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A compact upwind scheme with dispersion control is developed using a dissipation analogy
of the dispersion term. The term is important in reducing the unphysical fluctuations in
numerical solutions. The scheme depends on three free parameters that may be used to
regulate the size of dissipation as well as the size and direction of dispersion. A coefficient to
coordinate the dispersion is given. The scheme has high accuracy, the method is simple, and
the amount of computation is small. It also has a good capability of capturing shock waves.
Numerical experiments are carried out with two-dimensional shock wave reflections and
the results are very satisfactory.

I.INTRODUCTION

Realistic flow fields are quite complex in general, consisting of shock waves, separated
flows, eddy motion, as well as interferences between them. Because of limitations in computa-
tional techniques, it is an important question in aerodynamics to improve the accuracy of the

numerical solution and the efficiency of the solution. X

Higher-accuracy schemes produce more accurate numerical solutions and increase the
computational efficiency by decreasing the number of grid points. In Ref. 1, the problem of a
blunt object in supersonic viscous circular flow was treated by a nonconservative, compact
scheme. In Ref. 2, the same problem was treated using a conservative, compact scheme. Com-
pared with the usual high-accuracy schemes, these approaches have even better accuracies.
Furthermore, the amount of computation is less and boundary conditions can be handled with
ease. However, the disadvantage is that, near shock waves, the numerical solutions have non-
physical fluctuations.

To overcome the fluctuations, we construct here an upwind compact scheme with disper-
sion control. In this type of scheme, it is possible to regulate the size of dispersion and, hence,
the accuracy. It is also possible to control the size and direction of the dispersion. By controlling
the dissipation and dispersion, better discrimination is achieved in the numerical solution. The
second section of this paper deals with the decomposition of one-dimensional aerodynamic
equations and Jacobian coefficient matrices. The finite difference approximation of the model
equation is given in Sec. ITI. We present there also the theory behind the compact scheme, the
upwind compact scheme, and the upwind compact scheme with dispersion control. Section IV
describes an upwind compact scheme with dispersion control for the one-dimensional Euler
equation. A numerical experiment is carried out on a finite difference scheme arising from a
two-dimensional shock-wave reflection problem.

II. 1-D EULER EQUATION AND DECOMPOSITION OF THE JACOBIAN MATRIX

For the convenience of subsequent discussion, we shall give here a brief introduction to the
decomposition of the equation and the Jacobian coefficient matrix.
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2.1 One-dimensional Euler equation
After converting to dimensionless units, the vector form of the equation may be written as

U o _ ()
ot +6x 0>

U=[p,pu, E|", f={ pu, pui*+p, u(E+p)]":

uZ
2

p= pT . E=p(ce,T+ —), ' (2)

1
M.,
where p, u, and T are the dimensionless density, velocity, and temperature, respectively.

2.2 Decomposition of the Jacobian coefficient matrix
Let A be the Jacobian coefficient matrix

_ D)
D(U)

It may be represented by a diagonal matrix

A=S8TAS ,f=A4U.

Here A is the diagonal matrix made of the characteristic values of 4 -
A=u ,h=u-c, A=u+c, | ®

We can use the decomposition of A, to decompose the matrix 4 and the flow vector ¥

A=A +20 420, A7 <0, @)

AT=8TAS L ft=4%U.
Here A* are diagonal matrices made of A . There are three different practical ways to carry
out the decomposition:

(3)  2F= (REIAD,

() 2= ut, K=u'to = (u klul),
Ars=u" LA, =u —c,

(c) Af=A"zmax {0, 4, },
A=At

L. FINITE DIFFERENCE APPROXIMATION OF THE MODEL EQUATION
3.1 Compact scheme and upwind compact scheme

Consider the model equation
ou of
—_— = = = R = .
o F 0, f=Cu, C=const (5)

In Ref. 2, we gave the general expression for a two-layer scheme. A simple form is (@ = 0 and
r=0

(H% %5& 6, utt = —

A+l ., n LA
uit=u+su,

At
""A""'"'x" 6]‘ Cu;., . . (6)
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where B>1 and &, is the differencing operator for spatial coordinates. Different methods of
decomposition, different differencing operators for the spatial coordinates, as well as different
values of # may be used in (6). If we take S =1, Eq. (6) is an approximation with second-
order accuracy. The accuracy in the spatial direction depends entirely on the actual form used
for 8, on the right-hand side. It is easy to see that if no odd characteristics are introduced in
decomposing the coefficient C, the form of the decomposition cannot change the order of
accuracy of the approximation scheme. For aerodynamic equations, it is necessary to overcome
the discontinuity in the derivatives of /' * with respect to . For this reason, it is necessary to
correct the decomposition methods of types (a) and (b) above. For type (c), it 1s easy to
construct decomposed flow vectors £+ with continuous derivatives in .

