
Acta Mechanica 101, 59-68 (1993) 
ACTA MECHANICA 
~) Springer-Verlag 1993 

A simple approach to solve 
boundary-value problems in gradient elasticity 
C. Q. Ru and E. C. Aifantis, Houghton,  Michigan 

(Received May 19, 1992) 

Summary. We outline a procedure for obtaining solutions of certain boundary value problems of a recently 
proposed theory of gradient elasticity in terms of solutions of classical elasticity. The method is applied to 
illustrate, among other things, how the gradient theory can remove the strain singularity from some typical 
examples of the classical theory. 

1 Introduction 

A higher-order strain gradient theory has been proposed by Aifantis and co-workers [1 ] -  [4], in 
order to address the heterogeneity and pattern development in elastic deformation and plastic 
flow. In the case of plasticity, the gradient theory predicts finite thicknesses for shear bands, as 

well as spacings and velocities for travelling deformation bands, in examining the effect of 
gradients on the structure of the crack tip, in particular, Altan and Aifantis [5] adopted a simple 
constitutive equation of the form 

~r = 2(tr g) 1 + 2#~ - cV2[2(tr ~) I + 2#~], (1) 

where (a, ~) are the stress and strain, (2, #) the Lam6 constants, V 2 the Laplacian and c a constant 

gradient coefficient. Making use of (1), Altan and Aifantis have solved the mode- I l l  crack 
problem and found that  the strain is finite at the crack tip but the stress remains singular, as in the 
classical theory. In this paper  we report  additional interesting implications of(l)  for some typical 

problems which are locally singular within the f ramework of classical elasticity theory. In doing 
so, a few general results are obtained which allow a direct relation between solutions to boundary  

value problems of (1) and solutions corresponding to the classical theory (c ~ 0). 
On introducing (1) with c ~ 0 and c + 0 into the equilibrium equations (div ~ = 0) we obtain 

the following differential equations for the displacement vector u(2~ = gu + [vu]r): 

L u  ~ = O, L =- l~V 2 + (2 + #) grad div, (2) 

for the classical case (c - 0), and 

(1 - c V  2) L u  = 0 (3) 

for the gradient-dependent case (c + 0). In general, one has to solve the fourth-order partial 
differential equation (3) subject to appropriate  boundary  conditions. Nevertheless, the following 
observation can reduce the complexity of this task and greatly facilitate the obtaining of 
solutions in certain cases. 



60 C.Q.  Ru and E. C. Aifantis 

Due to the fact that the operators L and V 2 commute, it is noted from (3) that the vector field 
(1 - cV 2) u satisfies the classical equilibrium equations (2). Thus, if(1 - c V 2) u could be identified 
with the classical displacement field u ~ of a certain classical boundary-value problem of linear 
elasticity which can readily be solved, then the original fourth-order problem (3) is reduced into 

the following second-order problem: 

(1  - c V  ~) u = u ~ . ( 4 )  

Obviously, the solution of (4) is more conveniently obtained and, in doing so, a connection 
between the "gradient" and the "classical" solutions is readily established. Moreover,  it turns out 
that (4) is further simplified when it is used to obtain the structure of the displacement (and stress) 
field near singularities (and discontinuities). The details of the above ideas and some typical 
examples will be explained in the following Sections. 

2 General results 

First, we establish the following straight-forward result for the case of traction boundary value 

problems. 

Theorem 1." Let the traction vector s be prescribed at the whole boundary S (enclosing the 
region V) 

s = a n = s o  o n S ,  (5) 

where n is the unit vector normal to S and a is given by (1). Then the gradient solution u of (3) 
satisfies (4) where u ~ is the classical solution of (2) satisfying the same traction boundary 
condition. 

In other words, u ~ is obtained from the classical boundary value problem 

u ~  ~  in V; ~r~ o n S ,  (6.1, 2) 

where a ~ is expressed in terms of u ~ through the classical Hooke's law 

a ~ = H~ ~ = 2(tr s ~ I + 2#5 ~ (7) 

= Du o ~ l(~z~o + (~.o)T), (s) 2 o 

with T denoting, as usual, transposition. 

