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Floating zone crystal growth in microgravity environment is investigated numerically by a finite element method for semicon-
ductor growth processing, which involves thermocapillary convection, phase change convection, thermal diffusion and solutal
diffusion. The configurations of phase change interfaces and distributions of .velocity, temperature and concentration fields are
analyzed for typical conditions of pulling rates and segregation coefficients. The influence of phase change convection on the
distribution of concentration is studied in detail. The results show that the thermocapillary convection plays an important role in
mixing up the melt with dopant. The deformations of phase change interfaces by thermal convection-diffusion and pulling rods
make larger variation of concentration field in comparison with the case of plane interfaces.

1. Introduction

The floating zone crystal growth technique, invented by Pfann [1], has been widely used to purify high
quality crystals. Like other techniques of crystal growth, there are convections induced by various
mechanisms in the medium of fluid, and the quality of the crystal, such as the purification, homogeneity
and segregation, will be influenced [1-4]. Convections in melting zone may be induced, under no matter
what gravity condition, by buoyancy on the ground of gravity environment or thermocapillary and /or
solutocapillary effect in low- or microgravity environment [2,18]. In addition, the phase change convec-
tion exists in real processing of crystal growth [15,21]. Therefore, the coupling of phase change near
solidification and melting interfaces, together with convections and diffusions in melting zone [3,17,18,22],
is significantly influenced and should be simulated by theoretical models.

Striations in the crystals grown have been found in multifarious techniques and have been interpreted
by both natural convection and thermocapillary convection [2,18]. The influence of convection on
concentration distribution was pointed out since the invention of the floating zone technique [1,5]. The
influence of convection on longitudinal segregation, which is parallel to the growing direction, was
studied by Burton, Prim and Slichter [5], and then, the so-called BPS model was developed extensively
[6-10], particularly for a semi-quantitative description of one-dimensional concentration distribution. On
the other hand, the segregation in the lateral direction cannot be treated by a one-dimensional model
involving the influence of convection [2].

Many papers have been published to consider the lateral segregation in the model without phase
change [4,7-9], and the melting /solidification interfaces have been assumed to be planar solid bound-
aries without mass transfer. A model involving melting and solidification interfaces was calculated
numerically for the crystal growth in a vertical Bridgman system, in consideration of the influence of
natural convection and the segregation in two directions [3]. The results show that the usual approxima-
tion of diffusion layer for the dopant distribution adjacent to the crystal needs to be improved [3].

Recently, crystal growth in the floating zone has attracted more attention from both experimental and
theoretical sides due to the development of microgravity science [11-17]). Natural convection and
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Marangoni convection have been investigated extensively [11-18]. The results have shown that Marangoni
convection driven by the gradient of surface tension in the free surface of the liquid bridge is most
important in the case of low- or microgravity [11,15]. Nevertheless, convection which induces lateral
segregation always exists. The thermal and solutal capillary convections and double diffusions in the
model of half floating zone without phase change have been studied [4,19,23]. Two sorts of concentration
boundary conditions were discussed in ref. [4]: one was the usual BPS condition and the other was the
concentration conservation condition. Since the curvature of the interfaces will also induce lateral
segregation, the assumption on planar interface should be considered in concentration distribution in a
complete model. Interaction between thermocapillary convection and melting /solidification phase change
convection has been discussed [17,18] and the concentration conservation model with phase change was
analyzed elsewhere [20].

The main purpose of the present paper is to study the concentration field and the segregation in
consideration of the influence of thermocapillary convection together with melting /solidification phase
change convection in the floating zone under microgravity condition. A FEM method is used to simulate
phase change interfaces, fluid flow isotherms and concentration fields in the melting zone, and isotherms
in the solid zones for different pulling rates and for different segregation coefficients under microgravity
condition. The results show that the phase change interfaces obviously influence the concentration
distribution in the liquid bridge. A comparison is made of the results of previous work [4,11,20] and those
of the present paper. The physical model and mathematical expressions are given in section 2. The
numerical methods are presented in section 3. Section 4 gives the numerical results of flow patterns and
concentration distributions of the convection. The last section gives the conclusions.

