Inhomogeneous behavior of anti-plane shear crack in softening material with local unloading

TH. Hao

X.T. Zhang

Institue of Mechanics, 4cademia Sinica. Beijng 1oofko. People's Republic of Cransi
K.C. Hwang

Deparment of Hechanics. Tsinghua Chitersin: Beijing Nood, Pophes Reponic of Chima

Abstract

Examned in this work is the anti-phane stress and shan near a crak in a material that whens beyond he elastic peak region mat cross over to another as the loading is moreased. Weal unhading can thus previl. Fresentes are the describing crack instabint.

1. Introduction

A material is safd to suffer permanent deformation or damage when it surpasses the elastic limit or yeld poin. Thereafter the stress and strain response may be nonimear and unloding would follow a different path. It is customary to pre-assign the same constitutive relation for ach ciement in the systern. Inhomogeneity arising from the combined efects of material microsmucture. permancme damare and loading is normally neglected. Much of the a prioni assumptions may appear to be reasonable tor the system behavior at large but they may leave much wo be desired in lecal whions of high sures ar enemy gradients such as a line of discontinuity or crack.

What can be demonstrated from the classical theory of plasticity is the lack of thomogenmy of the state of affairs near the crack in. Suct a feature has been shown in past works for in-plane deformation [1-3] and anti-plane shear [4,5]. The character of inhomogenelty depends directy on the assumed form of the constitutive equation. This is reflected in the result of this work in contrast to that in [5] although both dealt with softumg materials. Other works related to material damage and softening can be found in [6,7]. One way of not commiting to a particular form of the constitutive relation is to provide a scheme where the stress and strain response of each matcrial clement is derived [3] rather than preassigned.

2. Basic equations

Under anti-plane shear, all material elements are assumed to deform out of the $x_{1} x_{2}$-plane with t_{3} along the x_{3}-axis being the only non-zero displacement component. Accordingly, only two stress components τ_{13} and τ_{23} prevail with the corresponding strains γ_{13} and γ_{23}. The relations between $\gamma_{i j}$ and u_{3} are:

$$
\begin{equation*}
\gamma_{13}=\frac{\partial u_{3}}{\partial x_{1}}, \quad \gamma_{23}=\frac{\partial u_{3}}{\partial x_{2}} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
t=\gamma_{1}^{3}+4 \frac{3}{3} \quad \gamma=\gamma_{13}+\gamma_{3} \tag{2}
\end{equation*}
$$

The assumption of promitomal loading then yiclds

$$
\begin{equation*}
\tau_{13}=\frac{\tau}{\gamma} \gamma_{13}, \quad \tau_{23}=\frac{T}{\gamma} \gamma_{23} \tag{3}
\end{equation*}
$$

sucin that $\tau_{i j}$ and $\gamma_{i j}$ depend only on the space variables $x_{j}(j=1,2)$. Equilibrium is enforced by

$$
\begin{equation*}
\frac{\partial \tau_{13}}{\partial x_{1}}+\frac{\partial \tau_{23}}{\partial x_{2}}=0 \tag{4}
\end{equation*}
$$

while compatibility is satisfied if

$$
\begin{equation*}
\frac{\partial \gamma_{23}}{\partial x_{1}}-\frac{\partial \gamma_{13}}{\partial x_{2}}=0 \tag{5}
\end{equation*}
$$

Solution to a particular problem requires the a priori assumption of the constitutive relation and boundary conditions for a specific geometry and loading.

2.1. Transformation to strain plane

Introduce the function ψ in the complex plane $\gamma_{13}+\mathrm{i} \gamma_{23}$ such that eq. (5) is automatically satisfied:

$$
\begin{equation*}
x_{1}=\frac{\partial \psi}{\partial \gamma_{13}}, \quad x_{2}=\frac{\partial \psi}{\partial \gamma_{23}} \tag{6}
\end{equation*}
$$

Here, x_{j} are regarded as the dependent variables while $\gamma_{i j}$ are independent:

$$
\begin{equation*}
\gamma_{13}+\mathrm{i} \gamma_{23}=\gamma \mathrm{e}^{\mathrm{i} \phi} \tag{7}
\end{equation*}
$$

with ϕ being the argument of γ. Alternatively, x_{j} can be expressed in terms of γ and ϕ as

$$
\begin{equation*}
x_{1}=\cos \phi \frac{\partial \psi}{\partial \gamma}-\frac{\sin \phi}{\gamma} \frac{\partial \psi}{\partial \phi}, \quad x_{2}=\sin \phi \frac{\partial \psi}{\partial \gamma}+\frac{\cos \phi}{\gamma} \frac{\partial \psi}{\partial \phi} \tag{8}
\end{equation*}
$$