Proof." It follows from (3) and (1) that (1 - cV 2) u satisfies the classical equilibrium equation (2) 

and also the classical constitutive equations (7), i.e. 

= H D ( 1  - c V ; )  u .  (9) 

In view of (5), (6.2) and the uniqueness of u ~ it then follows that (1 - cg 2) u satisfies (4) and that 

~r = ~ o .  ( 1 0 )  

This result, i.e. Eq. (10), has also been obtained by Altan and Aifantis [5} for the mode-I l l  
crack problem. [In this connection, it is emphasized that the validity of conclusions (4) and (10) of 
Theorem 1 has nothing to do with the extra gradient boundary conditions required as a result 
of the higher gradient terms in (3)]. 
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Next, in line with Altan and Aifantis [5], we adopt  the following extra boundary  condition: 

~2 u 
- 0 o n  S .  ( 1 1 )  0n 2 

Then, it turns out that u can equivalently be found as the solution of the problem 

C32// 
u : ( 1 - c V  2) u = u  ~ in V, ~?n~ 5 = 0  o n S .  (12) 

It  remains to consider existence and uniqueness of the solution but this general question is not 

addressed here. Nevertheless, the examples of Section 3 indicate that the problem (12) is 

conveniently solved for many  important  cases and that uniqueness is ensured. 
For  displacement boundary  conditions, the conclusions of Theorem 1 are no longer valid, in 

general. However,  the following result holds for a large class of problems. 

Theorem 2." Let the traction s be prescribed in a part  S~ of S, and the displacement u be 

prescribed in the remainder part  $2, where S = $1 + $2 and $2 is located at a plane (say, y - 0), 

i.e., 

L(1 - cV 2) u = 0 in V, (13.1) 

an = So on $1, (13.2) 

OZu 
- 0 on $1, ( 1 3 . 3 )  

~n 2 

u = Uo on $2, ( 1 3 . 4 )  

02u 02u 
- = 0 on $2. ( 1 3 . 5 )  

3n 2 --  Oy2 

Then relationship (4) is still true provided that  u ~ is the solution of the following problem: 

Lu  ~ = 0 in V, (14.1) 

u ~ = a ~  = so on $1, ( 1 4 . 2 )  

u ~  C \ o x  2 + Oz 2 j  on $2 where y = 0 .  (14.3) 

Proof." To establish the proof, it is sufficient to verify that ( 1 -  cV a) u satisfies indeed the 
displacement boundary  condition (14.3) on $2. 

In fact, from (13.5), we have 

02u 32u 
VZu = ~Zx2 + ~ on $2. 

It then follows from (13.4) that 

02uo ~2u o 
V2u = Ox~- 2 + ?z- ~ -  on $2, 

or that  (1 - ci72) u satisfies (14.3). 

Obviously, for the cases discussed in Theorem 2, we still have the result of (10). Therefore, to 
obtain the stress field a, it is sufficient to know the classical stress field a ~ corresponding to u ~ 
defined by (14). This reduces the gradient elasticity problem (13) into a classical problem (14). 
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Finally, it may be readily seen that Theorem 2 may be extended to more general cases where 
$2 is composed of a finite number of planes, and further, by combining the Theorems 1 and 2, 
conclusions (4) and (10) may be extended to the cases of mixed displacement-traction 

boundary-valued problems. 

3 Examples 

3.1 Crack  problems 

Consider a homogeneous material in the (x, y) plane, in which a crack is located at 

- a < _ x < _  +a,  y = 0. 
Assume that tractions are prescribed on the crack surfaces, and let u and u ~ be the "gradient" 

and "classical" solutions, respectively (corresponding to the same traction boundary value). 

Adopt the extra boundary condition (11), and let 

(u+ ~ - u_ ~ = g~ - a  < x <- a, y = O. 

