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ABSTRACT

A potential énergy model is developed for turbulent entrainment in the absence of mean
shear in a linearly stratified fluid, The relation between the entrainment distance D and the
time # and the relation between dimensionless entrainment rate E and the local Richardson
number are obtained. An experiment is made for examination. The experimental results are
in good agreement with the model, in which the dimensionless entrainment distance D is
given by D = A4,(8§)~W4(f)/*(i)'/?, where 4, is the proportional coefficient, § is the dimen-
sionless stroke, f is the dimensionless frequency of the grid oscillation, 7 the dimensionless
time,
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I. InTRODUCTION

Phenomena of fluid stratification and turbulent entrainment across density inter-
face widely exist in the ocean and atmosphere. The turbulent mixing or entrain-
ment in a stably stratified fluid is of ‘great interest to geophysical fluid-dynamic-
1sts because it is closely related to the control of water-quality, prediction of at-
mospheric environment and meteorology.

Since the first laboratory simulating experiments conducted by Rouse & Dodu®
in 1955, using a planar oscillating grid as the turbulent energy source, a lot of
investigations were done and a good few results were obtained. But theoretical anal-
ysis appears inadequate, and the agreement between the existing theoretical mod-
els“"¥ and the experimental results is not good. In general, these theoretical studies
are of two kinds. The first proceeds from analysis of the turbulent kinetic energy
equation and integrates the equation. Surface fluxes of energy are balanced by dissi-
pation and motion against gravity during entrainment. This balance is parameter-
ized by semiempirical constraints on the relationships between the turbulent kinetic
energy production and dissipation. Some models can be constructed for the fraction
of the turbulent kinetic energy available for entrainment. Linden (1975) assumed
that the rate of change in the potential energy is proportional to that in the poten-
tial energy input by the grid and obtained the dependence of the entrainment dis-

tance D on time #:
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i where S 1§ the stroke of the gnd oscﬂlanon, Zy-1s - the dxstance between the ~grid
and the fluid surface. Long (1978) has offered several arguments pertaining to the
problem of entramment in order to close the set of equatmns consisting of the energy
equation and the integrated buoyancy equation across the mixed layer and interfacial
layer, and found
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. D= B,K3N"8:%, (2)
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E = K“;D—aRfl ‘, (3)

where K == #z, » is the rms turbulent velocity, #, = dD/d: is the entrainment
velocity, N is the buoyancy frequency, By and o« are constants, Ri; is the local Ri-
chardson number Using dimensional analysis, Barenblatt (1982) ohtamed
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The second theoretical approach to the entrainment process consists of numerical
simulation, but so far few results are known. These théories cannot well describe the
results obtained from the experiments under the corresponding conditions.

In this paper, we attempt to find a theoretical model to describe the behavior
of turbulent entrainment without mean shear in a linearly °stratified fluid. An
experimental examination is made and a comparison between the two is given.

II. THEORETICAL ANALYSIS

If a planar turbulent energy souh;e (such as oscillating grid) produces turbulent
mixing in a stably linearly stratified fluid, a mixed layer is formed and develops,
whose thickness D increases with time (see Fig. 1). The turbulent energy equation
for a mixed layer without mean shear can be written as ‘

2+ 2 <(vlatte)w> == Ewiy—e, ()
where ¢* = w* + ¢* + w?; u, v and w are the horizontal and vertical turbulent ve-

locities, respectively; p, is the mean density of fluid, p’ the fluctuating pressure, p’
the fluctuating density, &, the viscous dissipation. ‘

Considering a long time process, i.e. steady.case, integrating (5) across the
mixed layer from the grid to the interface, we obtain

(prat s a)e), = (#la+ oo, = | wedis = faaz

Eq. (6) implies that the turbulent energy at the interface is the value input at
the grid minus removed by the buoyancy flux and dissipation in the Ilayer. : It is
the energy available at the interface that deepens the mixed layer. The mixing



No. 12 POTENTIAL ENERGY MODEL FOR TURBULENT ENTRAINMENT 1477

LN . ¥

0 ] \ Interface
s h \ Turbulent region .

b = Interface

ﬁ.:[‘
2

Fig. 1. Schematic diagram of the flow field described by the theory and the
experimental arrangements.

causes redistribution of the fluid density, and changes the potential energy in the
system. So we can assume that the rate of change of potential energy ¥V (per unit
horizontal area) of the fluid column is proportional to the vertical energy flux
de/dt per unit area available at the interface, i.e.

dV/di = C.de/dt, )
where C,; is a proportional coefficient determined by experiments.