2. Description of the model

In the floating zone technique of crystal growth, a feed rod is pulled toward the high temperature
zone of the crystal melt heated by a heater of radiation ring. The resolidified crystal is obtained when it
is pulled out of the melting zone, as shown in fig. 1. The dopant impurity in the feed and melt zone is
assumed to be low for typical semiconductor processing. The liquid bridge of the melt zone is held by
surface tension and locates between the upper rod of the single crystal and the lower rod of the
multi-crystal.

To construct a complete model of the full floating zone, we will consider at least threc regions, i.c.,
the region of the liquid bridge, the solid region of the feed rod and the solid region of the single-crystal
rod. The solutions in each region are coupled with those in the other regions. However, the solutions of
the full floating zone problem may be obtained by matching the solutions in the three regions with the
boundary conditions which can be satisfied by an iterative procedure. For the sake of simplicity, we
assume that the problem is axisymmetric, laminar and steady. The cylindrical coordinate system is used
and the plane z = 0 is fixed in the heater plane, which is considered to be a thermal radiation ring. The
thermophysical parameters of the melt and the solid are nearly the same as given in refs. [17,20]. The
single crystal and the feed rods have the same diameter r, and move with the same rate ¢, in the
z-direction.

Free surface deformation is ignored at the first step, and r, is the radius of the liquid bridge. The
governing equations are mass conservation, momentum conservation, energy conservation and diffusion
equation under suitable boundary conditions, the same as those in ref. [20] for a steady process, except
for the concentration boundary condition. To make the results more general, dimensionless parameters
are introduced as follows:
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Fig. 1. Schematic diagram of floating zone system model.

where the subscript zero denotes the typical value; T,, and T, are the heating temperature and melting
point, respectively, (i, w) is the flow velocity in (r, z) direction, p, T and ¢ are the pressure,
temperature and concentration in the liquid bridge, respectively, 7, and 7, denote the temperatures in
the single crystal region and feed region, respectively, and the constant ¢, is the concentration of the
feed rod. The characteristic velocity u,, remains to be determined. The appropriate characteristic velocity
in the thermocapillary problem may be the characteristic velocity

uo=lo, (Ty=T,)/u,

driven by the gradient of surface tension, where ¢, and u are the thermal coefficient of surface tension
and the melt viscosity respectively. According to these relationships, the dimensionless equations may be
written as follows [20]:

30, 0, 0, 190,

Peia_4“1=7§7+?+§¥ (i=1,2) (2.2)
for the regions of solid rods, and

ou U aww

E+€+a—£=0, (23)



g a
30 30

W,._
43 4

8C oC
Pe, W

USE+ d_§

B. Xiong, W.R. Hu / Crystal growth in floating zone

9’0

=— 4+
al~

8*C
= +
a2

P U U 13U U
—Re——+ —5 + - pyaie
A ST I S 3

+—t—-—

a

P W W 1w
= Bo @—Re,—+,—2+—é'+—’—,
af a¢ & 9
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for the region of liquid bridge, where ¢ =S(¢) and (= S,(¢) are the melting boundary and the
solidification boundary of phase change interfaces respectively. The angular coefficient of thermal
radiation, f(¢), is assumed to be a Gaussian distribution, such as f({)=f,e*¢". In order to obtain an
appropriate size of the melting zone, A = 2 is adopted and f,, is combined into the Biot number Bi. The
dimensionless Stefan conditions become
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where «, a, and «, are the thermal diffusivities and K, K, and K, are the thermal conductivity of the
melt, single crystal and feed materials, respectively; AH is the heat of fusion; €*, € and €5 are the
emissivities of the melt, crystal and feed, respectively; o* is the Stefan—Boltzmann constant; D is the
dopant diffusivity in the melt; &, is the dopant segregation coefficient;

v, =v,/[1+ s/ae)]";

n is the normal unit vector to interfaces which directs to melit region. The solution in the three regions
will satisfy the matching conditions at the phase change interfaces ¢ = §,(£) and ¢ = S,(¢), i.e. conditions
(2.10) and (2.16)-(2.24). The so-called Stefan condition, derived from the energy conservation across the
interfaces, is used together with other boundary conditions to determined the interface shapes.