(u+  - u _ )  = g ( x ) ,  - a  <- x < a, y = 0 

be the crack-opening displacements. It then follows from (12) that (' -= d/dx) 

g - cg" = gO. (15) 

This gives a very simple relationship between both the "gradient" and "classical" crack-opening 
displacements. The general solution of (15) for c > 0 is 

g(x) = ~ sh g~ dt + c le  x/1/~ + r e(-x)/V~, - a  <- x <_ a, (16) 

v ~ 
XO 

where Xo may be chosen arbitrarily and c~, c2 are arbitrary constant vectors. 
For  example, for the classical constant traction crack problems, we have that 

g~ = b ~ a  ~ - x 2, - a  _< x _< a, (17) 

where the constant vector b depends on the applied traction and the elastic constants (e.g. for 

-c o 
mode-III, b = --, where zo is the boundary traction). 

# 
If one requires that 

g( - -a )  = g(a) = O, (18) 

then g(x) is found from (16) as 

( a + x ' ~  +a 

1 i g ( x ) -  ( ~ )  sh ( ~ - - ) g  ( t ) d t - ~  sh L - - ~ - ) g  ( t )dr .  (19) 
l / c s h  2a - ,  - - a  
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Substitution of (17) into (19) gives the gradient crack opening displacement as 

a + x'] 

~ sh \ - - ~ - /  (20) 
g(x) - 

/ 2 a \  
1/~ sh [ ~ ) _ o  _o 

In particular, in contrast to the classical solution g~ the gradient solution g(x) has a finite first 
derivative at the crack-tip, i.e., 

f a - t b / x  - t \  F v  s h ( - ~ - - ) l / a a - t 2 d t - ~ c  sh ~ / a ' - - t a d t .  

i sh 1 ~ 2 _  1.2 dt b 

g'(--a)= a / 21 ' \  + 0 .  (21) 
c sh 

In addition, from (16) and (17), we see that g"( -a)  = g"(a) = O. 
In [5], Altan and Aifantis have adopted condition (11) for the whole axis of x and therefore, 

from (5), one arrives at 

u ( x , O ) - c u ' ( x , O ) = u ~  0 < x <  oo, 

where u ~ is the classical displacement. In particular, for x > a, u~ 0) =- 0 and thus u(x, 0) has the 
form cle -(vv~, for x > a, where cl is a constant. This is in agreement with the result of[5] where 

nroa ( ~ c )  cl = ~ I~ and I ,  is the modified Bessel function. 

It is pointed out that if we assume that c < 0, the general solution of (15) is 

[ i " x - - t  x x g(~) - ~ sm --~/-c g~ a~ + ,.~ sin ~__~ + c2 cos /-~c-- 
- a  

Furthermore, from (18), we have the following crack opening displacement: 

x + a  

i s i n -  f _ 1 s i n ~ g ~  dt i ~ - c  . a - t  o 
g(x) ]//~-c V - ~  ~ / -C  sin 2 a  s m l ~ _ c g  (t) dt, 

--a ~ --a 

and its first derivative at the crack-tip reads 

g ' ( - a )  - 

c s i n -  

1 ( -  a - t 

J sin g~ dt, 2a ~--i 

suggesting that the crack surfaces may have an oscillatory or undulated profile (but not 

interpenetrated if c is sufficiently small). It turns out that if (2a / ] f -~)  = n~ where n is an integer, 
then the crack faces (profile) may pick more than one wavelength (non-uniqueness). 
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3.2  F l a m a n t  p r o b l e m  

Consider the so-called Flamant  problem for the half-plane y < 0, with a (vertical) concentrated 

force P at the origin. The classical displacement fields are given in [6] as 

u~ ~ - P 0 - + - -  
2n(2 + #) 2rc#r 2' 

p x  z 
uY o _  P ( 2 + 2 # )  l o g r - - -  

2~#(2 + #) 2 n # r  2' 

where u 9 has a singularity at the origin and r 2 = x 2 + y2. F rom Theorem 1, the gradient field 

u may be found from (12). Let the surface displacements be u~(x, O) = h(r), u,~ 0) = h~ at 

y - 0. Then we have (' =- d/dr)  

