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Abstract. In this paper, a constitutive model of elasticity coupled with damage suggested by Lemaitre et al. [1] is used. 
The macroscopic stress-strain response of the model includes two stages: strain hardening and strain softening. The 
basic equation is derived for the anti-plane shear problem. Several lowest order asymptotic solutions are obtained, and 
assembled for the crack-tip fields. 

1. Introduction 

In fracture mechanics it is usually assumed that the materials both nearby and far away from the 
crack tip are non-damaged. In fact strain concentration near the crack tip always leads to 
nucleation, growth and coalescence of microcracks or microvoids. Consequently, the constitut- 
ive behavior of the material near the crack tip becomes significantly different from that of the 
material far away from the crack tip. Usually, the damage leads to weaker singularity of ~he 
crack-tip field. Taking account of damage in the constitutive law can better reflect the act,tal 
behavior of materials. 

In the last decade, although a lot of progress has been made in the investigation -c frac- 
ture associated with damage, few solutions are available on the crack-tip field in da.Jaaged 
materials. Bui et al. [2] studied the dynamic propagation of mode-Ill crack in elastic and 
elasto-plastic damaged medium and obtained the closed form solutions. A finite element 
solution was obtained for mode-I crack. Chow et al. [3] proposed an anisotropic damage 
model. The model was next applied to investigate the crack-tip shielding effect due to 
microcracking, and a closed form asymptotic solution for a stationary crack under plane 
strain mode-I loading was obtained. Recently, Wang and Chow [4] investigated th~ effects 
of the distribut6d damage in terms of the damage variable D on the HRR field. D,~wever, 
the materials in both [3] and [4] are not softening. Hao, Zhang and Hwang [5_1 (i~,"e- 
after denoted by HZH) analytically obtained the anti-plane shear field of a stationary 
crack for the elasto-brittle damaged material under the condition of small scale damage. 
In the present paper the near-tip fields for mode-Ill crack in a class of elasto-damaged 
material is obtained. The adopted constitutive relation can reflect the so-called post-peak 
strain softening behavior which appears usually in deformation process of non-metals, such as 
concrete. 
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2. Constitutive relations 

Following Lemaitre et al. [-13 the constitutive relations for an isotropic elastic material with 
isotropic damage are as follows 

alj = 2/~(1 - D) ~ij + l -~vv~kk61j  , (2.1) 

where # is the elastic shear modulus, v the Poisson's ratio and D the damage parameter. For the 
convenience of investigating the anti-plane problem, we define the equivalent shear strain and 
equivalent shear stress as 

11 , , ~1/2 (2.2) geq ~ t '2~'i j~ij!  

~ 1  , ~ x l / 2  
72eq = [~Gi j tT i j  J , (2.3) 

where e'ij and ~'i~ are deviatoric tensors of strain and stress, respectively. Following [1], the 
damage evolution law is taken as 

~(eeq/eo)'deeq, when ~eq ---- eD and dgeq  = deD >1 0 

dD -- (0, when eeq < eD o r  d,Seq < 0 
(2.4) 

where s is a material parameter, ~D is the maximum of ee~ in the deformation history of the 
material, 8o a reference strain which will be related to the rupture strain of the material. 
Irreversibility of damage requires dD >/0. For the case of active loading (de~ >/0) from the 
virginal state D = eD = 0, the integration of (2.4) gives 

D = (g, eq/FoR) s+ 1, (2.5) 

where eR = [(s + 1)e~] 1/~S+1~ is the shear rupture strain of the material. It is natural to assume 

s + l  > 0 .  (2.6) 

The relation between %q and e~q can be obtained from (2.1)-(2.5) 

"feq : 2p[1 - (g, e q / e R )  s+ l~]F, eq. (2.7) 

Noticing (2.5) and (2,7), if e~q = eR, we have D = 1, z~q = 0, the materials are fully damaged and 
cannot sustain any load. The %q ~ e~q curves described by (2.7) are shown in Fig. 1. There is a 
maximum of Zeq for every curve which is denoted by Ze*q. The value of e~ o and D corresponding to 
r* o are denoted by e*q and D*, respectively. And we have from (2.7) 

D *  = (e*q/~R) ~+ ~ = 1 / ( s  + 2). (2.8) 
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Fig. 1. Equivalent shear  stress vs. equivalent shear strain. 

