65,000 is shown in Fig. 5. The 
experimental data of Fujita et al. [20] are replotted in Fig. 5(b). Apart from the slight asymmetry 
detected in the experimental measurements, both plots show the existence of a pair of contrarotat- 
ing longitudinal vortices in each quadrant of the square-duct cross-section. 

Evolution of the secondary flow is shown in Fig. 6, where the stream function of secondary 
motion for Re = 50,000 is plotted at different downstream locations. These plots should not be 
taken in the strict literal sense of the actual distance downstream of the inlet for comparison with 
experimental results, since the computed flow was not initiated with uniform flow as at the entrance 
of the duct. It is not the intention of this work to track the full developing flow field, but to see 
how the secondary flow features evolve under the influence of turbulent shear stresses. Near the 
entrance section (where all variables are solved), small values of the cross-plane stream function 
¢, first appear in the region close to the comer [Fig. 6(a)]. As the flow progresses downstream, the 
magnitude of ~b increases and the results imply the existence of a pair of axial vortices rotating in 
opposite directions to each other [Fig. 6(b)]. With further distance downstream, the vortical pair 
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diffuses outward and the vortex centers, originally located near the corner, move toward the center 
region [as depicted in Fig. 6(c,d)] until a fully-developed state is obtained [Fig. 6(e)]. Figure 6 shows 
that the stream function ~k takes on quantities equal in value but opposite in sign in the respective 
"upper-diagonal" and "lower-diagonal" portions. Our results have indicated that the secondary 
motion originates in the region near the corner for a developing flow. The predictions of Gessner 
and Emery [6] have shown that the magnitude (scale) of this motion can be sensitive to grid-spacing 
effects if the grid in the cross-plane is not sufficiently fine. Other numerical studies, including the 
recent work of Myong and Kobayashi [14, 15] who used an anisotropic k-E modeling of the 
turbulence quantities, have found that the secondary flow originates near the corner in the entrance 
region. These computed results appear to be supported by the experimental evidence of Ahmed 
and Brundrett [21]. 

Comparisons of secondary velocity profiles by the present model with the D&R scheme are 
shown in Fig. 7 for streamwise locations of x ~ = 4 0 D h  and 8 4 / )  h . The experimental data of Gessner 
and Emery [6] are also included. Figure 7(a) shows the abscissa taken along the wall bisector with 
varying x2 coordinate. Our results tend to underpredict the maximum secondary velocity in 
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prediction; (lo) experimental measurements of Yokosawa et al. [22]. 

comparison with the experimental data. However, our underprediction is significantly less than the 
predictions of the D&R scheme, especially at a streamwise location of x'~ = 40Dh. In Fig. 7(b), 
where the abscissa is taken to be the corner bisector, at a streamwise location of x~ = 40Dh 
agreement with the experimental data is better. However, at x~ = 84Dh, both our simulation and 
the D&R model underpredict the secondary velocity by a fairly large margin. (This is also the case 
for the numerical work by Myong and Kobayashi [14, 15] (not shown), where there is a significant 
underprediction at x; = 84Dh along both the wall and corner bisectors.) Overall, there is no major 
difference between the two models except that our simulation shows slightly better agreement with 
the peak secondary velocity, more so along the corner bisector. 

In Fig. 8 contours of fully-developed axial vorticity Q'Dh/U~m~x for Re = 65,000 are shown (here 
fl' is the dimensional value of Q). The experimental results by Yokosawa et al. [22] are included 
for comparison. There is fair agreement between the two plots in the distribution and magnitude 
of the contours. It should be noted that inherent experimental errors associated with the 
measurement of velocity gradients and the use of a hot-wire anemometer, which necessarily induces 
disturbances to the flow field, probably account for the apparent asymmetry seen in the vorticity 
contour plot of Fig. 8(b). 