Because of proportional loading, the stress components can also be written as

$$
\begin{equation*}
\tau_{13}+\mathrm{i} \tau_{23}=\tau \mathrm{e}^{\mathrm{i} \phi} \tag{9}
\end{equation*}
$$

Application of eq. (4) therefore yields

$$
\begin{equation*}
\frac{\tau(\gamma)}{\gamma \tau^{\prime}(\gamma)} \frac{\partial^{2} \psi}{\partial \gamma^{2}}+\frac{1}{\gamma} \frac{\partial \psi}{\partial \gamma}+\frac{1}{\gamma^{2}} \frac{\partial^{2} \psi}{\partial \phi^{2}}=0 \tag{10}
\end{equation*}
$$

in which $\tau^{\prime}(\gamma)=\mathrm{d} \tau / \mathrm{d} \gamma$. The anti-plane displacement u_{3} is related to ψ as

$$
\begin{equation*}
u_{3}=\gamma \frac{\partial \psi}{\partial \gamma}-\psi \quad \text { or } \quad \psi=r \frac{\partial u_{3}}{\partial r}-u_{3} \tag{11}
\end{equation*}
$$

with r being the radial distance in a polar coordinate system of the physical plane $x_{1} x_{2}$.

2.2. Constitutive relation

The constitutive relation of the material is displayed graphically in Fig. 1. It has a discontinuity at γ_{0} where the shear τ attains its maximum:

$$
\tau=G \begin{cases}\gamma, & \text { for } \gamma \leqslant \gamma_{0} \tag{12}\\ \gamma_{0} \sqrt{\frac{\gamma_{0}}{\gamma}}, & \text { for } \gamma \geqslant \gamma_{0}\end{cases}
$$

Fig. 1. Stress and strain diagram for material with sofiening.

Should unloading occur at certain point ($r_{a}, \theta_{\mathrm{a}}$) in the $x_{1} x_{2}$-plane that corresponds to A in Fig. 1, the stress/strain would follow the straight line $\mathrm{A} \rightarrow 0$ with the modulas $G_{i}=\tau_{t} / \gamma_{t}$. Equation (12) would thus give

$$
\begin{equation*}
\frac{G_{t}}{G}=\left(\frac{\gamma_{0}}{\gamma_{t}}\right)^{3 / 2} \tag{13}
\end{equation*}
$$

3. Semi-infinite crack: solution form

Let a semi-infinite crack occupy the negative potion of the x_{1}-axis as indicated in Fiy. 2. Equations (8) transform the crack in $x_{1}+\mathrm{i} x_{2}$ onto the semi-infinite portion of the plane $\gamma_{13}+1 \gamma_{23}$ defined by $0 \leqslant \phi \leqslant \pi$, the limits of which give the principal shear directions that correspond to the lower and upper crack surface, respectively. Note from eqs. (8) that

$$
\begin{equation*}
x_{2}=0 \rightarrow \frac{\partial \psi}{\partial \phi}=0 \quad \text { at } \phi=0 \text { and } \pi \tag{14}
\end{equation*}
$$

The strain singularity at $x_{1}=x_{2}=0$ maps to infinity in the γ-plane such that the derivatives of t vanish at infinity.

In elastic case, it is known that

$$
\begin{equation*}
x_{1}-\mathrm{i} x_{2}=\mathrm{e}^{\mathrm{i} \dot{\phi}}\left(\frac{\partial \psi}{\partial \gamma}-\frac{1}{\gamma} \frac{\partial \psi}{\partial \phi}\right) \rightarrow-\frac{1}{2 \gamma}\left(\frac{k_{3}}{G}\right)^{2} \mathrm{e}^{-2 i \phi}, \quad \gamma \rightarrow 0 \tag{15}
\end{equation*}
$$

Fig. 2. Semi-infinite crack geometry.

Becatae of eq. (12), the function ψ possesses a discontinuty at $\gamma=\gamma_{0}$ and hence the solution for $\gamma>\gamma_{0}$ and $y<y_{t}$ will be discussed separately.

