
material with local unioading 

2. Basic equations 

Under anti-piane shear, ali material eiements are assumed to deform out of rhe u,.x,-plane with II; 
along the .x,-axis being the only non-zero dispI2cement component. Accordingly, only two stress 
components ~~~ 2nd 71j prevai! with the corresponding strains Yi3 and pZ3. The relations between yli 
and u3 are: 

akr, au 3 
YE= G’ Yz; = z (I? 
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such that r,, and y,, depend only on the space variables s, (j = 1, 2). Equilibrium is enforced by 

while compatibility is satisfied if 

aYZ3 aYI3 ----...-~~ 
ax, ax, 

(5) 

Sohttion to a particular problem requires the a priori assumption of the constitutive relation and 
boundary conditions for a specific geometry and loading. 

2.1. Transformation to strain plane 

Introduce the function r,/~ in the complex plane y,? + iy 23 such that eq. (5) is automatically satisfied: 

Here, xj are regarded as the dependent variables while yij are independent: 

Y,~ + iy,, = y eid 

with 4 being the argument of y. Alternatively, x, can be expressed in terms of y and C#J as 

(7) 

a* sin 4 a+ 
xl=cos (6----- 

w cos 4 a* 

aY Y 34,’ 
x,=sin f$---+----- 

ay Y a4 

Because of proportiona! loading, the stress components can also be written as 

7r3 + irz3 = 7 eib 

Application of eq. (4) therefore yields 

T(Y) a% 1 a$ i a'+ 
---+--+-T---== 
Y+(Y) ay2 Y ay Y- a42 

in which T’(Y) = dr/dy. The anti-plane displacement uj is related to I/I as 

w au3 u3=y--$I or *=r--~a 
ay & (11) 

with r being the radial distance in a polar coordinate system of the physical plane x1xX. 

2.2. Constitutir:e relation 

The constitutive relation of the material is displayed graphically in Fig. 1. It has a discontinuity at yO 
where the shear r attains its maximum: 

for y Q yO 

r=G for Y a y. 



A 

Fig. 1. Stress and strain diagram for ma:eriai with softening. 

Should unloading occur at certain point (ra: 0,) in the x,x,-plane that corresponds to A in Fig. I1 the 
stress/ strain would follow the straight line A -+ 0 with the modulus G, = 5,/y,. Equation 112) would thus 
give 

3/: 

3. Semi-kfinite crack solution form 

Let a semi-infinite crack occupy the negative pOiriOll of tile .r,-ais 2s indicated ir2 Flp. 2. Equati@ns 
(8) transform the crack in x, + ix, onto the semi-infinite portion oi be plane ySa - iir: defined b>- 
O<C$<Z, the limits of which give the principal skear directions that correspond to the Ewer and upper 
crack surface, respectively. Note from eqs. (81 that 

The strain singularity at x1 =.x2 = 0 maps to infinity in the y-p!ane sWh th3t the derisa!.i*:c5 of rii vanish 
at infin&. 

In elastic case, it is known that 

Fig. 2. Semi-infinite crack geometry. 



is thus made. The length parameter 1 stands for 

with k, being a load intensity factor. It is expedient to introduce the quantities 

1 
R(y)=;G- 

V(Y) ’ 
S(Y) = ;G 1 2L=& - - 

V(Y) 1 (19) 

It follows from eqs. (8) that 

x1 = S(Y,,) -R(r) cos 24, 

in which 

x2 = -R(y) sin 26, y < y0 (20) 

WY) = $ (21) 

because of eq. (12). A system of polar coordinates F, = r,// and ffr in dimensionless form can thus be 
introduced: 

3 3 1 
x, = _i + ?r cos 0, = ---; - zy,cos 24, 

2Yrl 2% 
,F,=V, sin 8,= -+sin2&, y<yO (22) 

where Xi =x,/l. This leads to 

1 
Y= .‘- 

y2r, ’ 
(b = i(6, + 7i) (23) 

such that 

(24) 

Refer to Fig. 3. The region y < y0 would correspond to that outside the circle of radius 1/2yi with 
center :It 2, = 3/2Yi and Xr = 0 as given in Fig. 3. It can be seen from eqs. (22) that 

3 2 

i- i 
x1 - $ +z;= -!- 

4Yo” 
(25) 



Fig. 3. E!lip!ic regjcm outside circle. 

3.2. Hyperbolic region ! y > ytj) 

When drjdy < 0 or y > ya, eq. (10) is hyperbolic and hence the choice 

is made. Refer to the Appendix for the elliptic and hyperbo hc character of the governing differential 
equations. Equations (19) become 

x1 = S( yj - R(yj cos 2<5, .x2 = -R(y j sin 2&. y > yrI (27) 

For the material at hand, R and S are given by 

1 
R(Y)=~=, 

31 1 

2 yo\yyo 
S(y)=y-. Y>Yl) (28) 

y0\ VYC 

Referring to Fig. 3, the coordinates (?, 8) are 

which can be used to give 

provided that 

r(e) = V5zzz 

Equations (29) to (31) can be further combined to obtain 

cos I$ = -2fisin B[l + 3 sin’8 i: Tf 0) cos @]-“’ 

1 - 3.12 
sine=-[cosBfT(B)f[1+3sinZffi:T(6)cosii] 

; 
, y>yo 

The value of fi in eqs. (30) must be real and positive and this prevails if and only if 

243 
ices 81 2 3, for -0,~9~8, 

1313 

(32) 

(33) 



while eqs. (26) and (11) render 

113 1 - 
ii,=-_= -- 

1 d 
L cm 4, Y > Yo 

Yo Yo 

Equations (23) and (34) can be combined: 

while eqs. (301, (32) and (35) yield 

[3 cos e + T( e)13’* 
u3= &;sin e. [cos e+ T(e)]'/* . Y’YO 

(35) 