The domains of D < D* and D > D* can be called hardening and softening zone, respectively. 
The domain of D = 1 is called fully damaged zone. Letting s ~ ~ ,  the material shown in Fig. 1 
becomes the elasto-brittle damaged material considered by HZH [5]. 

3. Basic equation and its asymptotic solutions 

Utilizing cylindrical coordinates (r, 0) centered at the crack tip, (2.1) becomes for the anti-plane 
problem 

z = = # ( l - D ) 7 ~ ,  ~ = r ,  0, (3.1) 

where % = o,=, 7, = 2e,=. The equation of equilibrium is 

&r ~r 1 &0 
8-~- + --r + -r --80 = 0. (3.2) 

The geometric relations for small deformation are 

8w 1 8w 
7 r = ~ r ,  7O-r 00' (3.3) 

where w is out-of-plane displacement. Associating (3.1), (3.2) with (3.3), the basic equation is obtained 

(1 - -  D ) V 2 w  --  ~w'g?D = 0, (3.4) 

where V and V 2 = V.g7 are gradient and Laplacian operator, respectively. Making use of (3.3), 
(2.2) and (2.5) the damage parameter D can be denoted as 

D = /2eRk\Or /  + ~-@ j j . (3.5) 
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Assume that the leading term of the asymptotic expansion of the displacement field has the form 
with variables separable 

W/2eR = WO + rqF(O) + {higher order terms in r}, (3.6) 

where Wo = const, is the shear opening displacement at the crack tip. When the fully damaged 
zone appears ahead of the crack, Wo v ~ 0 is possible. Obviously Wo makes no contribution to the 
strains. In (3.6) q is the singularity exponent of the leading term of the displacement field. For the 
strain to be bounded, q ~> 1 is required. The value of q will be determined or discussed according 
to the different cases. For the sake of simplicity, denote F(O), dF/dO and d2F/dO 2 by F, F' and F". 
Substituting (3.6) into (3.5), we have 

D = r tq- 1)¢s+ 1)(q2F2 + F,Z)¢s+ 1)/2 + {higher order terms in r}. (3.7) 

Making use of (3.6) and (3.7), Eqn. (3.4) can be rewritten in the order of the power of variable r as 
follows 

rP~(qF + F") - rP2[(_q2F + F")!q2F 2 + F '2 )  ~s+1)/2 -1- q(q -- 1)(s + 1)F(q2F 2 + F'2) (s+l)/2 q- 

+ (s + 1)F'2(q2F + F")(q2F 2 + F'2) ts- 1)/2] + {higher order terms in r} = 0, (3.8) 

where the notations are introduced for abbreviation 

P l = q - 2  t 
P2 ( s + 2 ) q - ( s + 3 )  " 

(3.9) 

In (3.8), the 1st and 2nd parts represent the contributions of elasticity and damage to the basic 
equation, respectively. We distinguish different cases of the relation between Pl and P2, and 
retain hereafter only the leading term in all equations. 

3.1. Case Pl = P2. 

The elasticity and damage terms are equally dominant and from (3.9) q = 1. Equat ion  (3.8) 
reduces to 

(F + F"){(F 2 + F'z)¢s-1)/2[F 2 + (s + 2)F '2] - 1} = 0, 

which can be split into two equations 

F + F" = 0, (3.10) 

(F 2 + F'2)¢s-1)/2[F2 + (s + 2)F '2] = 1. (3.11) 

Differentiating (3.11) against 0, we get 

F'(F 2 + f f '2 ) ( s -  3)/2 {(s --  1)(F + F")[F 2 + (s + 2)F '2] + 

+ 2(F 2 + F'2)[F + (s + 2)F"]} = 0. (3.12) 
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Noticing F 2 + F '2 ¢ 0, (3.12) can be divided into two equations: 

r '  = 0, (3.13) 

