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Abstract-A series of experiments have been conducted on cruciform specimens to investigate fatigue 
crack growth from circular notches under high levels of biaxial stress. Two stress levels (Au, = 380 and 
560 MPa) and five stress biaxialities (A = + 1.0, f0.5, 0, -0.5 and - 1.0; where A = uz/al) were adopted 
in the fatigue tests in type 316 stainless steel having a monotonic yield strength of 243 MPa. The results 
reveal that fatigue crack growth rates are markedly influenced by both the stress amplitude and the stress 
biaxiality. A modified model has been developed to describe fatigue crack growth under high levels of 
biaxial stress. 

INTRODUCTION 

Many fatigue failures of engineering structures and components have been associated with the 
multiaxial loading histories that they experienced. Of these examples, it is frequently found that 
fatigue cracks had initiated from notches, due to the effects of stress concentration. Therefore, 
fatigue crack growth from notches under biaxial or triaxial stress states has attracted increasing 
academic attention in recent years. 

To describe the propagation rate of fatigue cracks and predict fatigue life, the well-known Paris 
law [I] has achieved great success in describing long cracks, i.e. cracked bodies experiencing low 
levels of stress due to cycling in the elastic loading regime, where linear elastic fracture mechanics 
(LEFM) can apply. However, when a crack initiates and then propagates from a notch root under 
high cyclic loading conditions, it is called a short crack because of the significant amount of 
plasticity involved. This is the case for low-cycle fatigue, where the stress and the strain range 
experienced are beyond the small-scale yielding conditions required by LEFM, and the original 
Paris law is no longer effective. It is therefore inevitable that elastic-plastic fracture mechanics 
(EPFM) must be introduced and elastic-plastic parameters must be taken into acccount when 
modelling fatigue crack propagation under high levels of cyclic stress. Such parameters include (a) 
AKc, the strain intensity factor [2,3], (b) AJ, the cyclic J integral [4,5], (c) 6, the crack tip opening 
displacement [6] and (d) P,,, the plastic zone size [7,8]. So a variety of EPFM approaches to the 
low-cycle fatigue problem have been developed, using the above parameters to describe crack 
growth rate under uniaxial cyclic loading [2-81. 

The behaviour of fatigue cracks propagating from notches under low levels of biaxial stress has 
been reported previously [9,10], showing that although both the stress biaxiality and the stress 
amplitude affect fatigue response, the crack growth rates still obey the Paris law. But in the regime 
of high biaxial stress and strain, the interaction of fatigue cracks with notches still remains an area 
of argument and research. A better understanding of the physical phenomena involved and the 
availability of models for evaluating fatigue crack growth in this regime are, therefore, of great 
importance. 
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The present study has been carried out to develop an expression describing the growth rate of 
fatigue cracks from notches under high levels of biaxial stress, based on an experimental 
investigation using cruciform specimens with central circular notches which are subjected to loading 
at different biaxialities. Fatigue crack lengths were measured by both the potential drop technique 
and a travelling microscope. The deformation, i.e. the displacement on both loading axes, was 
measured by a pair of extensometers clamped to one side of the specimen. The biaxial cyclic 
stress-strain relationship was also recorded from the same type of specimen without a notch. The 
cyclic strain hardening exponents of the Ac, versus AcIp relationships obtained were used to develop 
an EPFM model, and the experimental results are compared with crack growth rate predictions 
developed from the model. 

A MODIFIED MODEL 

About two decades ago, an original model for fatigue crack propagation under high levels of 
cyclic stress was proposed by Tomkins [7], based on the concept that an increment of fatigue crack 
surface is formed by shear de-cohesion in each load cycle, and that crack growth rate, da/dN, is 
therefore proportional to plastic zone size, rp, and to the range of cyclic plastic strain, AeIp, in the 
direction normal to the fatigue crack surface, i.e. 

Using Dugdale's solution [l 11 for rp for a Mode I crack of length 2a in an infinite plate with remote 
applied stress normal to the crack plane, (r,, 

rp = a [ s e c r z )  - 11. 

In the fatigue crack propagtion situation, Tomkins chose to use the ultimate tensile strength of the 
material, o,, as the cohesive stress, oo, which represents the flow stress of cyclically strain hardened 
material at the crack tip. When u, /a, < 0.5, using the first term of the series expansion of equation 
(2), equation (1) can be expressed, for a cyclic cohesive stress 20,, as (also see [12]) 

da 

where An, and AeIp obey a power law formulation under uniaxial loading, 

(3) 

Note that equation (3) has been derived such that it is only applicable to a Mode I crack in a large 
plate. 