(36) 

(37) 

The common boundary that is common to the elIiptic and hyperbolic region is obtained by equating eqs. 
(36) and (37): 

B 
gv%sinT =f(e) (38) 

in which 

f(e) =&sin B. 
[3 cos B + T(8)]“” 

[COS 8-b T(e)]'/' 

It can be shown that the common boundary in terms of i: and B is given by 

P sin20 f 2r3f 2 cos e f &f’-r=o 

The continuity of tractions is satisfied. Knowing that r: = r/l and as 8 -+ 0 

4 1 
r--, xzsin 8, on r 

where r denotes the common boundary in Fig. 4. It moves as the load factor i = Ck,/G)’ is increased. A 
point such as p1 inside rl or the hyperbolic region at one instance f, would be Ieft behind as r, 
advances forward to r,, at a time t, > I,. Unloading would thus take place aIong a line such as A0 in 
Fig. I with decrea$ng y. The point p, would eventually enter into the elliptic region when the threshold 
ir,, 0,) is surpassed. 



and eq. (37j gives E, in the hyperbolic region: 

(43) 

where g(e) = 4$/-y:. The unloading characteristics can be summarized as: 
. A hyperbolic region advances and leaves behind a region in which the elements undergo unioading. 

That is, when a point, say (ra, 6,) at A in Fig. 1, passes by (rQ. S;, 1 with kcrea+F bid -*~ . 
c The modulus of this unloaded region depends on the strain :-si of the point where cnloadir~g started. 

Refer to eq. (12). 
o The interface behveen the unloaded and elliptic region is a straight hne tangent to the circle given by 

eq. (24). 

4.1. Unloaded /hyperbolic interface 

Suppose that f = h(B) describes the interface of the unloaded and hyperboiic region. If ur;Ioading 
starts at the point (r,, f?,& then 

Recall from eq. (43) that 

[2 
Efj = ;gf@j 

Moreover, eqs. (1 j and (2) can be combine2 to yieid 



Equation (48) applies to any point in the unloading region. 
To find Us, use will be made of the equation of equilibrium: 

(47) 

(48) 

(49) 

A solution of ii3 is in the form 

ii, = w0 + f Y”w,,( e) 
,?I= 1 

with w0 being a constant. Let 

h( ej = h,8” + 0( en) 

Equation (51) may be put into eq. (48). This gives 

(50) 

(51) 

3 i 3n G, 3 $Gh,y@ , as 9 + 0 

It can be shown by substituting eqs. (52) and (50) into eq. (49) that 

(52) 

(53) 

This is a second order ordinary linear differential equation with variable coefficients. The solution is [S] 

w,r*(e) =c,tP’“+c; PI 
for m = 0. Two linearly independent solutions prevail for m # 0: 

in which a,, and b,, are arbitrary constants. In the limit as 6 -+ 0, only the leading terms need to be 
retained: 

w +a +b e’-3n ,I, I,, VI , as@+0 (56) 

If the bracket notation [ ],/,, is used to denote the difference of the quantity inside across the 
interface of the unloaded and hyperbolic region as 

[ lu/h = [ I, - [ I,? 
then 

(57) 



Equation (50) gives UX and %?J%l for the unloaded side: 

The conditions in eqs. (57) may be imposed on eqs. $8) an6 160); they gjve 

It foltows that 

(61) 

(62) 

The anti-plane displacement i;l the unloaded region is thus given by 

~j=ruo+~(n,-~a,@‘i . . . j+aG-(a,+ . . 7b,@--~ . . . )+ . . . as ti --3 0 

= W(] i- ncl(e) + F%:,(q i . (63) 

4.2. Ghaded /elliptic intuface 

Required on the interface 8, = / 8 i of the unloaded md elliptic xgion asi: ik conditions 

On the side of the elliptic region, eq. (42) prevails while on the unloaded side, eq. (63) applies. These 
expressions may be substituted in the first of eqs. (64) for fl = 8, + 0: 

\/5 - 
W”+‘W1(8,~!iF’w,(8,)+... =---cos0,+. 

Yo 6 
Equating coefficients for like power of F, wg and w,(@J are found: 

(65) 

\iz 
IV” = -, 

YO 

“l(80) = - 2 



(67) 

The condition [aii,/aBl,,, in eq. (64) would only yield relations for higher order terms and would not be 
considered. 

5. Summary and disrussion of results 

For a material that behaves linearly to a peak and then softens in proportion to the inverse square 
root of the strain, the stress and strain state near a semi-infinite crack in out-of-plane shear consist of 
three regions. They could be referred to as the unloaded, hyperbolic and elliptic region. The asymptotic 
vaiues of rij and yii are obtained for G = lo6 kg/cm’ and yc = 1. Remember that I = Ik,/G)’ v&h k, 
being the elastic Mode III crack-tip stress intensity factor. 

5.1. Unloaded reg.011 

Hence, the stress intensification for a nonlinear ma~riai is not the samr a~ that of sa;aia. 



5.3. Elliptic region 

In the elliptic region, the stresses and strains are kdependent of the distanc- ._ Roi;? the crack; ti?ej- 
vary only with the angle 6. They are given by 

and 



It cart bc dcduccd from the first of cqs. (A.2) and second of eqs. (A.4) that 

as a result of eq. (4) since A = 0. Equations (6) may be substituted into eq. 64.5) to yield 

$($)+$($)=Q 

and hence 

The property of proportionai loading in eq. 63) may be invoked: 

(Ail) 