3.1. Elliptic region $\left(\gamma<\gamma_{0}\right)$

A form of ψ will he selected such that the free surface crack condition will be satisfied in addition to the governing eq. (9). The choice

$$
\begin{equation*}
\psi=\frac{l}{2}\left\{\frac{1}{\gamma}+\gamma\left[2 G \int_{\gamma_{0}}^{\infty} \frac{\mathrm{d} u}{u^{2} \tau(u)}-\gamma_{0}^{-2}\right]\right\} \cos \phi, \quad \gamma<\gamma_{0} \tag{17}
\end{equation*}
$$

is thus made. The length parameter l stands for

$$
\begin{equation*}
l=\left(\frac{k_{3}}{G}\right)^{2} \tag{18}
\end{equation*}
$$

with k_{3} being a load intensity factor. It is expedient to introduce the quantities

$$
\begin{equation*}
R(\gamma)=\frac{l}{2} G \cdot \frac{1}{\gamma \tau(\gamma)}, \quad S(\gamma)=\frac{l}{2} G\left[2 \int_{\gamma}^{\infty} \frac{\mathrm{d} u}{u^{2} \tau(u)}-\frac{1}{\gamma \tau(\gamma)}\right] \tag{19}
\end{equation*}
$$

It follows from eqs. (8) that

$$
\begin{equation*}
x_{1}=S\left(\gamma_{0}\right)-R(\gamma) \cos 2 \phi, \quad x_{2}=-R(\gamma) \sin 2 \phi, \quad \gamma<\gamma_{0} \tag{20}
\end{equation*}
$$

in which

$$
\begin{equation*}
R(\gamma)=\frac{l}{2 \gamma^{2}} \tag{21}
\end{equation*}
$$

because of eq. (12). A system of polar coordinates $\bar{r}_{1}=r_{1} / l$ and θ_{1} in dimensionless form can thus be introduced:

$$
\begin{equation*}
\bar{x}_{1}=\frac{3}{2 \gamma_{0}^{2}}+\bar{r}_{1} \cos \theta_{1}=\frac{3}{2 \gamma_{0}^{2}}-\frac{1}{2 \gamma^{2}} \cos 2 \phi, \quad \bar{x}_{2}=\bar{r}_{1} \sin \theta_{1}=-\frac{1}{2 \gamma^{2}} \sin 2 \phi, \quad \gamma<\gamma_{0} \tag{22}
\end{equation*}
$$

where $\bar{x}_{i}=x_{j} / l$. This leads to

$$
\begin{equation*}
\gamma=\frac{1}{\sqrt{2 \bar{r}_{1}}}, \quad \phi=\frac{1}{2}\left(\theta_{1}+\pi\right) \tag{23}
\end{equation*}
$$

such that

$$
\begin{equation*}
\bar{r}_{1}^{2}=\left(\bar{x}_{1}^{2}-\frac{3}{2 \gamma_{0}^{2}}\right)^{2}+\bar{x}_{2}^{2}, \quad \tan \theta_{1}=\frac{\bar{x}_{2}}{\bar{x}_{1}-\frac{3}{2 \gamma_{0}^{2}}} \tag{24}
\end{equation*}
$$

Refer to Fig. 3. The region $\gamma<\gamma_{0}$ would correspond to that outside the circle of radius $1 / 2 \gamma_{0}^{2}$ with center at $\bar{x}_{1}=3 / 2 \gamma_{0}^{2}$ and $\bar{x}_{2}=0$ as given in Fig. 3. It can be seen from eqs. (22) that

$$
\begin{equation*}
\left(\bar{x}_{1}-\frac{3}{2 \gamma_{0}^{2}}\right)^{2}+\bar{x}_{2}^{2}=\frac{1}{4 \gamma_{0}^{4}} \tag{25}
\end{equation*}
$$

Fig. 3. Elliptic region outside circle.

3.2. Hyperbolic region $\left(\gamma>\gamma_{0}\right)$

When $\mathrm{d} \tau / \mathrm{d} \gamma<0$ or $\gamma>\gamma_{0}$, eq. (10) is hyperbolic and hence the choice

$$
\begin{equation*}
\psi=l G\left[\gamma \int_{\gamma}^{\infty} \frac{\mathrm{d} u}{u^{2} \tau(u)}\right] \cos \phi, \quad \gamma>\gamma_{0} \tag{26}
\end{equation*}
$$

is made. Refer to the Appendix for the elliptic and hyperbolic character of the governing differential equations. Equations (19) become

$$
\begin{equation*}
x_{1}=S(\gamma)-R(\gamma) \cos 2 \phi, \quad x_{2}=-R(\gamma) \sin 2 \phi, \quad \gamma>\gamma_{0} \tag{27}
\end{equation*}
$$