It is difficult to grip the essential of the problems since there are so many controlling parameters. But
our object is to understand the influence of convection and of phase change interfaces on the
segregation. Therefore, the pulling rate Vo, and segregation coefficient K, will be analyzed especially in
the present paper.

3. Numerical simulation

To solve the problem in fluid region, we introduced as usual the stream function ¢ defined as follows

10 0
Lo v
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154 B. Xiong, W.R. Hu / Crystal growth in floating zone

and the vorticity

0 ou oW
=— - —. 3.2
T (3.2)
The equations in the liquid bridge may then be expressed in relations of stream function—vorticity
instead of velocity components U, W and P [17,20]. An “up-wind” finite element scheme improved from
the Galerkin finite element method is applied to overcome the difficulties caused by the convection
terms in some cases with relative larger value of parameter [24]. In an element, the variables are the
linear combinations of node values, expressed as the follows:

L/j(f’) = N lb_(f))’ 0 = N Qo @) = Nl C(v)’
O =N O, OF =N O, 0% =N O (i=1.2,3,4), (33)

where the superscript (e) denotes the element (e); N/ are the shape functions. With local x, v
coordinates normalizing a variation from —1 to + 1, we can write

NSO =NX(x) N¥(y) =31 +57x) x Y1 +5s7y) (i=1.2,3,4), (3.4)
where

c_ [+, =23, v [+1, =34,

K <‘1, i=1,4, {—1, i=1,2. (3.5)

Similarly, the weighting function can be written as
G =[N*(x) + 3a,(1 =) (1 +x) [[N*(y) + 38,(1 —y)(1 +1)]
=N (x) N¥(y) + FO=NO+FO (i=1,2,3,4). (3.6)
F! limits to zero for the Galerkin method. Substituting (3.3) and (3.6) into the weighting residual
equations of the governing equations, we can obtain the discretization equations. It is convenient to
consider the iteration procedure as a “pseudo-growth process” by the balance of latent heat with the

heat fluxes across the interfaces. The usual unsteady Stefan conditions about the phase change interfaces
in floating zone crystal growth are:

Tk 9s, i=1,2 3.7
ikia +KE_ ,-p(z,pm—gcos a) (i=1,2) (3.7)
in the dimensional form, or
o 35[0 SO0 dS"zs vl (i=1,2 3.8
;= = 0, + |0 t, o+ =1, .
R B ]Sl =) (38)

in the dimensionless form. So we can obtain S *' =S/ + A, At. The pseudo-time interval A7 is selected
to satisfy the convergence condition of the problem. A proper solution is obtained when dS,/d¢ tends to
zero while the governing equations are satisfied in their respective fields. In a certain parameter range,
the solution could be obtained, which could give the convergent interface positions.

The convergent solution could be obtained by iterative method due to adjustment of the solidification
boundary. First, we assume two interfaces of phase change and solve the governing equations under the
fixed boundary of given interface. The surface solutal capillary effect is ignored here due to its very small
effect [4]. So the concentration distribution is uncoupled with flow, temperature and interface positions.
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Table 1

Values of the thermophysical properties of silicon and operating

Property Value

Density p 2.44%10% kg/m*
Heat capacity C, 1.049x 103 J/kg K
Thermal conductivity X 430x10' W/m-K
Dopant diffusivity D 256x107 " m? /s
Melting point T, 1688 K

Heating temperature 7}, 1668+ 844 K

Heat of fusion AH 1.803x 10° J /kg
Heat coefficient of surface tension o, —1.0x107* kg/s>-K
Melt viscosity u 825%x 107 % kg/m-s
Emissivity € * 0.5

Rod radius r, 5x107* m
Ampoule length . X2 80X107* m

Rod temperature at the end 7, 1304 K

Pulling rate v, 0-10"° m/s

Then, we adjust the interface positions by eq. (3.8), and repeat the iterative process until the convergence
condition, dS,/d¢ — 0, is satisfied. The iterative procedure is successful for the problem.