In order to extend the model to be applicable to the case of fatigue crack advance from notch 
roots, we adopt an approximate analytic solution of plastic zone size for cracks emanating from 
a circular notch [ 131 

0, 2 1 -=-.- 
go .n 1 + F  

where 
mz  

2(1 - m)(l + m2)2 
F =  [(3 + 3m - m2 + 3m3) - A(3 - 5m + 3m2 - m3)] 
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Fig. 1 .  Schematic showing the geometry of cracks emanating from a circular notch. 

in which A is a measure of stress biaxiality (A = 02/cr1, where cr2 is the stress parallel to the crack 
surface for a plane stress condition) and m is a parameter depending upon notch size and crack 
length, given by 

m = f - d q  b 

with a, b and rp being defined in Fig. 1. Note that, when calculating plastic zone size rp, a in equation 
(7) should be replaced by a + rp in obtaining the corresponding value of m. As in the Tomkins’ 
model, ou is regarded as o,, in this case. For ol/ou < 0.5, equation ( 5 )  can be written as 

Substituting equation (8) into equation (l), we therefore have 

da z2 (1 + F ) 2  
dN - 8 (1 + 2n) _-_. -  (9) 

This is a modification of Tomkins’ formula allowing for fatigue crack extension from a circular 
notch under biaxial loading. 

Equations (9) and (3) provide a reasonable crack propagation law in the low-cycle fatigue regime, 
but some open questions remain. The first important argument is the definition of a key factor 
in the model. In Tomkins’ development, the cyclic plastic strain far from a crack was considered. 
However, fatigue crack extension is closely related to the deformation generated inside the plastic 
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zone of a cracked notch, which must be taken into account in the modelling. This will be further 
discussed later in the paper. 

BIAXIAL FATIGUE TESTING METHOD 

The cruciform specimens (Fig. 2) used in this investigation were manufactured from solution 
annealed AISI 316 austenitic stainless steel with the chemical composition of (wt%) C 0.049, Mn 
1.36, P 0,023, S 0.018, Si 0.54, Cr 17.26, Ni 11.20, Mo 2.15 and remainder Fe. The tensile properties 
of the material at room temperature were 0.2% proof stress 243 MPa, ultimate tensile strength 
597 MPa, elongation 68% and reduction in area 71%. 

Fatigue tests were carried out on a Mayes servohydraulic biaxial test facility. The machine is 
capable of producing two alternating loads, via two pairs of servohydraulic actuators acting on 
orthogonal axes of a cruciform specimen. The cyclic loads in each axis are controlled independently, 
so that different stress biaxialities may be exerted on the working section of the cruciform specimen. 
A pair of very shallow cuts were introduced by spark erosion (typically 0.2 mm deep), located on 
opposite sides of the central notch of 16 mm diameter, encouraging Mode I cracks to propagate 
preferentially along a horizontal line, i.e. the x-axis. The circular notch was produced by spark 
erosion to avoid the introduction of residual stresses. 

Two stress ranges were applied in the tests: (a) ACT, = 380 MPa and (b) ACT, = 560 MPa. All tests 
were conducted at a stress ratio R = = - 1 and a frequency between 0.1 and 0.2 Hz. The 
biaxial stresses were kept in constant proportion during the loading cycle. For the first stress level, 

Fig. 2. Cruciform specimen geometry (dimensions in mm). 
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five stress biaxialities were adopted: 1 = +1.0, +0.5, 0, -0.5 and -1.0, whereas for the second 
stress level, only three biaxialities were chosen: 1 = + 1.0, +0.5 and 0, since the specimen would 
be broken after very few cycles of loading at the higher stress amplitude at 3, = - 1.0 or -0.5; the 
stresses being above or close to the ultimate strength, in the net section of the specimen. 

During testing, fatigue crack lengths were monitored by a d.c. potential drop measuring system 
and a travelling microscope simultaneously. Three pairs of stainless steel leads were spot-welded 
to the specimen, one pair being far from the central notch (35 mm on each side of the centre line) 
to provide a reference voltage, and the other two pairs being symmetrically located on the notch 
perimeter, 4 mm either side of the centre line. The relatively small distance between the potential 
leads of each pair resulted in a larger increment of voltage measured between them due to extension 
of a short crack. This system was able to detect sensitively the initiation of a crack of 0.5 mm. After 
crack extension beyond this size, the potential ratio increased with crack length steadily and 
regularly, whereby crack length could be properly monitored. In practice, the potential drop 
measurements were used to reconcile the microscope readings and interpolate data between some 
optical observation intervals. 