We shall establish this relationship. Now, we consider the entrainment behav-
ior for grid positioned near the top and in the center of the linear density fluid
column.

(1) Grid near the top

Consider a stratified fluid where the density p is given by

o (—30 <z< D):
p= { (8)
ps+T'(z+2) (D<z<H),

when the grid is positioned near the top, where I' is the density gradient constant.
In general, the thickness of the interface layer % is very small compared with the
entrainment distance (depth or thickness of the mixed layer) and can be neglected,
so we have

5=-§(D+zu)+ps. (9)

The potential energy of the fluid column is determined by

H
V == S gozdz = EIE g (D + z,)° + constant, (10)

Differentiating (10) with respect to time, we Have

av 1 _an . dD
— = —GN{(D + z,)* — 11
az 49 ( 0) dt’ ( )

where N* = I' £ is the buoyancy frequency.
o

The vertical energy flux de/d: available at the interface, which is inputted by the
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grid, 1s —é-pwi, where w; is the rms. vertical velocity of the turbulent motions,.

which is related to the rms. horizontal velocity at the density interface, accord-
ing to Carruthers & Hunt™:

2
w§=0u§(£> . (12)
where @ is a proportional coefficient, approximately 0.873. The rms. horizontal
velocity of turbulence generated by the grid is given by™
u=CSiMifz™, (13)

where C is a constant, approximately 0.30, § (cm) is the stroke of the grid oscil-
lation, f the frequency of the grid oscillation, z the distance measured from the
center plane of the grid, and M (cm) the size of mesh.

When z = D, # = u;, substituting (13) into (12), we have

‘;—"i - % a2C1 S MAN 1D, (14)
Substituting (11) and (14) into (7), we find
(D + z,)'D % — 2C,a" !N, (15)
.
(D + z,)'D° % — 2C,C S MN (16)

For smaller time process after starting the grid. i.e. D < 2, and for long time
process i.e. D > z,, integrating (16), we obtain respectively

D = ASM"f**N~"4"5, D < z,, (17)
D= AlssﬂMlﬂfl/zN-Sﬂ!’l}s, D> P (18)

where A4, is a proportional coefficient determined by experiment. These are the
dependence of the entrainment on the time. At the long timescale, the entrainment
distance increases with 1/8 power of time. These formulas again indicate the depen-
dence of the entrainment distance on the stratified property (N) and the external
parameters generating turbulent source.

Let us consider turbulent entrainment rate. Differentiating (18) with respect
to time, we obtain the entrainment rate

U, = % p— _;.. AlsmMmfl/zN-m‘-m. (19)
3

It is shown that the entrainment rate #, decreases with 7/8 power of time. The
local Richardson number is defined as

Ri, — NZ/(%'—Y, (zo}
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where / == gD is the integral length scale, # is the constant, approximately 0.10 at
S/M < 0.8. (Hopfinger & Toly, 1976). When D > z,, using (13) and (19), we get
the dimensionless entrainment rate E(=u,/%;):

E = KlRirm, (21)

where K, is a constant determined by experiment. The dimensionless entrainment
rate decreases with 3/2 power of the Richardson number Ri.

Egs. (18), (19) and (21) describe zero-mean-shear turbulent entrainment law
in situations of turbulent energy source near the top.