For the material at hand, R and S are given by

$$
\begin{equation*}
R(\gamma)=\frac{l}{2} \frac{1}{\gamma_{0 l} \overline{\gamma \gamma_{0}}}, \quad S(\gamma)=\frac{3 l}{2} \frac{1}{\gamma_{0 \mid} \overline{\gamma \gamma_{0}}} . \quad \gamma>\gamma_{0} \tag{28}
\end{equation*}
$$

Referring to Fig. 3, the coordinates (\bar{r}, θ) are

$$
\begin{equation*}
\bar{x}_{1}=\bar{r} \cos \theta=\frac{1}{2 \gamma_{0} \gamma \gamma_{0}}(3-\cos 2 \phi), \quad \bar{x}_{2}=\bar{r} \sin \theta=-\frac{1}{2 \gamma_{0} \bar{\gamma} \gamma_{0}} \sin 2 \phi, \quad \gamma>\gamma_{\theta} \tag{29}
\end{equation*}
$$

which can be used to give

$$
\begin{equation*}
\sqrt{\gamma}=\frac{1}{2 \bar{r} \gamma_{0}, \gamma_{0}}[3 \cos \theta \pm T(\theta)], \quad \gamma>\gamma_{3} \tag{30}
\end{equation*}
$$

provided that

$$
\begin{equation*}
T(\theta)=\sqrt{1-9 \sin ^{2} \theta} \tag{31}
\end{equation*}
$$

Equations (29) to (31) can be further combined to obtain

$$
\begin{align*}
& \cos \phi=-2 \sqrt{2} \sin \theta\left[1+3 \sin ^{2} \theta \pm T(\theta) \cos \theta\right]^{-1 / 2} \\
& \sin \phi=\frac{1}{\sqrt{2}}[\cos \theta \pm T(\theta)]\left[1+3 \sin ^{2} \theta \pm T(\theta) \cos \theta\right]^{-1 / 2}, \quad \gamma>\gamma_{0} \tag{32}
\end{align*}
$$

The value of $\sqrt{\gamma}$ in eqs. (30) must be real and positive and this prevails if and only if

$$
\begin{equation*}
|\cos \theta| \geqslant \frac{2 \sqrt{2}}{3}, \quad \text { for }-\theta_{0} \leqslant \theta \leqslant \theta_{0} \tag{33}
\end{equation*}
$$

A. (\%) ©

The region in which $\mathrm{d} \tau / \mathrm{d} \gamma<0\left(\gamma>\gamma_{0}\right)$ and $\mathrm{d} r / \mathrm{d} \gamma\left(\gamma<\gamma_{0}\right)$ meet at a common boundary. It can be found from the cominuity of displacement and traction. Substituting eq. (17) into the first of eqs. (11) gives

$$
\begin{equation*}
\pi_{3}=\frac{u_{3}}{l}=-\frac{1}{\gamma} \cos \phi, \quad \gamma<\gamma_{0} \tag{34}
\end{equation*}
$$

while eqs. (26) and (11) render

$$
\begin{equation*}
\bar{u}_{3}=\frac{u_{3}}{l}=-\frac{1}{\gamma_{0}} \sqrt{\frac{\bar{\gamma}}{\gamma_{0}}} \cos \phi, \quad \gamma>\gamma_{0} \tag{35}
\end{equation*}
$$

Equations (23) and (34) can be combined:

$$
\begin{equation*}
\bar{u}_{3}=\frac{1}{\sqrt{2 \bar{r}_{1}}} \sin \left(\frac{\theta_{1}}{2}\right), \quad \gamma<\gamma_{0} \tag{36}
\end{equation*}
$$

while eqs. (30), (32) and (35) yield

$$
\begin{equation*}
\bar{u}_{3}=\frac{1}{\sqrt{2} \bar{r} \gamma_{0}^{3}} \sin \theta \cdot \frac{[3 \cos \theta+T(\theta)]^{3 / 2}}{[\cos \theta+T(\theta)]^{1 / 2}}, \quad \gamma>\gamma_{0} \tag{37}
\end{equation*}
$$

The common boundary that is common to the elliptic and hyperbolic region is obtained by equating eqs. (36) and (37):

$$
\begin{equation*}
\bar{r}_{1} \sqrt{2 \bar{r}_{1}} \sin \frac{\theta}{2}=f(\theta) \tag{38}
\end{equation*}
$$

in which

$$
\begin{equation*}
f(\theta)=\frac{1}{\sqrt{2} \gamma_{0}^{3}} \sin \theta \cdot \frac{[3 \cos \theta+T(\theta)]^{3 / 2}}{[\cos \theta+T(\theta)]^{1 / 2}} \tag{39}
\end{equation*}
$$