The numerical simulation is applied especially for the silicon crystal growth. The thermophysical
properties of silicon are listed in table 1.

4. Results

Calculations have been performed for two cases, and the velocity, temperature, concentration fields
and interface shapes are obtained. Since similar flow patterns, isotherms and interface shapes have been
presented previously [17,20], the isotherms in the solid regions and melt zone are not given and only the
flow patterns are kept for comparison.

Figs. 2 shows the distributions of flow patterns, concentration fields and the spatial concentration with
segregation coefficient K= 0.5 for different pulling rates. Corresponding results are listed from left to
right for decreasing pulling rate relative to the heater. The global body of the liquid bridge shifts toward
the single crystal rod, similar features have been noted in refs. [17], [18] and [20]. The results show that
the free surface length has only a small change in z-direction; however, the shapes of the melt/multi-
crystal and the melt /single-crystal interfaces change significantly and the configuration of the liquid
bridge is more non-symmetric if the pulling rate is larger. The vortex cell in the neighborhood of the
melting boundary becomes smaller and weaker while the other cell near the solidification boundary
becomes larger and stronger due to the larger pulling rate, which changes obviously the global body of
the liquid bridge and the shapes of the interfaces. Furthermore, the concentration field is influenced by
the convection in the melt zone and by the shapes of the interface and changes significantly for larger
pulling rate in comparison with that for lower pulling rate. In topology, the iso-concentration lines seem
to be symmetrical relative to the plane z =0 in the case of low pulling rate [4,7] and more asymmetrical
in case of larger pulling rate. It can be seen from fig. 2 that the concentration value is less, but not the
least in the mixed core, which occurs at melt /feed interface and moves from the free surface to the
symmetric axis for decreasing pulling rate. It is induced by the variation of the convection and interface
shape for different pulling rates. The concentration field has uniform core of melting liquid and steep
concentration gradients along the interfaces of phase changes in larger pulling rate, for example
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Fig. 3. Dopant concentration profiles in the radial direction Fig. 4. Dopant concentration profiles in the radial direction
along the melt /crystal interface depending on different pulling along the melt /multi-crystal interface depending on different

rates for K= (1.5, pulling rates for K, = (.5.

v, =2.56X 1074 m/s. It is shown that the melt is mixed well, and this conclusion is similar to that noted
in the BPS model [2,5].

The radial distributions of concentration along the melt and solid interfaces and longitudinal
distributions along free surface and along symmetric axis are given respectively in figs. 3—6. In order to
make the results clear, as shown in figs. 3 and 4, the concentration distribution is relatively uniform along
the melt/solid interfaces in case of the lower pulling rate. For larger pulling rate, for example,
v, =2.56 X 10~ % m/s, the concentration value along the melt/single-crystal interface decreases with the
increasing radius r. The results show the lateral segregation which has larger radial variation for larger
pulling rate, as shown in fig. 3. This is different from the one for low pulling rate [4,7]. We can find the
different tendencies of the concentration distributions along melt and solid interfaces in different pulling
rates, as shown in fig. 2 on the spatial concentration distribution. So we can conclude that the dopant
segregation degree for larger pulling rate is stronger than that for lower pulling rate. On the other hand,
the concentration in multi-crystal is given by the sample; however, the boundary condition at melt /feed
rod interface is given by the concentration conservation condition, a discontinuity appears at the
boundary [4], and the concentration difference between melt and feed on the melt /feed interface is
larger for lower pulling rate than for larger pulling rate, as shown in fig. 4. The longitudinal segregation
along the free surface and along the symmetric axis in z-direction are shown in figs. 5 and 6, respectively.
The results illustrate that the longitudinal segregation depends strongly on pulling rate: the stronger the
segregation, the larger the pulling rate.