Figure 9 shows distributions of the lateral component of the Reynolds shear stress ui u;/U~, (or 
• t 2 u~ u : / U b )  at Re = 65,000. Unlike other figures, the contours of , , 2 , U,u3 /Ub  (or u , u ~ / U ~ )  are only 

symmetric about the wall bisector of a square duct. Our computed results bear fair resemblance 
to the experimental data of Yokosawa et al. [22]. Disagreement of the results is most pronounced 
in the center region of the duct, since we have effectively assumed potential flow with the kinematic 
viscosity set equal to zero in our computation. Despite this, the general distribution of the contour 
lines and magnitudes are deemed reasonable when compared with the experiments. There is a 
conspicuous absence of data close to the wall region, which is probably due to both the difficulties 
of measurement and the strong wall effect on the accuracy of measurement• 

" " - U2U2)/Ub with Figure 10 depicts the corresponding transverse Reynolds stress difference (u3u3 ' " : " 

the experimental measurements of Fujita et al. [20]. Other than the apparent asymmetry seen in 
the experimental data of Fig. 10(b) (which can be attributed to the uncertainty and difficulty in 
physically measuring small differences in the Reynolds stresses), the numerical data concur quite 
well with the former. Near the wall, the magnitudes of our computed contours are about equal 
to the experimental contours and their distribution shows the right trend. 
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In Fig. 11 we show the distribution of turbulent kinetic energy along the wall bisector (a) and 
along the comer bisector (b). Shown together are the experimental data taken from Gessner and 
Emery [6] at Re = 250,000. In Fig. l l(a), the distribution is in excellent agreement with the 
experiments, except near the wall. For Fig. l l(b), near the corner region, our calculation 
overpredicts k. In other regions, our distributions of k concur rather well with the experimental 
results and the numerical predictions by the D&R model. 

In our work, since the no-slip boundary condition at the wall is used in place of the common 
wall function specification, the wall shear stress and its distribution can be evaluated directly from 
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the streamwise velocity gradient at the wall. The fully-developed flow (mean) skin friction 
coefficient, Cf, calculated at Re = 50,000, 65,000 and 250,000, yields numerical values of 0.005155, 
0.004787 and 0.003710, respectively. These quantities compare vary favorably with the computed 
results of Myong [13] which, in turn, agree well with the experimental values reported in Refs 
[6, 23-25]. Figure 12 shows the distribution of the local wall shear stress (non-dimensionalized w.r.t. 
the mean shear stress) for fully-developed flow, which is compared with the experimental data of 
Yokosawa et aL [22] and Gessner and Emery [6] for Re --- 650,000 and 250,000, respectively. Plotted 
also is the numerical prediction of Myong [13]. The agreement of our results with both experimental 
and numerical data is excellent, with the wall shear stress increasing in magnitude from the value 
at the wall bisector towards the corner, and eventually decreasing towards zero right at the comer. 
It can also be seen that the effect of the Re on the shape of distribution is not very significant. 

5.2. Origin of the secondary flow 

In the literature, there is some disagreement on the origin and generation of the secondary flows. 
The contribution of the anisotropy of cross-plane normal stress has been considered to be of special 
importance for the generation of secondary flow by some authors, like Brundrett and Baines [3] 
who carried out measurements on the six Reynolds stress components in fully-developed 
square-duct flow. This view was further supported by Yokosawa et al. [22] in their experiments. 
Another school of thought [4, 26] suggested that the turbulent normal and shear stress terms, as 
they appear in equation (39), are of the same order and opposite in sign based on their experimental 
results. Perkins [26] considered that two different mechanisms are responsible for the likely source 
of secondary shear stress. One mechanism is the gradient of secondary velocities, and the other 
mechanism is associated with the distortion of the primary stress field in the comer, as deduced 
from the primary velocity gradients. Still, Gessner [27] claimed that it is not the anisotropy of the 
turbulent normal stresses that play a major role for the generation of secondary motion, but the 
transverse gradients of the primary shear stresses in the corner region. Finally D&R, after reviewing 
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the available experimental data, stated that gradients of normal and tangential stresses in the 
cross-plane are of much larger order than the convective and viscous terms in the streamwise 
vorticity equation, and it is their small difference (having the same order of magnitude as the 
convective terms) that drives the secondary motion. 