It can be shown that the common boundary in terms of \bar{r} and θ is given by

$$
\begin{equation*}
\bar{r}^{6} \sin ^{2} \theta+2 \bar{r}^{3} f^{2} \cos \theta+\frac{3}{\left(\gamma \gamma_{0}\right)^{2}} f^{2}-f^{4}=0 \tag{40}
\end{equation*}
$$

The continuity of tractions is satisfied. Knowing that $\bar{r}=r / l$ and as $\theta \rightarrow 0$

$$
\begin{equation*}
r \rightarrow \frac{4}{\sqrt{3}} \frac{l}{\gamma_{0}^{2}} \sin \theta, \quad \text { on } \Gamma \tag{41}
\end{equation*}
$$

where Γ denotes the common boundary in Fig. 4. It moves as the load factor $l=\left(k_{3} / G\right)^{2}$ is increased. A point such as p_{1} inside Γ_{1} or the hyperbolic region at one instance t_{1} would be left behind as Γ_{1} advances forward to Γ_{L}, at a time $t_{2}>t_{1}$. Unloading would thus take place along a line such as AO in Fig. 1 with dccrcasing γ. The point p_{1} would eventually enter into the elliptic region when the theshold (r_{0}, θ_{0}) is surpassed.

4. Unloadime region

It is obvious from Fig. 4 that under incrasing load, every clement passes through the hyperbotic region $|a|<\theta_{6}$. Equation (36) yields \bar{u}_{3} in the elliptic region:

$$
\begin{equation*}
\bar{u}_{3}=\frac{\sqrt{3}}{\gamma_{0}}-\frac{\gamma_{0}}{\sqrt{3}} \bar{r} \cos \theta+O\left(\bar{r}^{2}\right), \quad \gamma<\gamma_{0} \tag{42}
\end{equation*}
$$

and eq. (37) gives \bar{u}_{3} in the hyperbolic region:

$$
\begin{equation*}
\vec{u}_{3}=\frac{1}{\bar{r}}\left[g(\theta)+\mathrm{O}\left(\theta^{3}\right)\right], \quad \gamma>\gamma_{0} \tag{43}
\end{equation*}
$$

where $g(\theta)=4 \theta / \gamma_{0}^{3}$. The unloading characteristics can be summarized as:

- A hyperbolic region advances and leaves behind a region in which the elements undergo unloading. That is, when a point, say (r_{a}, θ_{a}) at A in Fig. 1, passes by (r_{0}, θ_{0}) with increasing load.
- The modulus of this unloaded region depends on the strain γ_{i} of the penint where miloading started. Refer to eq. (12).
- The interface between the unloaded and elliptic region is a straight line tangent to the circle given by eq. (24).

4.1. Unloaded / hyperbolic interface

Suppose that $\bar{r}=h(\theta)$ describes the interface of the unloaded and hyperboitc region. If untoading starts at the point $\left(r_{a}, \theta_{a}\right)$, then

$$
\begin{equation*}
l=\frac{r}{h(\theta)} \tag{44}
\end{equation*}
$$

Recall from eq. (43) that

$$
\begin{equation*}
u_{3}=\frac{l^{2}}{r} g(\theta) \tag{45}
\end{equation*}
$$

Moreover, eqs. (1) and (2) can be combines to yied

$$
\begin{equation*}
y=\sqrt{\left(\frac{\partial u_{3}}{\partial r}\right)^{2}+\frac{1}{r^{2}}\left(\frac{\partial u_{3}}{\partial \theta}\right)^{2}} \tag{46}
\end{equation*}
$$

Fig. 4. Common boundary moving with increasing load.

With $\gamma_{\text {, }}$ being the strain at $\left(r_{a}, \theta_{3}\right)$ and using eq. (44), there results

$$
\begin{equation*}
\gamma_{1}=\frac{1}{h^{2}(\theta)} h^{2}(\theta)+g^{2}(\theta) \tag{47}
\end{equation*}
$$

where $\dot{g}=\mathrm{d} g / \mathrm{d} \theta$. Equation (47) may be inserted into (13) to give

$$
\begin{equation*}
G_{t}=\frac{G}{\gamma_{0 \mid} \overline{\gamma_{0}}}\left[\dot{g}^{2}(\theta)+g^{2}(\theta)\right]^{-3 / 4} h^{3}(\theta) \tag{48}
\end{equation*}
$$