(s -- 1)(F + F" ) [F  2 + (s + 2)F '23 + 2(F 2 + F 'Z)[F + (s + 2)F"] = 0. (3.14) 

The solution for case p~ = P2 should satisfy one equat ion among (3.10), (3.13) and (3.14). The 

general solution of (3.10) is 

F(O) = A cos 0 + B sin 0, (3.15) 

where A and B are constants to be determined. Accordingly, (3.6), (3.1) and (3.5) become 

W / 2 e  R =- W o + r(A cos 0 + B sin 0) 

zy [yy )  B • (3.16) 

= = + 1  - -  c o n s t  

The domain  described by (3.16) is called constant  damage zone. 
Obviously, F(0) = const, is the solution of (3.13). The solution should also satisfy (3.11) which 

is the equat ion before differentiation. Then F ( 0 ) =  1 and D(0)=  1, i.e. the material is fully 
damaged. Hereafter  we shall treat the fully damaged zone as a void in which the stresses are zero 
everywhere, the displacement and strains can not  be described. 

To  solve (3.14) the transform is introduced 

F(O) = X(O) cos Y(O) 
F'(O) = S(O) sin Y(0)J" (3.17) 

Then (3.17) and (3.14) lead to 

X'(O) = X(0)[1  + Y'(0)] tan Y(O), (3.18) 

Y'(O) = - [ 1  + (s + 1)sin 2 Y(O)]/[3 + ( s -  1)sin 2 Y(0)]. (3.19) 

Under  the boundary  conditions X(O) = Xo,  Y(O) = Yo, at 0 = 0o, the solutions of (3.19) and 
(3.18) are 

s - 1 2x/s  + 2 
0 -  0o + s ~ - i - E Y ( 0 ) -  Yo] + s + 1 

- t a n - l ( x / s  + 2 t a n  Yo)] = 0, 

X(O) = Xo{[1 + (s + 1)sin 2 Yo]/[1 + (s + 1)sin 2 Y(O)]} I/~s+11 

As before, satisfaction of (3.11) requires 

Xo[1 + is + 1)sin 2 Yo] 1/~s+1) = 1. 

[ t an -  l (x /s  + 2 tan Y(O)) - 

(3.20) 

(3.21) 

(3.22) 
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From (3.21) and (3.22) we have 

X(O) = [1 + (s + 1) sin 2 Y(0)]- l/is+ 1) (3.23) 

Substituting (3.23) and (3.17) into (3.6), (3.3), (3.1) and (3.7), we have 

W/2eR = WO + rX(O)cos Y(O) 

7 cos } 

Y(O) J . (3.24) 

D(O) = [X(0)] ~÷1 = [1 + (s + 1)sin 2 Y(0)] -1 

From the last equation in (3.24) we know 

D* ~< D ~< 1. (3.25) 

Therefore the domain described by (3.24) is called the softening zone. In summary the case 
P~ = P2 has two solutions, i.e. (3.16) and (3.24). 

3.2. Case px > P2 

In (3.8) the damage term dominates, q < 1 from (3.9). Because the strains must be bounded in both 
hardening zone and softening zone, the condition q < 1 which leads to the singularity of strain is in 
contradiction to the constitutive law. Consequently the case pl > P2 must be abandoned. 

3.3. Case Pl < P2 

In (3.8) the elasticity term dominates. From (3.9) q > 1. The basic equation (3.8) reduces to 

(3.26) qZF(O) + F"(O) = O, 

whose general solution is 

F(O) = A cos(q0) + B sin(q0). 