In our work, the analysis of Section 2, using an order-of-magnitude and power-series expansion 
resulting in equation (39), clearly supports the conclusion reached by D&R that the difference in 
the second-order gradients of the normal and transverse Reynolds stresses provide the main driving 
force for the secondary motion. In order to check this conclusion, two separate computations were 
made. In one run, all the terms pertaining to the right-hand side of equation (36) were evaluated. 
In a separate case, equation (36) was replaced by equations (38) and (39). 

Figure 13 depicts gradients of the normal Reynolds stresses c~2(u33 - u22)/ax2 ax3 and transverse 
Reynolds stresses - [(c32/~x 3 c~x3) - (~ 2/c~x2 c~x2 )]u23, which are found to be comparable in magnitude 
but opposite in sign. The difference between these two terms, denoted by A~, is shown concurrently 
on an ordinate scale magnified 10 times to depict the fine distribution. The figure distinctly shows 
that the secondary order of A~ (denoted by A~ 2) obtained with the leading order of A~ (denoted 
by A~j ) set equal to zero, follows the distribution of the full A~ rather well along different planes 
ofx~/B.  At x~/B = -0.98 (i.e. very close to the wall), A~2 is almost identical to A~, except for the 
peak and trough of the respective A~ and A~2 distributions which differ slightly more. For 
x~/B ffi -0.92, the difference between A~ and A~: is negligible, while at x~/B = - 0 . 8 4  the difference 
is only more pronounced for locations away from the duct corner. Overall, these three plots suggest 
that the source of the secondary motion in a duct lies in the second-order term of A~ which provides 
the essential driving force for the convection and diffusion of the vorticity term f~. These computed 
results reinforce our earlier analysis using expansion of the appropriate terms in Section 2.4, 
culminating in equation (39). 
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6. CONCLUDING SUMMARY 

By using an order-of-magnitude analysis with the vector-potential function formulation, we have 
been able to reduce the governing equations for turbulent flow in a square duct to a set of four 
parabolic and two Poisson equations. In turbulence modeling, the algebraic Reynolds stress model 
of Demuren and Rodi [11] combined with the two-layer approach of Chen and Patel [12] for 
turbulence viscosity has enabled the specification of no=slip boundary conditions at the wall in place 
of the commonly used wall functions. Together with the division of the flow domain into various 
regions to reflect localized physical phenomena, the resulting equations are numerically integrated 
using a finite=element representation in each cross=sectional plane with finite=difference marching 
in the streamwise direction. Such a combination of schemes is chosen to facilitate the future study 
of continuously changing cross=sectional shape in the strcamwise direction, seen in most jet=engine 
inlet configurations. The present results obtained for flow in a square-duct section compare well 
with the available experimental results for both primary and secondary flow quantities. The results 
are also in good agreement with other numerical works, like Demuren and Rodi [11] and Myong 
and Kobayashi [14, 15]. 
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A n  i m p o r t a n t  o u t c o m e  o f  e x p a n d i n g  t e rms  o f  in te res t  to d i f ferent  o rde r s  (Sec t ion  2.4) is the  

i n t e r p r e t a t i o n  ana ly t i ca l ly  tha t  the  or ig in  o f  s e c o n d a r y  m o t i o n  in a d u c t  can  be  la rge ly  a t t r i b u t e d  

to the  s e c o n d - o r d e r  t e rms  o f  the d i f ference  in the  g rad i en t s  o f  the  n o r m a l  and  t r ansverse  R e y n o l d s  

stresses.  Th i s  c o n c l u s i o n  differs  c o n s i d e r a b l y  f r o m  the v iew o f  Y o k o s a w a  et  al. [22], w h o  cons ide red  

the  c r o s s - p l a n a r  n o r m a l  stresses to be the  m a j o r  cause  o f  the  s e c o n d a r y  m o t i o n ,  and  suppo r t s  the 

c o n c l u s i o n  r eached  by D e m u r e n  a n d  R o d i  [1 1]. 
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