Equation (48) applies to any point in the unloading region.
To find u_{3}, use will be made of the equation of equilibrium:

$$
\begin{equation*}
\frac{1}{\bar{r}} \frac{\partial}{\partial \bar{r}}\left[G_{t} \bar{r} \frac{\partial \bar{u}_{3}}{\partial \bar{r}}\right]+\frac{1}{\bar{r}^{2}} \frac{\partial}{\partial \theta}\left[G_{t} \frac{\partial \bar{u}_{3}}{\partial \theta}\right]=0 \tag{49}
\end{equation*}
$$

A solution of \bar{u}_{3} is in the form

$$
\begin{equation*}
\bar{u}_{3}=w_{0}+\sum_{m=1}^{\infty} \bar{r}^{m} w_{m}(\theta) \tag{50}
\end{equation*}
$$

with w_{0} being a constant. Let

$$
\begin{equation*}
h(\theta)=h_{0} \theta^{n}+\mathrm{O}\left(\theta^{n}\right) \tag{51}
\end{equation*}
$$

Equation (51) may be put into eq. (48). This gives

$$
\begin{equation*}
G_{t} \rightarrow \frac{1}{8} G h_{0}^{3} \gamma_{0}^{3} \theta^{3 n}, \quad \text { as } \theta \rightarrow 0 \tag{52}
\end{equation*}
$$

It can be shown by substituting eqs. (52) and (50) into eq. (49) that

$$
\begin{equation*}
\theta \frac{\mathrm{d}^{2} w_{k}}{\mathrm{~d} \theta^{2}}+3 n \frac{\mathrm{~d} w_{k}}{\mathrm{~d} \theta}+m^{2} \theta w_{k}=0 \tag{53}
\end{equation*}
$$

This is a second order ordinary linear differential equation with variable coefficients. The solution is [8]

$$
\begin{equation*}
w_{m}(\theta)=c_{0} \theta^{1-3 n}+c_{1} \tag{54}
\end{equation*}
$$

for $m=0$. Two linearly independent solutions prevail for $m \neq 0$:

$$
\begin{equation*}
w_{m}-a_{m}\left[1-\frac{m^{2}}{2(1+3 n)} \theta^{2}+\cdots\right], \quad w_{m}=b_{m}\left[\theta^{1-3 n}+\frac{m^{2}}{6(n-1)} \theta^{3(1-n)}+\cdots\right] \tag{55}
\end{equation*}
$$

in which a_{m} and b_{m} are arbitrary constants. In the limit as $\theta \rightarrow 0$, only the leading terms need to be retained:

$$
\begin{equation*}
w_{m} \rightarrow a_{m}+b_{m} \theta^{1-3 n}, \quad \text { as } \theta \rightarrow 0 \tag{56}
\end{equation*}
$$

If the bracket notation [$]_{u / h}$ is used to denote the difference of the quantity inside across the interface of the unloaded and hyperbolic region as

$$
[]_{u / h}=[]_{u}-[]_{h}
$$

then

$$
\begin{equation*}
\left[\bar{u}_{3}\right]_{u / h}=\left[\frac{\partial \bar{u}_{3}}{\partial \theta}\right]_{u / h}=0 \tag{57}
\end{equation*}
$$

Equations (44) and (51) may be first combined to obtain

$$
\begin{equation*}
\ddot{r}=h_{0} \theta^{n}+O\left(\theta^{\prime \prime}\right) \rightarrow \theta \sim\left(\frac{\bar{r}}{A}\right)^{1 / n} \tag{58}
\end{equation*}
$$

On the hyperbolic side of the interface, eq. (43) may be used:

$$
\begin{equation*}
\left[\bar{u}_{3}\right]_{h}=\frac{4 \theta}{\bar{r} \gamma_{0}^{3}}+\cdots \rightarrow \frac{4}{\gamma_{0}^{3} h_{0}^{1 / n}} \bar{r}^{\frac{1}{n}-1}+\cdots, \quad\left[\frac{\mathrm{d} \bar{u}_{3}}{\partial \theta}\right]_{h} \rightarrow \frac{4}{\gamma_{h}^{3}} \frac{1}{\bar{r}}+\cdots, \quad \gamma>\gamma_{0} \tag{59}
\end{equation*}
$$

Equation (50) gives \bar{u}_{3} and $\partial \bar{u}_{3} / \partial 9$ for the unloaded side:

$$
\begin{align*}
& {\left[\bar{u}_{3}\right]_{u}=w_{0}+\sum_{m=1}^{\infty} \bar{r}^{m}\left(a_{m}+b_{m} \theta^{1-3 n}\right)+\cdots=w_{0}+a_{u n} \bar{P}^{m i}+b_{m} h_{0}^{3-\frac{1}{n} \bar{r}^{m-3-\frac{1}{n}}}} \\
& {\left[\frac{\partial \bar{u}_{3}}{\partial \theta}\right]_{u}=(1-3 n) b_{m} \bar{r}^{m} \theta^{-3 n}+\cdots=(1-3 n) b_{m} h_{\hat{p}}^{3} \bar{r}^{m-3}+\cdots} \tag{60}
\end{align*}
$$