In the domain controlled by (3.26), we have 

w/2~R --- Wo + r q [A cos(q0) + B sin(q0)] 

D = r (q-  1)(s+ 1)[q(A2 + BZ)l/2]s+ 1 

~,~ (q_l)~A(cos(qO) + B sin(qO) ~] 
/~(1 i )  Jz~ R q r  

( - A  sin(q0) + B cos(q0)J 

(3.27) 

,. (3.28) 
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Because q > 1 and s + 1 > 0, (3.28) describes a hardening zone wherein the strains, stresses and 

damage tend to zero as r ~ 0. 

4. Construction of  the crack-tip field 

Denote  the boundary  line between any two domains by F and the discontinuity of quanti ty 
across F by [~']r.  For  anti-plane shear problem the basic contiguity conditions are 

[ w ] r  = [ ~ o ] r  = O. 

By use of (3.6) and (3.1), the above two conditions can be expressed as follows 

[ F ] r  = 0, (4.1) 

[(1 - D)70]r = 0. (4.2) 

Equat ion (4.2) can be satisfied in two manners  

(a) [70]v = [D]r  = 0, i.e. [ r ' ] r  = 0, 
(b) [70]r :~ 0, [D]r  :~ 0, i.e. [ F ' ] r  :/: 0. 

The traction-free condit ion v0 = 0 should be satisfied at the crack surface and at the boundary  
line neighboring with the fully damaged zone (i.e. void). 

Due to the difference of the exponent  q, it is obvious that the hardening zone (q > 1) and the 
softening zone (q = 1) can not  be neighbours to each other. 

In constructing the crack-tip field, we give priority to the scheme shown in Fig. 2(a). In the 
scheme the fully damaged zone (D) is ahead of the crack, zones (S) and (C) are described by 
(3.24) (D*~< D ~< 1) and (3.16) (D = const.), respectively. F rom the condit ion on the crack 
surface, the coefficient B = 0 in (3.16). At Fo the contiguity condit ion is 

D =  1, a t 0 = 0 o .  

Using (3.24)4, the above formula leads to 

s i n Y ( 0 o ) - s i n Y o = 0  or Y o = n n ,  n = 0 , + - l , + _ 2 , " ' .  

Without  loss of generality, take n = 0. Thus, (3.20) can be reduced to 

s - 1 2~/s + 
0 - Oo + ~ - 1  Y(O) + s + l  2 t an -  1 [N/S _~_ 2 tan Y(0)] = 0. (3.20)' 

At F1 the contiguity conditions (4.1) and (4.2) respectively become 

A cos 01 = X~ cos YI, (4.3) 

- A ( 1  - AS+l)sin 01 = (1 - X] + x)X 1 sin YI. (4.4.) 
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Fig. 2. Schemes of constructing crack-tip field. 

Denot ing Y(01) by Y1, from (3.23) we have 

X1 =- X(Oa) = [1 + (s + 1)sin z Y1] -1/~s+u 

Letting 0 = 01 in (3.20)', we have 

s - ] 2, I s  + 2  
01 - 0o + - -v~-  Y1 + ~ t a n -  ~ ( , , / s ' ~  + 2 t an  Yt) = 0. 

S + l  S + l  - -  
(3.20)" 
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Eliminating A from (4.3) and (4.4), we obtain a relation between 01 and Y1. Associating the 
relation with (3.20)", the values of 01 and Y1 can be determined for assigned s and assumed 0o. 
The above mentioned process has been done for s = 2, 7, 14, 23, 34, 47, 62, 79, and 98. The 
shooting 0o values are taken in the interval [0, n] in increments of 0.1. Disappointingly, no 01 is 
found which satisfies 0o ~< 01 ~< n. Therefore the solution does not exist for the scheme in Fig. 
2(a). After examination of all possible schemes of the crack-tip field with the upper half plane 
composed of no more than three domains which could be softening, constant damage or fully 
damaged zones, we found that there exist only two solutions corresponding to the schemes 
shown in Fig. 2(b) and 2(c). 