However, the simulation of concentration distribution is more complicated. Fig. 7 shows the depen-
dence of concentration maximum on pulling rates, and the profiles do not show monotonic features. The
concentration maximum in the melt zone reaches the smallest value when the pulling rate is about

1.5 X 10~ * m/s, and there are two peaks at v, =0and 2.0 X 10~* m/s. The results should be analyzed
further.
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We can discuss the effect of pulling rate in a simple case without convection; the problem can be
treated with a one-dimensional model, and the following governing equations and boundary conditions
are obtained:

Pe, V, dC/d¢=d°C/d{?, (4.1)
{=0: dC/d{="Pe V,(C-C,), (4.2)
{=L: dC/d{=Pe V(1 —k,)C, (4.3)

0.00E+000 1.00E-004 2.00E-004 3.00E-004
Pulling Rates v, (m/s)

Fig. 7. Variation of concentration maximum in the liquid bridge depending on different pulling rates.



159

B. Xiong, W.R. Hu / Crystal growth in floating zone

D200 =0%
ST $3UI| UOIIRIIUADUOD-0SI Jo dovds oy | 's/w - 0IX95T= 45 10] (p uwn[od) £ =%y pue (0 uwnod) g ="ty (q uwn(od) ¢'0 = Yy ‘(B uwnod) 1°g = Yy $IUADIFI0D
uonedargos juatdyip uo Fuipuadap ($3INJdId ISMO[) UONIRITUSOUOD JO SUOHNGLISIP 2IqUd 2yl puk (saunjod raddny saur| UONRIIUAOU0-0SI JO suonnguusicy ‘g S

MNN N/

UOW DL eBIUOD
LOW DA UIIUO2

USSR DLIUIIUOD
UOIID L] UIILOD




160 B. Xiong, W.R. Hu / Crystal growth in floating zone

e—._K,=09 ___._K,=03
e K,=09 -—-K,=03 — K, =07 - —K,=0.1
—-.—~K,=07 — -K,=0.1 — - —K, =105
7.000 ~ 6.000 -
] — - —K, =05 — 5.500 i*/"\\
% 3 v ] e
5 8000 T~ &S 6.000 3
] 4.500 ﬂ
§5.ooo . § E
- ] 2 4.000 3
-~ ] - ]
] 3 3
24.000 3 L3800 3
-+ 1 = i
e B S & 8.000 7
Q ] Q 3
Q 3.000 Q2500 4 . ... . _ e -
g S 3
1) e Q20004 . __ . __
Q2000 4 . L E
1 1.500 3— — - —_ -
] 1.000 3
1.000 - 3
] 0.500 3
0.000 :mmrrrmmm 0.000 E%WWWWWWWWW“
000 020 040 060 080 1.00 1.20 000 020 040 080 080 700 7.20
radius ¢ radius ¢
Fig. 9. Dopant concentration profiles in the radial direction Fig. 10. Dopant concentration profiles in the radial direction
along the melt /single-crystal interface depending on different along the melt /multi-crystal interface depending on different
segregation coefficients for 1) = 2.56 X 10 “tm/s. segregation coefficients for ¢, = 2.56 X 107% m/s.

where 1, and L denote the dimensionless pulling rate and the [ength of the melt zone, respectively; the
other symbols are dimensionless and are defined as usual. The analytical solution is then given as

(1 -K,)C, exp(Pe, Vpg)

C = + C,.
(&) K, exp(Pe, V, L) :

(4.4)

In comparison with the one-dimensional and two-dimensional models, let us adopt the same parame-
ters, ie., Pe,=10% 1, =10"%, K,=0.5, C;=1.0 and L = 1.0. Then we obtain C({) € [1.368, 2] for the
one-dimensional model, which conclusion differs from C > 2 in the two-dimensional model. This
difference shows the influence of Marangoni convection on the concentration distribution. If V, in the
one-dimensional model varies from negative to positive, it could be imaged that the one-dimensional
concentration C({) may be greater than 2.0.