(2) Grid in the center
When the grid is placed in the center (Fig. 1(b)), z,=0 and g = p,,
As above, the potential energy per unit area of fluid column is given by

V = -—;—-gI‘D’ + —g— T Hppg. (22)

The rate of change in the potential energy is

dv dapD dD
L = oI'D? & = p N D* =2, : 23
at £ dae b dat (23)

Considering u == %, at z == D, the vertical energy flux available at the interface is

given by -;—p.w?. From (12), (13), (23) and (7) we obtain the relation between

the entrainment distance and the time:
D= A,S”‘M”‘f”‘N""t"", (24)

and the entrainment rate:
4, = _é_ Azs.’thleUzN—Sﬂf-ﬂﬂ’ (25)
where A; is a constant determined by experiment. Eqs. (24) and (25) are of the

same form with (18) and (19), respectively.

Using the same method we get the relation between the dimensionless turbulent
rate E and the Richardson number Ri,:

E = K,Ri*?, (26)

where K, is the proportional coefficient determined by experiment. This formula is
the same as (21).

The relationships above show that in the linearly stratified fluid, the entrainment
behavior for the turbulent energy source near the top and for that in the center can
be described by the same relationship.

III. ExpErIMENTAL EXAMINATION

In order to examine the theoretical model, an experiment was carried out in a
transparent plexiglass tank of 52 cm X 52 cm in cross-section and 72 cm in height,
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equipped with¥a gridiof 2 cm square bars, aligned in a square array of mesh M=
10 cm. The grid placed horizontally in the tank could be oscillated vertically.
The stroke and frequency of grid oscillation could be adjusted. The oscillating
mechanism was described in Ref. [8].

IR pieipee

Fig. 2. Flow patterns (f = 6 Hz).
Grid at the top: N =0.6766, (a) t=9s, (b) r=1328s. Grid in the center: N = 0,6945,
(2) t=4s, (b) 1=1288s.
A, The turbulent front; B, the internal wave; C, the interfacial layerg
D, the flow filaments. '

Salt water of various densities was allowed to flow into the bottom of the tank
via a special set-up,' and the required buoyancy frequencies were obtained. The
experimental method was simple. Experiments were begun by simultaneously start-
ing the grid oscillation and the electronic timer. The position of the turbulent
front and the time were recorded on a shadowgraph for determining the entrain-
ment rate (see Ref.[8]). The reading error was smaller than 2 mm, the time
error was not larger than 0.1s.
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Fige 3. Variation of}the turbulent entrainment distance with time (§ =2¢m)
(a) Grid at the top: Vs f=2.3Hz; Oy f=3.3Hz; O, f=4.3Hz; A, f=6Hz.
(b) Grid in the center: O, f= 6Hz; —, the present model.
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Fig. 4. Relation between the coefficient @ and frequency f. —, The present model.

The experimental parameters were S=2 cm, M =10 cm, f=_3—6 Hz, z,=6c m,
H == 55cm. N =0.667 s'. The results are given in Fig.2—Fig.6.

IV. Resurts Anp Discussion

(1) Flow visualization. Fig.2 is the flow pattern. of the turbulent motions.
When the grid started oscillating, the turbulent motions were violent, and a turbu-
lent layer formed and grew rapidly, the turbulent front distorting and moving up
and down violently (Fig. 2(a),(c)). This implies that the turbulent eddies are
energetic and entrain fluid. After the turbulent front reached a certain distance,
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Fig. 5. Non-dimensionalized mixed-layer thickness Y versus non-dimensionalized time.
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(a) Grid at the top: v, f=2.3Hz; 0, f=3.3Hz; O, f=4.3Hz; A, f=6Hz.
¥, Lin der (1975); A, Folse and Schexnayder (1981). (b) f =6 Hz: A, grid at the top;
O, grid in the center. —, the present model.

the motions of the turbulent front became gentle and stable, and the density-inter-
facial layer was clearly visible (Fig.2(b),(d)). Intheinterfacial layer, internal waves
appear to form and break down ceaselessly, obvious fluid filaments being seen rising
from the interface; it causes mixing and makes the mixed layer grow gradually.