One upwind compact difference approximation scheme for (5) is®

a+ L Bsrens B2 sreoyg = 2L ry @
Fie 80— 28] 521 FE L F=F 4+ | )
1+2(s;—sf)5:+(—6- - )ét
where
C*+C"=C,C* 20, C <0
5:8=84.-8, &= % (3:+37),
b 8=8 85, =63 .
The expansion of (8) takes the form
o FE 4B EF+od b= (a0 + 6001 ©
uoi=.-é— +é —gf ~¢} ,a°*=% -2,
ﬁé’=—§—+2s,* . b:=%+zsf, (10)
Vo= % —gf—gf+el .-

If we make a Taylor series expansion of (9) at point j, we obtain
du. & ., Ou e 6 u dcd Ax 'u

ox o’ T U

Fl=

It is easy to see that, when C> 0, &, >0, and ;7 >0, the terms on the right-hand side of (7)
produce a positive dissipation. When C <0, it is necessary to take £, and £, less than zero.
From (11), we find also that, if we take

=0(Ax"*'7*), M<4,

the ratio F;/Ax approaches the derivative df /dx with order M.
Let us now give two very simple upwind compact difference schemes:
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o= . (12)

(a) ef=0,¢ +e = %

’E,:=—

a\ll— O_\I—-

(b) gt=gr=0, g = %, - (13)
In the first case, the accuracy of the approximation is O(Ax?). For the second case, it is
O(Ax’). For these two cases, (9) may be written as

A A A MU D F A (14)
oy F+ BoFy =(ag8; - +b50; ° )f; - (15)

Equation (14) may be solved along the direction of increasing j, and (15) may be solved along
the direction of decreasing j. It is worth noting the defining parameters of (14). Here, F E/Ax
approaches df = /dx with third-order accuracy. However, it is simpler than the usual third-
order accuracy upwind difference scheme and the amount of computation is also smaller.

3.2 Upwind compact scheme with dispersion control

(a) “Dissipation analogy” of the dispersion term. For a long time, artificial viscosity was
widely used to overcome the nonphysical fluctuations in the numerical solution. Such a nonphy-
sical viscosity may come from the difference scheme itself. Alternatively, it may be put in
artificially. To improve the discrimination in the numerical solution, an antj-diffusion method
was suggested in Ref. 4. The TVD type of schemes developed these days also make use of such
an anti-diffusion concept. It is well known that in the usual first-order accuracy difference
scheme, such as the two-point upwind scheme, the numerical solution tends to be overly smooth
in the vicinity of shock waves. Anti-diffusion methods try to control the diffusion so as to
increase the accuracy and prevent fluctuations in the numerical solutions around shock waves.
With anti-diffusion, the schemes remain to be dispersive. T'o improve the accuracy of the ap-
proximation, anti-diffusion often leads to third-order derivatives. Let us now examine the effect
of the third-order derivative (i.e., dispersion) terms.

The corrected form of the usual second-order accuracy equation may be written in the
form

2
W ad o

ot dx . dx “2 1+0(A%%) . . ‘ 1o

Ox

Here, C is taken to be a constant. Let us now examine the changes in the dispersion terms near
shock waves. By shock wave we mean here a transition region in space. In sich a small region,
the variations in the flow parameters are very steep; however, continuous derivatives exist (see
Fig. 1). Let the turning point {dZu/dx*=0) of a curve be at S, For C >0, we shall call the
right-hand side of point S the front of the wave and the left-hand side of § the back of the wave.