Two extensometers, equipped with specially designed spring supports, were installed on the 
specimen, held against points A and A' with respect to the y-axis and points B and B' with respect 
to the x-axis in each case (Fig. 2). Note that the two parallel planes (normal to the y-axis) 
containing A and A', respectively, and a second pair of parallel planes (normal to the x-axis) 
containing B and B', respectively, can be regarded as remote boundaries, and the displacements 
at a given time along different normal lines between each pair of the parallel planes are 
approximately constant. In this sense, the gauge length changes of both axes were detected by these 
extensometers and recorded by a data logger. The hysteresis loops of cyclic load versus 
displacement were also plotted at regular intervals by an x-y recorder. 

An additional biaxial cyclic loading test was performed at the corresponding stress biaxialities 
of - 1, -0.5, 0, +0.5 and + 1.0, using the same geometry of specimen but without a notch, to 
obtain the cyclic stress-strain relationship of the material. The plastic strains on both axes were 
easily obtained by the extensometers described above, for a series of increasing stress ranges in steps 
of 40 MPa. The parameters k and n in equation (4) at these five biaxialities were determined by 
linear regression from the recorded stress and strain data. 

EXPERIMENTAL RESULTS 

Cyclic stress-strain relationship 
The measured principal stress and plastic strain ranges (Ac, versus AqP) from the tests to 

determine the cyclic stress-strain relationship performed at 1 = - 1.0, -0.5, 0, +0.5 and + 1.0, 
were analysed for each biaxiality to give the following formulae by linear regression: 

ACT, = 8.95 x 1O2A~:is2 

for 1 = - 1 with 260 < Ao, < 380 MPa, 

Ac,  = 1.01 x 103A~$38 

for 1 = -0.5 with 260 < An, < 380 MPa, 
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for 1 = 0 with 380 < ACT, < 560 MPa, 

ACT, = 1.85 x 103 A ~ ~ I I  

ACT, = 1.98 x 103 A€?;*O 

(13) 

for 1 = +0.5 with 380 < Aa,  < 560 MPa, and 

(14) 

for Iz  = + 1.0 with 380 < ACT, < 560 MPa. 

good linear tendency exists between ACT, and Aclp at the five biaxialities. 
All correlation coefficients for the above equations were larger than 0.990, indicating that a very 

Fatigue crack growth under biaxial stresses 
A presentation of fatigue crack growth under high levels of biaxial stress is given by Fig. 3(a) 

and (b) for the two stress levels, in terms of crack growth rate plotted against nominal AK, where 

AK = Ao, J G ( 1  + F) (15) 

derived in a previous paper [13] for this configuration, the definition of F being given by equations 
(6) and (7). Note that this expression is applicable to the case of a cracked notch for (a - b) /b  > 0.4 
(Fig. l), whereas for crack extension under this limit, (1 + F) was taken from the numerical results 
of Newman [14] or Xiao et al. [15], for the case of an infinitely wide plate. Obviously, the stress 
levels used in this study are so high that LEFM premises do not hold, and AK is presented only 
as a convenient parameter for plotting crack velocity against applied stress amplitude and crack 

(a) Au1 = 380MPa 
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A u l f i ( l  + F), MPemlla 

10 
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A u l f i ( l +  F), MPam112 

I 

Fig. 3. Fatigue crack growth rate da/dN vs Au, &(l +F), for (a) Au, = 380MPa and (b) 
Aol = 560 MPa. 
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Fig. 4. Fatigue crack growth rate da/dN vs crack length a, for (a) Aul = 380 MPa and (b) AnI = 560 MPa 

The results are also shown as crack growth rate versus total crack length a, as indicated in Fig. 
4(a) and (b). Crack growth rates in this investigation were obtained by the secant formula, following 
ASTM standard E647 [16]. 

Gauge length displacement during fatigue 
Since fatigue cracks for all test specimens propagated close to the x-axis, applied strains in the 

y-axis direction are more relevant to Mode I fatigue crack growth. Figure 5(a) and (b) shows the 
results of displacement measured on the y-axis, in relation to crack length, at different stress 
biaxialities for both stress levels. In fact, the length change6 along the central vertical line, as shown 
in Fig. 5, should be interpreted as the sum of the strains on the y-axis plus the crack tip opening 
displacmen t (COD). 