Now, we will discuss the influence of different segregation coefficients K, on the fields in the melting
zone, the steady state concentration fields and the spatial concentration distribution are shown for
pulling rate v, = 2.56 X 10~* m/s in fig. 8. It can be concluded from the results that the concentration
fields with the same pulling condition have similar topographies, although the segregation coefficients
are different. The reason is that the convection has a similar effect on the concentration fields. The
concentration mixed cores appear at the same position for different K but they have distinct levels; for
example, C = 1.515-1.555 if K,=10.9 and C =5.236-6.143 if K,=0.1.

With a given pulling rate v, =2.56 X 10™* m/s, the lateral segregation along the melt/single-crystal
and the melt/multi-crystal interfaces for different segregation coefficients K, are illustrated in figs. 9
and 10. The segregation degrees are identical with variant tendency of the segregation coefficient K.
There is a stronger segregation if K, is larger. The effect of Marangoni convection on segregation level
is obvious, e.g. it mixes the melt well or weakens the concentration gradient in the melt zone.
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Fig. 11. Variation of maximum concentration in the liquid bridge depending on different segregation coefficients.

Additionally, it reduces the concentration level which ought to be higher without convection in the melt
zone.

The maximum concentration profile with variation of k; is shown in fig. 11. The results show that
Cnax 18 DOt inversely proportional to K, or, in other words, the effective segregation coefficient is less
than the equilibrium segregation when k&, is large and the effective segregation is larger than the
equilibrium segregation when k is small.

5. Conclusions

In the present paper, the effect of melt/solid phase change, the thermal and solutal diffusions, and
the thermocapillary convection on the concentration distribution in melt zone is discussed for the steady
process of crystal growth in the floating zone under zero-gravity condition. It has been shown that the
convection driven by solutal capillary has little influence on melt convection for most cases of typical
parameters, so its influence has not been considered in the present paper [4].

A finite element method is applied to iterate the phase change interfaces, concentration convection
induced by thermocapillary surface tension and the melt flow. Comparing the existing results with the
previous ones [4,20] proves that our procedure is successful.

It could be concluded from the numerical results that the shapes of phase change interfaces, in
addition to the thermocapillary driven convection, have significant influence on the concentration
distribution in the melt zone. Convection makes the concentration distribution more uniform, but
induces the lateral segregation at the same time. The effect of the pulling rod makes steep concentration
gradients along the phase change interfaces and causes the ‘“‘non-symmetry” of the concentration field.

In general, the thermocapillary convection and the phase change convection have significant influence on
concentration distribution.
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Bi, Bi,, Bi,
Bo

r,r,r,
Fo
Re

z=58/(r), z=8,(r)

St,, St,
T.T,, T,
T,

nm?

Ao R
m
b2 I\)Q’)

m
*

QD
9
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U W R

T()’ TOC’ Tn:k’ T()*
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Biot number in melt region, in single-crystal region and in multi-crystal region
Bond number

Dopant concentration

Heat capacity

Dopant concentration in multi-crystal region

Dopant diffusivity

Distribution function of thermal radiation

Gravitational acceleration

Fusion heat of single-crystal and of multi-crystal

Thermal conductivity of melt, of single-crystal and of multi-crystal
Dopant segregation coefficient

Length of the whole region

Marangoni number

Unit vector normal to interface

Shape function

Pressures in melt region

Thermal Peclet numbers

Concentration Peclet number

Coordinates in radial direction

Radius of liquid bridge

Reynolds number

Interface position equations

Stefan numbers

Temperature in melt, in single-crystal and in multi-crystal region
Dimensionless temperatures

Pseudo-time interval

Flow velocities in » direction

Pulling rates

Flow velocities in z direction

Coordinate in axial direction

“Up-wind” corrector

“Up-wind” corrector

Dimensionless parameter s
Dimensioniess parameter

Relative density differences
Stefan—Boltzmann constant
Dimensionless coordinate in z direction
Dimensionless temperatures

Viscosity

Kinetic viscosity

Dimensionless coordinate in r direction
Density of melt, of single-crystal and of multi-crystal
Thermal coefficient of surface tension
Streamline function

Vorticity
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