P 
h - ch" = h ~ - P(2 + 2#) log r - - -  (22) 

2rc#(2 + #) 2n# '  

whose solution reads 

r 

h = 4n#-P(2]/c (2 + 2#)+ #) ,~(d " - ' ) / w  - e <'-r)/v~) log t d t  + c S  'v~ + cze <-~/v~ - 2n--7' P (23) 

0 

where c~ and c2 are undetermined constants. 
It  turns out that c~ should be chosen such that to eliminate the exponential singularity e ~/v~ as 

r ~  +0% i.e. 

P(2  + 2~) 
] e (-~ log t dr.  

cl  = 4 n #  ~/c  (2 + #) q2 
0 

Furthermore,  one may  note that  h'(0) = ~ (cl - c2) is always finite. It is thus natural  to assume 
v -  

that uy(x, 0) has a continuous first derivative at x = 0 and therefore h'(0) = 0. Thus, it may be 

concluded that cl = c2 and that 

r e ( - ~  log t d t  , (24) = + + 

where an unimportant  constant  - has been omitted. 

Obviously, the singularity at x = 0 disappears in the expression (24) and this is another  
classical case for which the gradient term eliminates a physically undesirable singularity. 

For  the 3-dimensional axisymmetric (the so-called Boussinesq) problem, a similar procedure 

leads to the following Bessel's equation: 

h - c  h" + - h '  = - -  
r r '  

where b is a constant. The discussion of this problem is postponed until a future more  detailed 
paper  [8]. 
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3.3 Punch problem on half-plane 

As a simple application of Theorem 2, we consider the following punch problem for the 

half-plane y < 0: 

ayy=crx~=O at y = 0 ,  x < - - a  or x > a ,  

U = U o  at y = 0 ,  - a _ < x - < a .  

From Theorem 2, let u ~ be the classical solution of the following boundary value problem: 

%yo =~rxyo = 0  at y = 0 ,  x < - a  or x > a ,  

u ~  at y = 0 ,  - - a < x - < a .  

Then, (5) and (11) will hold. Thus, the punch problem of gradient elasticity may be reduced to 

another punch problem of classical elasticity. 

In particular, ifuo" = 0, u ~ and u have the same boundary value. In other words, the gradient 

solution and the classical solution give the same stress distribution. However, it should be 

noticed that the discontinuity of uo' will give rise to a singular boundary value of u ~ 

4 Inter face  p r o b l e m s  

In this Section we consider a certain class of interface problems where two different 

gradient-dependent elastic materials are bonded by a plane (say, y = 0) and their gradient 

coefficients are the same (cl = c2 = c). In this case, we can establish the following 

Theorem 3: Suppose that 

(i) the traction s is prescribed at the whole boundary S, 

(ii) cl = c2 = c, 
(iii) the following interfacial conditions hold 1 : 

~82u] + 
[u]_ § = [~u]_ + = L ~  j _  = o, (25.1 - 3) 

where [ ]_ + denotes the difference of the respective quantity for the two materials. Then 

relationships (4) and (10) still hold throughout  the whole domain occupied by the two materials, 

where u ~ is the classical solution of (6) which, in addition, satisfies the following interfacial 

conditions: 

[u ~ + = [a~ + = 0 at the interface. (26.1, 2) 

Proof." As before, the vector field (1 - ei72) u satisfies the classical problem (6), as well as the 

continuity condition (26.2) for the stress. Therefore, it remains to prove that the classical 

continuity condition (26.1) for the displacement is indeed satisfied by (l - cV 2) u. 