Figure 6(a) and (b) shows two examples of load-displacement hysteresis loops for 
Ao, = 380 MPa with d = + 1.0 and An, = 560 MPa with I = +0.5, respectively. It is evident that 
the minimum point of displacement moves to the right, i.e. towards a greater value, with the 
increase of loading cycles or crack extension, which is caused mainly by crack closure. This suggests 
that the maximum point of the displacement is a more representative parameter with regard to 
fatigue crack propagation, due to the presence of crack closure. Figure 7(a) and (b) shows the 
variation of AV, (the net increase of the maximum value of gauge length displacement, V,) with 
crack length for different stress biaxialities at the two stress levels. 

DISCUSSION 

Figures 3 and 4 clearly indicate that fatigue crack growth rates under high levels of biaxial stress 
are affected substantially by both the stress amplitude and biaxiality. Being referred to as nominal 
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Fig. 5. Total displacement of gauge length for the y-axis, Vt, as a function of crack length a, for (a) 
Acl  = 380 MPa and (b) Aul = 560 MPa. 

AK or crack length a, fatigue cracks propagate faster for the higher stress level at the same 
biaxiality. At a given stress level, fatigue cracks grow more rapidly with out-of-phase or negative 
biaxialities (A = -0.5 and - 1) than in the uniaxial case, and slightly slower for in-phase cases or 
positive biaxialities (A = + 0.5 and + 1 .O). These trends essentially differ from the results obtained 
at low levels of biaxial stress for the same specimen configuration [9], for which the effects of A c  

(b) A q  = 560MPa 1 2 3 4  5 6 7 

A- t0.5 

i 
R (m) 

N a  0 

1 60 8.2 
2 150 8.4 
3 220 8.7 

!] 4 

370 10.0 
5 480 12.0 
6 550 13.8 
7 630 16.6 0 

9 0 : l  o j 2 m  

Fig. 6. Two examples of load-displacement hysteresis loops, for (a) Aul = 380 MPa with A = + 1 and (b) 
Au, = 560 MPa with = +0.5. 
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I 

1 

Fig. 7. Net changes of the maximum value of gauge length displacement for the y-axis as a function of 
crack length a, for (a) Aol = 380 MPa and (b) Ao1 = 560 MPa. 

and 1 on da/dN were well described by the stress intensity factor range. Thus the Paris law can 
be used to describe crack extension and predict fatigue life. However, in the present situation, the 
Paris law is inapplicable simply because the high stress leads to violation of the requirements 
postulated by LEFM, and because it does not include the plastic strain range. 

There seems to be a paradox that, over a large range of fatigue crack growth rates, da/dN for 
1 = +0.5 is a little lower than that for 1 = + 1.0 at both stress levels. This arose when a /b  > 1.50 
or Aa, &(1 + F )  > 70 MPa 6 for ACT, = 380 MPa [Figs 3(a) and 4(a)], and when a / b  > 1.25 
or Aa, &a(l + F) > 60 MPa 6 for ACT, = 560 MPa [Figs 3(b) and 4(b)]. This paradox may be 
interpreted in the following manner. 

An interpretation of the influence of Aa and 1 on fatigue behaviour in this regime may be 
described in terms of the effective stress, ACT,, which is an appropriate representation of stresses 
in a biaxial state and can be expressed as (for a von Mises flow rule) 

Obviously, the contribution of 1 to CT, is in the form of d m  and their correlation is 
illustrated by Fig. 8. It is seen that, when 1 = +0.5, the value of ,/- reaches its minimum 
at 0.866. Since the present tests were performed under high levels of biaxial stress, the fatigue crack 
behaviour is much more controlled by the plastic deformation in the vicinity of crack tip. Using 
the von Mises yielding criterion 

where CT,,~ is the yield stress under unaxial tension, one can see that the condition for plastic 
deformation is directly connected with both stress magnitude and biaxiality. On the other hand, 
according to the Prandtl-Reuss relations for plastic deformation and von Mises criterion, we may 
write 

(18) 

a, = a, JTZTT. (16) 

=e = c y s  (17) 

2 J m  
Acep = A%*. 2-12 
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a866 

0 
-1 .o -0.5 0 +0.5 + 1  .o 

x 
Fig. 8. Variation of Jm with 1. 