The conditions in eqs. (57) may be imposed on eqs. (59) and (60), they give

$$
\begin{equation*}
\frac{4}{\gamma_{0}^{3} A^{1 / n}} \bar{r}^{\frac{1}{n}-1}=w_{0}+b_{m} h_{0}^{3-\frac{1}{n} \bar{r}^{m+3}-\frac{1}{n}}, \quad \frac{4}{\gamma_{\hat{B}}^{F}} \bar{F}^{-1}=(1-3 n) h_{i 0}^{3} \sum_{m=1}^{\infty} b_{m} \bar{r}^{m-3} \tag{61}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
n=1, \quad w_{0}=\frac{4}{h_{0} \gamma_{0}^{3}}, \quad b_{1}=0, \quad b_{2}=\frac{1}{\left(h_{0} \gamma_{0}\right)^{3}} \tag{62}
\end{equation*}
$$

The anti-plane displacement in the unfoaded region is thus given by

$$
\begin{align*}
\bar{u}_{3} & =w_{0}+\bar{r}\left(a_{1}-\frac{1}{8} a_{1} \theta^{2}+\cdots\right)+\bar{r}^{2}\left(a_{2}+\cdots+b_{2} \theta^{2}+\cdots\right)+\cdots \quad \text { as } \theta \rightarrow 0 \\
& =w_{0}+\bar{r} w_{1}(\theta)+\bar{r}^{2} w_{2}(\theta)+\cdots \tag{63}
\end{align*}
$$

4.2. Unloaded / elliptic interface

Required on the interface $\theta_{0}=0$ of the unloaded and elliptic region are the conditions

$$
\begin{equation*}
\left[\bar{u}_{3}\right]_{u / e}=\left[\frac{\partial \bar{u}_{3}}{\partial \theta}\right]_{u / e}=0 \tag{64}
\end{equation*}
$$

On the side of the elliptic region, eq. (42) prevails while on the unloaded side, eq. (63) applies. These expressions may be substituted in the first of eqs. (64) for $\theta=\theta_{0} \rightarrow 0$:

$$
\begin{equation*}
w_{0}+\bar{r} w_{1}\left(\theta_{0}\right)+\bar{r}^{2} w_{2}\left(\theta_{0}\right)+\cdots=\frac{\sqrt{3}}{\gamma_{0}}-\frac{\gamma_{0} \bar{r}}{\sqrt{3}} \cos \theta_{0}+\cdots \tag{65}
\end{equation*}
$$

Equaling coefficients for like power of \bar{r}, w_{0} and $w_{1}\left(\theta_{0}\right)$ are found:

$$
\begin{equation*}
w_{0}=\frac{\sqrt{3}}{\gamma_{0}}, \quad w_{1}\left(\theta_{0}\right)=-\frac{\gamma_{0}}{\sqrt{3}} \tag{66}
\end{equation*}
$$

The value μ_{0} may be used to express h_{0} and b_{2} in eq. (62) in terms of γ_{0} :

$$
\begin{equation*}
h_{0}=\frac{2 \sqrt{3}}{\gamma_{0}^{2}}, \quad h_{2}=-\frac{\gamma_{10}^{3}}{12 \sqrt{3}} \tag{67}
\end{equation*}
$$

The condition $\left[\partial \bar{u}_{3} / \partial \theta\right]_{u / e}$ in eq. (64) would only yield relations for higher order terms and would not be considered.

5. Summary and discussion of results

For a material that behaves linearly to a peak and then softens in proportion to the inverse square root of the strain, the stress and strain state near a sem-infinite crack in out-of-plane shear consist of three regions. They could be referred to as the unloaded, hyperbolic and elliptic region. The asymptotic values of $\tau_{i j}$ and $\gamma_{i j}$ are obtained for $G=10^{6} \mathrm{~kg} / \mathrm{cm}^{2}$ and $\gamma_{6}=1$. Remember that $l=\left(k_{3} / G\right)^{2}$ with k_{3} being the elastic Mode III crack-tip stress intensity factor.