To this end, we notice that for ct = cz = c we have 

[(1 - cV'-) u ] _  + = [ u ] _  + - c[V~u]_ + = [u] + c L a x 2  + 57~z, j _  , 

The first two of (25) are the usual interface conditions for c =- 0, while (25.3) and (27) are the extra two 
conditions required for interfacial problems for the case c ~ 0. 
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where the condition (25.3) has been used. Moreover,  in view of the fact that 

~x 2 + ~ j _  - ~x 2 + &2 , 

it follows from (25.1) that 

[ ( 1  - c V  , , 1 -  + = o ,  

i.e., (1 - cg  z) u is continuous across the interface. 

It must be emphasized that the conclusions of Theorem 3 have nothing to do with the second 

interfacial condition that is required for treating interfaces within the framework of gradient 

elasticity. 

On the other hand, if we require 

§ 

~nJ_ = 0 at the interface (27) 

to be the additional interfacial condition, then it is not  difficult to prove that Theorem 3 is still 

true for any curved interface. In fact, we can verify that the vector field (1 - cV  2) u, where 

u satisfies (25) and (27) at the interface, is continuous across any curved interface. It should be 

emphasized that condition cx = c2 = c is essential for the validity of Theorem 3. Thus, under the 

conditions described in Theorem 3, u may be obtained as the solution of the following boundary 
value problem: 

( 1 - c V  2) u = u  ~ in V, 

g2u 
- 0 o n  S ,  (28) ~n 2 

~nZj_ = 0, ~nn _ -- 0 at the interface. 

This result is particularly useful in discussing the implications of gradient elasticity in the 
overlapping problem of interracial crack surfaces. In fact, let us assume that an interface crack is 

located at y = 0, - a _< x _< a, and that cl = c2 = c. Then, from Theorem 3 and (28), we still have 

relationship (15), where g(x)  and g~ are defined in Section 3.1. The expression of g~ may be 

found in [7]; e.g. for Mode-I  we have 

gy~ = b ] f ~  - x 2 cos 70, (29) 

where 

1 log ( a  + x~, 

and the constants b and 7 depend on the elastic constants of the two bonded bodies. It is easily 
seen that the first derivative of gr ~ changes sign and approaches infinity at the crack-tip. This 
means that the classical solution predicts interpenetration of the crack surfaces. 
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On the other hand, from (19) and (29) we obtain the gradient crack-opening displacement as 
follows: 

b sh \ ~ / sh a - ,  /;~_,2 cos log ,t~ 

gy(x) - (2~cc) \ a - - t / J  / c s h  -a 

\ a  - t / J  
- a  

It is seen, in particular, that the first derivative of gy approaches a definite finite value, i.e. 

g / ( - a ) -  b ; s h  a - t 2  1/~2 t 2 c o s I 2 1 0 g ( a q - f ~  

c sh -a 

which obviously eliminates the interpenetration at the crack tip if g / ( - a )  > 0. 
To establish the positivity of the slope g / ( - a )  of the crack profile at the tip, we note that 

f ( e ' /V~-e ( - t ) / v~ )~  2 - t S c ~  
L 2 \ a  - 7 2 3  

a 

and also recall (b, c) > O. With the above identity, it can be shown from (31) that g j ( - a )  has 
the same sign as the integral 

I - e '/Va l / a  f -  t 2 cos log \~- -7-  t J J  dr. 

- - a  

a(e M -  1) 2n 
To determine the sign of I, we can define a point xo -= (e M + 1)- with M - 3 ~  such that 
0 < Xo < a and 

cos log \ a  -- x / 3  = 

It follows that 

,io ;o ; 
I > ~ e t/V~ Ilia 2 -- t 2 d t -  et/1/~ ~ 2  __ t 2 a t -  e t/V7 ~a  2 -- t 2 de 

0 - a  x o  

> 2 ~  4 

It thus turns out that the following sufficient condition is derived to guarantee the positivity of I: 

> 8e -M, for e a/v~ >> 1 and e M >> 1, (32) 
a 
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suggesting that  the gradient  term removes the " in terpenetra t ion"  problem near the interracial 

crack tip. Similar conclusions may  be drawn for a Mode- I I  crack with gx0 = b l / ~  - x 2 sin 70. 

More  details will be included in a forthcoming paper  [8]. 
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