€} (h)
FIG. 1. Variations of & at time r.
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The front of the wave will be represented by fand the back by b. Near a shock wave, du/dx+£0
and it is possible to rewrite (16) as

du af 9 Ou_ (17)
—-B_t_-l-ﬁx _axkax’

where

u /fl (18)

ax? ox °

Naturally, we require that k>0, otherwise the corresponding problem may not be well defined.
Let oC > 0 (a similar discussion can also be carried out for oC < 0). Behind the wave, we have
AU /9x>0and 32U /dx*> 0, as shown in Fig. 1(a). In front of the wave we have U /dx < 0 and
@*U /9x* < 0, as shown in Fig. 1(b). As a result, k> 0 behind the wave, k =0 at S, and k <0Oin
front of the wave. Since the dissipation-analogy coefficient in front of the wave is negative, the
condition £>0 is not satisfied. This is why fluctuations in the numerical solution occur in
ordinary second-order accuracy difference schemes. We can take the right-hand side of (17) as
the artificial viscosity to correct (5) and take oC > 0. If we further restrict the coefficient & to
take on the form of (18) such that A0 both in front and behind the wave, we can expect
improvement in the behavior of the numerical solution near shock waves. The upwind compact
scheme with dispersion control, which we shall introduce later, is constructed based on such
considerations. In Ref. 5, the requirements on the coefficients of third-order derivatives are
discussed in terms of the method of small-perturbation analysis. :

(&) Dispersion errors in the TVD scheme. In order to increase the ability to capture shock
waves, different types of TVD schemes have been developed. By controlling the amount of anti-
diffusion, the total changes in the differences in the solutions are made to decrease or have
limitations put on them. We shall make use of the dispersion analogy idea mentioned earlier to
construct a partial TVD-like scheme. We may consider that different TVD schemes are differ-
ent by the use of different methods to control the dissipation analogy coefficient k. In these
methods, the minmod function is often used to carry out the control. Let us now carry out a
simple analysis of a TVD type of scheme® that is close to (5). The apprommate equation may
be written as

du ~

1 —~
T e Uy mhog1=00 -

};_’,.p% [fj+fj+| Kl’( 1+—) ;u ]-’

~—

fi=fi+g>
20
g= mmmod{a,+ 10, 1u,0. 61__u }s (20)
5j+%u =u, L -u,,
minmod{ x, y }‘=sign(x)- max{0, min{ | x |, y sign(x)] }» 1)
’é;+ C;_+'}’_,+
M when 5+ | u #0
S, 4
U
yﬁ_;_: F
0 when 51+_;“u=0-

When C = constant, we have
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=C. W) =lz]. gy = 5 WO,

gﬂ%=am1nmod{5j 1u 58 1u }.

By making a Taylor series expansion we obtain the corrections corresponding to (19)

du a - C u .
bl Gt T AR (220)
du of &’u
P T,/ AN e 22b
fiSr 6Ax_ax,+ . (22b)

If we rewrite (22) in the same form as (17), the dissipation analogy coefficient corresponding
to third-order derivatives are positive both before and after the wave. Many of the available
TVD schemes may be obtained using such a dissipation analogy method. Since the denominator
of the analogy coefficient k contains first-order derivatives, the accuracy of the approximation
decreases in order at the extrema.

(¢) Upwind compact finite difference with dispersion control. There are three free param-
eters in the upwind compact scheme and they may be used to control the accuracy of the
approximation in the spatial direction, or the dissipation characteristics of the scheme and the
dispersion accuracy. To make the scheme diffusive, it is necessary that 624 >0 and &5, <0. To
construct the third-order derivative terms in (11) (those containing £5£) the corresponding
dissipation-analogy coefficient £ must be positive. Control over the dispersion term is exercised
through parameters £, In practice, when C> (), it is necessary that £;% <0 behind the shock
wave and &;" >0 in front. It is possible to use the dispersion adjustment coefficient introduced
below to make i change its own sign in going through a shock wave.

IV.COMPACT SCHEME FOR AERODYNAMIC EQUATIONS WITH DISSIPATION CONTROL

in the upwind compact scheme with dispersion control the approximation for a one-
dimensional Euler equation is

LU+ ﬂ A‘ —~ & 4+ % f—;«S:A‘# o Ur = 2—; £ (23)
U= U4 5 U
E=F}+F»
Ft= 5% — 2162 40 (24)

1+2(a§—sf)5§+(% —gt)o?

Here 7 is the unit matrix, 4 = and [+ are the Jacobian coefficient matrix and the flow vector

Cafter the decomposition, respectively. When we take 5= 1, (23) has second-order accuracy in

time. The accuracy in the spatial direction is determined by the choice of the parameter git. In
the calculations carried out in this work, we have taken £ =0 and ef = + 0.125.