In the scheme in Fig. 2(b), (3.16) describes domain (C). The antisymmetric condition leads to 
Wo = A = 0 in (3.16). So (3.16) becomes 

W / 2 e  R = Br sin 0 ") 

7J.,v ~ O 

ry =/t(1 - D)Ty = #(1 - D)2eRB ' 
D = B s + l  

0 ~< 0 ~< 02. (4.5) 

Domain (D) is the fully damaged zone. Domain (S) is the softening zone represented by (3.24), 
where D* = Omi n ~ D ~< 1. Thus the amplitude factor B of the crack-tip field should meet 
Bml n ~ B ~ 1 from the contiguity condition at F2. The value of Bmi, depends on s 

Bmin = ~minD 11(s+1) =- (S -k 2) - l / ( s + l ) .  

Introducing a normalized amplitude factor B=(B-Bmi,) / (1--Brain) ,  w e  always have 
0 ~</~ ~< 1 for any s. The curves of 01 and 02 against /7 are depicted in Fig. 3. For s = 2 the 
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Fig. 3. Variation of angles 0, and 02 with/~ in scheme 2(b). 
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angular distribution curves of 70, D = (t3eq/~,R) s+ 1 and req are pictured in Figs. 4, 5, 6. The curves 
indicate that F2 is a weak discontinuity line. Figure 5 shows that the active loading condition 
deeq/> 0 is satisfied everywhere as B increases. 

In the scheme shown in Fig. 2(c), the boundary line F is perpendicular to the crack-plane. The 
fully damaged zone (D) is situated by the flank of the crack and constant damage domain (C) is 
ahead of the crack. As in the scheme in Fig. 2(b), the displacement, stresses and damage are 
represented by (4.5) in zone (C). Constant damage zone (C) of the scheme 2(c) differs from that of 
the scheme 2(b) in that the constant damage value D can vary in range (0, 1). Depending on 
value of D, zone (C) can be hardening or softening zone in the scheme 2(c). In both schemes, Fig. 
2(b) and Fig. 2(c), fully damaged zone is situated by the flank of the crack. About this point 
discussion will be given in the next section. 

The last scheme is shown in Fig. 2(d) which corresponds to q > 1, i.e. case Pl < P2. The 
hardening zone (H) is represented by (3.28). The fully damaged zone is located ahead of the 
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crack. The conditions v0 = 0 at 0 = 0o and ~ can be written 

- sin(qOo)A + cos(qOo)B = 0~. 

J sin(qn)A + cos(qn)B = 0 
(4.6) 

Nontrivial  solution requires 

- sin(q0o) cos(q00) 

-- sin(qn) cos(qn) = 0. 

Hence 

q ( l t - O o ) = n z ,  n = O , _ + l ,  + 2 , . . . .  

Due to q > 1, n must  be positive. Considering only the leading term of the asymptotic  solution, 

we should take n = 1, that  is 

q = ~z/(Tz - 00) = 1/(1 - #), /~ = 0o/m (4.7) 

F r o m  (4.6), we have 

B/A = tan . (4.8) 

Whenever  the fully damaged zone angle 0o (or fl value) is obtained, the singularity exponent q 

and the angular distribution functions in (3.28) can be determined. 
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5. Discussion and conclusion 

In Section 4 three possible solutions of the crack-tip field are found, i.e. schemes shown in Figs. 2(b), 
2(c) and 2(d), which totally satisfy the basic equation and all required conditions. Therefore they are 
all mathematically reasonable. However except for the scheme in 2(d), in both schemes 2(b) and 2(c) 
the fully damaged zones (or, say, the voids) are behind the crack tip. The actual observations show 
that the void or the most seriously damaged zone appears ahead of the crack tip generally, although 
the major observations proceed in the condition of mode-I. It is for this reason, that the schemes 
which were obtained four years ago have not been submitted for publication till now. Recently, the 
authors obtained a closed solution [5] of mode-III problem for an elasto-brittle damaged material 
(equivalently s ~ 0o in (2.5)) in which the schemes 2(b) and 2(c) (with s ~ ~ )  can be implemented as 
the local field around the frontier of the fully damaged zone situated ahead of the crack tip. 