Furthermore, one may assume that the effective stress, a,, and the effective plastic strain, cep, 
conform to a power law 

Our experimental results for the Aal versus Aclp relations do agree with this assumption (Fig. 9) 
by giving the following linearly regressed formula 

for which the range of Aa, is between 320 and 650 MPa. Equation (20) was obtained from 21 data 
points of the five biaxialities with the correlation coefficient r = 0.950 and the standard deviation 
of log(Aa,), SD = 0.0468. Thus, the higher the value of o,, the larger the resulting value cep for the 
notch-crack field, and vice versa. The agreement of experimental results with the von Mises flow 
rule also implies that the capacity for plastic deformation reaches the lowest point when A = +0.5 
at a given principal stress level, Aa, . The above inference not only demonstrates the general trend 
of fatigue crack velocity at different biaxialities, but also gives rise to an explanation for the lower 
crack rate at 1 = f0.5 which is attributed to the smaller capacity for plastic deformation compared 
with other biaxialities. 

As mentioned earlier, the Tomkins’ model was created to assess crack growth in the low-cycle 
fatigue regime. Although modifications have been made to his original formula to allow for the 
present geometry under biaxial loadings, the new expression [equation (911 is still lacking general 
applicability since the key factor Aclp is not properly defined. If is regarded as the uniform 
plastic strain away from the notch and tip, it is not readily measured. To overcome this problem, 
we first consider the mechanism of shear decohesion in the Tomkins’ model, where the plastic strain 
range represents the shear strain applied to the crack tip plastic zone. Therefore Aclp should be 
replaced by the effective plastic strain, Acep, for the biaxial stress condition, as shown in equation 
(18), since this is the effective shear strain obtained due to plastic flow. Secondly, we assume that 

a, = k’&. (19) 

(20) AO, = 1.80 x 103 ~ c : , p  

AcIp = C( 2) 
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where V ,  is the maximum value of gauge length displacement during each fatigue cycle, Vo the 
original gauge length and C a proportional coefficient. This is proposed to allow for the fact that 
fatigue crack growth is associated not only with the far field uniform plastic strain but also with 
the deformation in the vicinity of the cracked notch. Consequently, we further develop equation 
(9) as 

or 

Substituting the present data into equation (22), we are able to show the results of da/dN as a 
function of H for the five biaxialities at the two stress levels (Fig. lo), for 9.5 < a < 30mm. It is 
observed that the data resulting from A = - 1, -0.5 and 0 do present a good linear trend in a 
log-log scale with a slope of unity, indicating a stable constant C exists for these cases. 
The corresponding C values are also shown in Fig. 10. Therefore, equation (23) can describe 
fatigue crack growth from circular notches under high levels of biaxial stress at A = - 1 .O, -0.5 
and 0. 

For the cases of positive biaxialities (A = +0.5 and + l.O), although linear trends between da/dN 
and H still exist, the slopes of these lines are in excess of unity. In other words, equation (23) with 
a constant value of C cannot represent these results. This may suggest that, for in-phase biaxial 
loading (A = fO.5 and + l.O), the fraction of plastic strain within the total displacement steadily 

300L 1 1 
10-2 

A€, 

Fig. 9. Relationship between Aoe and Acw. 
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Fig. 10. Modified model describing crack growth rate as a function of H ,  for (a) Au, = 380 MPa and (b) 
An, = 560 MPa. 

increases with the advance of crack length under a given cyclic stress range. On examining the 
tendency of these results, an empirical equation may be proposed 

da - _  - C'H" 
dN 

Consequently, fatigue crack propagation from circular notches under high levels of biaxial stress 
at positive biaxialities could be described by equation (24), where C' is a suitable function of stress 
biaxiality . 

CONCLUSIONS 

The following conclusions are drawn from the present investigation of fatigue crack growth from 

(1) Fatigue crack growth rates are substantially affected by both the stress amplitude and the 
stress biaxiality. Crack growth is faster in the case of negative biaxialities and slightly 
slower for positive biaxialities. 

(2) The highest fatigue crack growth rate occurs when I = - 1.0 and the lowest rate arises 
when I = f0.5, which has been ascribed to the largest and the smallest plastic defor- 
mation capacity, respectively, possessed by the two biaxialities at a given principal stress 
level. 

(3) The Tomkins' model is applicable to fatigue crack growth from circular notches under high 
levels of stress but further analysis is required on the effects of stress biaxiality. 
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circular notches under high levels of biaxial stress. 
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