We shall now give an expression for £i. Let the dispersion matching coefficient be

fe,,~el-le—e_ |
Gle 1 T 6 1769 e=pip. (25)
(¢) = olm o 1Fle—e.] p.r ‘

Here £° is a free positive parameter. The matching coefficient G(e;) is positive in front of the
wave and negative behind the wave. In the smooth regions, G=Ax. For the calculations in this
work, we have taken

1020  Chinese Physics, Vol. 12, No. 4, Oct.-Dec. 1992 Ma Yanwen and Fu Dexun 1020

Wi




L

incident wave reflected wave

: FIG. 2. Schematic diagram showing the reflection of
shock waves.

et =1G(e). (26)

By taking the parameter £ in the way mentioned above, the scheme has third-order
accuracy without having the problem of having lower orders of accuracies at extrema. The
scheme is dissipative and the coefficient for the dispersion terms in front and behind the wave is
adjusted antomatically according to the need. In this way, the dissipation analogy coefficient is '
always non-negative near a shock wave.

Equation (23) may be solved directly. Here we have to find the inverse of a block fri-
diagonal matrix. It is also possible to find the solution for the implicit part using approximate
coefficient decomposition. We shall adopt the latter method to carry out the calculations here.
For the matrices after the decomposition, we shall use the second type of decomposition method

-mentioned in Sec. I1.

There are two types of method to decompose f = in (24). The first is the third method
suggested by the present authors. It has been pointed out earlier that different methods of
decomposition cannot affect the order of accuracy—only the coefficients of the cutoff error.

V. NUMERICAL EXPERIMENTS

We have carried out calculations for a two-dimensional Euler equation for the shock-wave
reflection problem using methods described above. The schematic diagram for the flow is shown

" in Fig. 2. The incoming flow Mach number is M = 2.9, the incident angle for the shock wave

is 29°, and the region covered by the calculation is 0<x<4 and 0<y<1. The number of points in
the mesh is IN(x) -TN(p) = 81X 41. The results shown in Fig. 3 are obtained with a two-point
upwind scheme. The first method of decomposition in Sec. II is used in the calculations. From
the figure we can see a serious problem in having the shock waves be smoothed out.

The results given in Fig. 4 are obtained with &7 = constant, ie., & =¢£; =0 and
£fF = 4 1/6. Only the dissipation characteristics of the scheme are used here and no dispersion
control is applied. From the figure we see that the numerical solution is improved near the

2.4
1.6
0.8

o 0.6 1.0 1.5 &

FIG. 3.(a) Density distribution (two-point upstream scheme with /= 21). (b} Lines of equal density (two-
point upstream scheme).
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FIG. 4.(a) Density distribution (ef =068 =0, = +4J=21). (b) Lines of equal density
(ef =0, =0f = +1).

2.4 |
1.6
0.8

0 0.5 1.0 1.5 x.

FIG. 5.(a) Density distribution (type a decomposition £ =0, £ = G{p;), ¢f = £ 0.125,/=21). (b) Lines
of equal density (type g decomposition e =0, &5 =G(p,), £f = +0.125).

2.4

1.6

0.8
o

=t

0.5 1.0 1.5

[

FIG. 6.(a) Density distribution (type @ decomp051t10n ef =0, &8 =Glp), ef = £0.125, J 21). (b) Lines
of equal density (type @ decomposition &f =0, £ =G(p;)}, £f = 1-0.125).

2.4
1.6
0.8

FIG. 7.(a) Density distribution (type ¢ decomposition &5 =0, & =G(p;), &f = +0.125, 7= 21}. (b} Lines
of equal density (type ¢ decomposition £ =0, i = G(p,), &f = + 0.125).
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shock wave, with only small fluctuations present.

The results in Figs. 5 to 7 are obtained with dispersion control using £f =0 and
e = +0.125. The first type of decomposition given in Sec. II is used in obtaining the results
shown in Fig. 5 and we take ¢; = p, in (25). We can see from the figure that there are only small
fluctuations in front of the reflected wave. As a whole, the results are satisfactory. The results
shown in Fig. 6 are obtained using the first type of decomposition with G(e;) = G(g;). The
results shown in Fig. 7 are obtained using the third type of decomposition.

VI. CONCLUSION

We have developed here an upwind compact scheme with control over dispersion errors.
The method is simple and the amount of computation required is small. Tt also has the advan-
tage of high accuracy and captures shock waves effectively. In smooth regions, it has consistent-
ly high degrees of accuracy. We have used a third-order accuracy upwind compact scheme with
dispersion control to evaluate a two-dimensional shock wave reflection problem and the results
are very satisfactory.
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