5.1. Unloaded region

The local strains are

$$
\left\{\begin{array}{l}
\gamma_{r y} \tag{68}\\
\gamma_{g 3}
\end{array}\right\}=-\frac{\bar{r} \gamma_{0}^{3}}{6 \sqrt{3}}\left[\begin{array}{l}
\theta^{-2} \\
\theta^{-3}
\end{array}\right\}=0.1 \bar{p}\binom{\theta^{-3}}{\theta^{-3}} . \text { as } \theta \rightarrow 0
$$

Similary, the hoal strecses take the forms

The modulus of the uncoaded matemat is

$$
C_{r}=3 \sqrt{3} G\left(\frac{\theta}{\theta}\right)^{3} \cdot \theta-1
$$

5.2. Hyperwher resizas

 nonsingular:

$$
\left[\begin{array}{l}
\pi_{r} \tag{7}\\
\sigma_{0}
\end{array}\right]=\frac{G y^{3 / 2}}{2} \bar{r}\binom{-8}{1}=5 \times 10^{8}(\sigma)\left(\begin{array}{cc}
-\theta \\
1 & \theta \rightarrow 0
\end{array}\right.
$$

Hence, the stress intensification for a nonlinear material is not the same ar that of strain.

5.3. Elliptic region

In the elliptic region, the stresses and strains are independent of the distance from the crack; they vary only with the angle θ. They are given by

$$
\left\{\begin{array}{l}
\gamma_{r 3} \tag{73}\\
\gamma_{\theta 3}
\end{array}\right\}=\frac{\gamma_{0}}{\sqrt{3}}\left\{\begin{array}{c}
-\cos \theta \\
\sin \theta
\end{array}\right\}=0.58\left\{\begin{array}{c}
-\cos \theta \\
\sin \theta
\end{array}\right\}
$$

and

$$
\left\{\begin{array}{l}
\tau_{r 3} \\
\tau_{\theta 3}
\end{array}=\frac{G \gamma_{0}}{\sqrt{3}}\right\}\left\{\begin{array}{c}
-\cos \theta \\
\sin \theta
\end{array}\right\}=5.8 \times 10^{5}\left\{\begin{array}{c}
-\cos \theta \\
\sin \theta
\end{array}\right\}
$$

5.4. Concluding remarks

Equations (71) to (74) inclusive show that the stresses and shan ahead of a creck ary nomomons-

Ac:nty iedgement

Appendix

It can be deduced from the first of eqs. (A.2) and second of eqs. (A.4) that

$$
\begin{equation*}
\frac{\partial x_{2}}{\partial \tau_{23}}+\frac{\partial x_{1}}{\partial \tau_{13}}=\Delta\left(\frac{\partial \tau_{13}}{\partial x_{1}}+\frac{\partial \tau_{23}}{\partial x_{2}}\right)=0 \tag{A.5}
\end{equation*}
$$

as a result of eq. (4) since $\Delta=0$. Equations (6) may be substituted into eq. (A.5) to yield

$$
\begin{equation*}
\frac{\partial}{\partial \tau_{23}}\left(\frac{\partial \psi}{\partial \gamma_{23}}\right)+\frac{\partial}{\partial \tau_{13}}\left(\frac{\partial \psi}{\partial \gamma_{13}}\right)=0 \tag{A.6}
\end{equation*}
$$

and hence

$$
\frac{\partial \gamma_{j 3}}{\partial \tau_{23}}\left(\frac{\partial^{2} \psi}{\partial \gamma_{j 3} \partial \gamma_{23}}\right)+\frac{\partial \gamma_{j 3}}{\partial \tau_{i 3}}\left(\frac{\partial^{2} \psi}{\partial \gamma_{j 3} \partial \gamma_{13}}\right)=0
$$

The property of proportional loading in eq. (3) may be invoked:

$$
\begin{align*}
& =\frac{7}{\pi} a_{5 ;}+\frac{T_{13} \pi_{3}}{\pi^{3}}\left(-\frac{d y}{d x}-7\right) \tag{AB}
\end{align*}
$$

Under these considerations eq. A 7 , can we whitem as

$$
f(x)=\frac{d}{d y}-y
$$

References

 (1983) $607-577$.

[4] I.K Knowles and E. Sternberg. Discontinuous deformation gradients near the tip of a crack in smite antipplane shear: an example, J. Elastictiy 10 (1) (1980) $81-110$.
[5] T.H. Hao, Nonlinear response of anti-plane shear crack, Theoret. Appl. Fract. Rech. 9 (1988) $255-262$.
[6] A. Carpinteri and G.C. Sih. Damage accumulation and crack grouth in bilmear materials with shtoning application of strain energy density theory. Theoret. Apml. Fract. Mech. 1 (2) (1984) 145-159.
 1986).