(2) Dependence of she entrainmens on time. The entrainment distance increases
with the time. It is seen from (18) and (24) that the entrainment distance D
increases by 1/8 power of time. is suitable for the case
where the planar turbulent energy source is near the top or in the center of line-

This entrainment law
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Fig. 6. Variation of E with Ri,
(a) Grid at the top. (b) grid in the center. (For caption, see Fig. 5.)

arly stratified fluid. Fig.3 well shows that the experimental data are in excellent
agreement with the theory. This is consistent with the experimental results obtain-
ed by E Xue-guan and Hopfinger™. The constants determined by experiments 4,
and A4, are 1.3099 and 1.3240 (1.5599 in Ref. [3]), respectively. Our D-z rela-
tion (Docs®) is different from Linder’s Docs*® (second equation of (1)) and Long’s
D oc 7. The power of time in our D-z relation is between theirs, while the
difference of their power of time is great (0.022), which makes their curves di-
verged and the deviation of D increases with time.

(3) Relation between the entrainment distance and the stratification property.
The stratification is characterized by the buoyancy frequency N. The entrainment
distance D changes by —3/8 power of N, i.e. DocN™*% as given in (18) and
(24). Comparing the relation D oc N™** with Long’s D oc N7%® and Linden’s
DocN™¥5) we can see that the power of N is close to the former, but quite differ-
ent from the latter. Careful analysis of the measured results obtained by Folse
(1981)®" shows that the exponent of N is close to —3/8. '

(4) Relations beiween the ensrainment distance and the grid parameters.
(18) and (24) obviously indicate the dependence of D on §, M and f. The theory
(potential energy model) is supported by the results in Ref. [3] and verified by
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this experiment (Fig.4).

(5) Dimensionless entrainment rate. We can find a relationship between the
dimensionless entrainment rate and the dimensionless parameters by dimensional
analysis. Egs. (18) and (24) can be written as

D _ ‘_M_.mlm s
° A,(S) (N) (NeY™, 27y
or

ﬁ(g)m(f)—'uxa_ A, (28)

where D = D/S, S=S/M and f=Nf are the dimensionless entrainment distance,
stroke and frequency of the grid oscillation, respectively, 4; (i =1 for the grid
near the top, i = 2 for the grid in the center) is the constant related to the size
of .the grid bar, 4; = 1.31 for this experiment. All the measured data can fall on
a curve (Fig.5). Some other experimental results cited in Fig.5. show that (27)
is correct. Those curves are low, because the size of used bar of the grid is
smaller, thus A4; takes smaller value.

(6) The turbulent entrainment rate. Eqs. (19) and (25) show the dependence
of the entrainment rate on the time, stratification property and grid parameters.
The theory gives the relation between the dimensionless entrainment rate E and
local Richardson number Ri;, EccRi;¥* (see (21) and (26)), which agrees with
the experimental results (Fig.6) and those of Ref.[3] and Breidenthal®”. K, and
K, in (21) and (26) are 0.7101 and 0.7489, respectively. .

We do not discuss the case of D < z, because this process is very rapid and
we are interested in the long time process.

V. Concrusions
The principal results of the theory are presented below.

(1) The potential energy model based on the energy balance, suggested by the
paper can well describe the features of the turbulent entrainment without mean

shear in a linearly stratified fluid.

(2) For the case where the planar turbulent source is positioned near the top
or in the center of the linearly stratified fluid, the theoretical model has the same
expression. This shows that for the linearly stratified fluid, the entrainment char-
acteristics are the same and independent of the position of the turbulent source.
This is quite different from the two-layer fluid system.

(3) This model includes the relations between the various parameters. The
entrainment distance D varies with 8%, M4, fY2 N73/8 and "%, which is expressed
in dimensionless form as E—Ai(g)hm(f)m(?)m. The dimensionless turbulent
ertrainment varies with —3/2 power of local Richardson number: E = K;Rir3?,

(4) In linearly stratified fluid, when the turbulent mixed zone begins to form,
its initial growth is very rapid due to the effect of convection near the grid. In
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this zone, the relations between the entrainment distance and time are different,
such as Docg2Utl | i€ - /8B4 359 ;16 for the model. So it is necessary to further
study the initial growth process of the mixed zone.
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