First, let us examine the scheme in Fig. 2(b) in which the softening zone (S) is described by 
(3.20). Letting s ~ oc and taking 0o = 01, Yo = Yx = 0 at F1, (3.20) reduces to 

Y(O) = 01 - -  0, (5 .1)  

while (3.23) gives X(O) ~ 1 and (3.24) leads to D(O) ~ 0 in domain (S). The contiguity conditions 
at F2 become 

cos[Y(02) ] = B sin 02" ( 

sin[ Y(02)] = B c o s  0 2 f  ' 
(5.2) 

Combining (5.1) and (5.2) we have 01 ~½~ and B ~ 1 while 02(0 < 02 < 01) is undetermined. 
From (4.5)4 D = B s + l  ~ 0 in domain (C). Then zones (C) and (S) coalesce to an undamaged 
elastic zone, so the angle 02 is of no significance. The crack-tip fields in both (C) and (S) become 
(from either (4.5) or (3.24)) 

w ~ 2eR r sin 0 ) 

rx = 0 l" (5.3) 
Zy -*  2 e R ~  

D ~ 0  

Thus the scheme in Fig. 2(b) coincides with the local field around the frontier of the fully 
damaged zone in the HZH solution (see (4.6)B and (4.5)B in [5]), as shown in Fig. 7. 

As for the scheme 2(c), it is obvious that the fields of domain (C) are described by (5.3) under 
the conditions of s ~ ~ ,  B --, 1 and B s+ 1 ~ 0 as well. And so the relation between the scheme 
2(c) and HZH solution zan be displayed on Fig. 7, too. 

Finally, we would c apare the scheme 2(d) with [5]. Substitute (4.7) into (3.28) and write the 
Cartesian componen.'~ of stress 

W/2eR = WO + A o  r l / ( 1 -~ )  COS[(rc -- 0)/(1 -- fl)] ) 

O = ?s+ 1)a/¢1-t~)[x/A2 + B2/(1 _ fl)],+ 1 

r r (sin[(~z - O)fl/(1 - fl)] J 

for any value of s (5.4) 

where Ao = Asec[Tt/(1 - fl)], AI = A o [ 2 e R # / ( l  - -  fl)]. 
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schemes 2(b) 2(c) s oo 

can be regarded as the local solution 

around frontier of fully damaged zone 
contour of fully damaged zone 

of HZH solution 

......... D - - ~  

0 
Fig. 7. Relation between schemes 2(b), 2(c) and HZH solution [5]. 

From (5.4)2 D ~ 0 as s ~ ~ and r ~ 0. The forms of (5.4)1 and (5.4)3 coincide with those of the 
asymptotic expansions of the HZH solution at the crack tip (see (4.6)c and (4.5)c in [5]). Guo et 
al. [6] obtained the finite element solution for the material of s ~ ~ in which the angle 0o 
subtended by the fully damaged zone is above 42.4 °, corresponding to q ~ 1.31 in (4.7). It is 
reasonable to expect that the angle 0o, consequently q, will depend on the material constant s. 

As discussed above, the validity of scheme 2(d) is undoubted both mathematically and 
physically. It is a fly in the ointment that up to now 0o and q should be determined by finite 
element method. By means of comparing with [5] we have sought an acceptable physical 
explanation for the schemes 2(b) and 2(c), that is, they may be the local solutions around the 
frontier of the fully damaged zone. Based on the explanation we can expect that for any value of 
s 4: Go the frontier of the fully damaged zone which is ahead of the crack tip may be inclined or 
perpendicular to the x-axis, respectively, corresponding to the scheme 2(b) and 2(c), as shown in 
Fig. 2(b) and 2(c). Perhaps, gentle readers would ask whether the schemes 2(b) and 2(c) with fully 
damaged zone behind the crack tip can be directly regarded as the crack-tip fields. That remains 
to be examined by the analytical full field solution or the experiments of mode-Ill. 

In principle, the constitutive model and the method of attack in the present paper can be 
extended to the mode-I problem, but with much more mathematical difficulties. 
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