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Abstract-Axisymmetric notched bars with notch roots of large and small radii were tested under large 
strain cyclic loading. The main attention is focused on the fracture behaviour of steels having cycles to 
failure within the range 1-100. Our study shows that a gradual transition from a static ductile nature to 
one of fatigue cleavage can be observed and characterized by the Coffin-Manson formula in a generalized 
form. Both the triaxial tensile stress within the central region of specimens and static damage caused by 
the first increasing load have effects on the final failure event. A generalized cyclic strain range parameter 
A6 is proposed as a measure of the numerous factors affecting behaviour. Fractographs are presented to 
illustrate the behaviour reported in the paper. 

NOMENCLATURE 

Ac = generalized cyclic strain range 
AE = the average plastic strain range during the whole life 
cd = radial strain at the minimum section 

Atd = radial strain range at  the minimum section during each cycle 
ATd =the average radial strain range during the whole life 

tfl =the radial strain in the first cycle of loading 
c, = the corresponding radial strain at fracture caused by monotonic (static) loading 
i= a measure of relative static damage (=t:/cJ 

N, = the number of cycles to failure 
N ,  = the number of cycles to crack initiation 

C, ct = fatigue ductility coefficient and exponent 
u, = mean stress 
u, =equivalent stress 
do = the initial diameter of the minimum section 
d = the current diameter of the minimum section 
R =the initial radius of curvature of the notch 
D =the initial gross diameter of the round bar 

y = correlation coefficient 
m = triaxiality sensitivity parameter 

INTRODUCTION 

Plasticity in materials is known to play a leading role within the range of low cycle fatigue 
( N ,  = 102-104). Following the J-integral concept of Rice [l], Lamba [2] and Dowling and Begley [3] 
as applied to cyclic loading conditions, the cyclic J-integral concept, A J  can be established. 
However, strictly speaking, the AJ-integral is not path-independent when either the path route is 
near to the crack tip or owing to other local effects existing in the region ahead of a growing crack 
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Table l ( a l  Chemical comuosition (%wtl of carbon steels and 20Cr steel 
~ 

Group C Mn Si P S Cr 

A 0.18 0.66 0.24 0.15 0.025 0.01 
B 0.20 0.39 0.06 0.01 0.021 0.06 
C 0.21 - 0.30 - 0.99 - 

Table l(b). Heat treatments and mechanical properties 
Group Heat treatment Ultimate strength (MPa) Yield stress (MPa) 

A Quenched from 880°C and tempered at 710°C for 5 h 444 323 
B Quenched from 895°C and air cooling 506 230 
C Quenched from 880°C and air cooling 605 347 

as discussed by Chan et al. [4]. So far one of the most successful and widely accepted models, which 
correlates the amplitude of cyclic plastic strain with fatigue life, is the formulation given by 
Tavernelli and Coffin [5] and Manson [6]; i.e. 

Here, A E ~  is a constant plastic strain range enforced on specimens, Nf denotes the number of cycles 
to failure, C and a are material constants. This formula reflects the importance of plasticity, 
particularly when the strains are in excess of yielding conditions. This is in contrast with stress 
cycling, where material strength is a dominant factor. 

However, to date, little is known about the fatigue fracture behaviour of materials under large 
strain cycling whose number of cycles to failure is within the range 1-100. In most cases, such as 
in the crack-tip or notch-tip zone, strain is accompanied with high triaxiality. Therefore, different 
shapes of notched bars are needed for testing. Our study shows that this range has a gradual 
transition feature from static fracture with ductile dimples to cleavage under fatigue conditions. 
Fractography observation demonstrates a mixed form of microstructural pattern in the intermedi- 
ate range. Eventually, for the range of Nf = 1-100, we propose a modified Coffin-Manson relation 
associated with a generalized cyclic strain range parameter. 

I 
Fig. 1. Specimen shape. 
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Table 2. Geometrical parameters of the specimens 

group type Number of specimens (mm) (mm) (mm) 
Material Geometrical R D do 

A A, 12 62.0 
A2 I 4.5 16.0 9.5 
A3 9 1.5 

B Bl 6 40.0 10.0 , 6.0 

C Cl 9 40.0 10.0 6.0 
B* 9 1.5 9.5 

c2 9 1.5 9.5 

SPECIMENS AND EXPERIMENTAL METHODS 

Three types of materials are used for specimens. Both group A and group B are specimens made 
of carbon steel but with some differences in chemical compositions and heat treatments. Group 
C uses a 20Cr steel. The details are listed in Table l(a) and (b). 

Various shapes of axisymmetric bars are designed to obtain different triaxiality conditions in the 
central zone of the specimens. As shown in Fig. 1 and Table 2, each group of specimens is further 
subdivided into sub-groups, such as A, or A, etc., to specify the differences in geometrical 
dimensions. 

Group A specimens were tested on a 25-ton MTS-810 testing machine but a Shimadzu (EA 
10-EHF) fatigue machine was used for groups B and C .  All the tests were carried out at room 
temperature. 

The axial displacement range between the two ends of the MTS machine was controlled for group 
A, using a triangular displacement waveform (R = - 1) at the basic frequency of 0.2 Hz. In this 
case, the amplitude of the diametral deformation at the minimum section varies as load cycling 
proceeds. The varying diametral deformations were measured by a diametral extensometer 
provided by the MTS system but adapted by changing one of the flat edges into a knife. For groups 
B and C ,  a special extensometer was designed in order to control the radial strains at the minimum 
section of each bar. The device is a copy of the sketch shown by D’Haeyer and Simon[7]. Its 
precision is calibrated within the strain range control limits of our tests. In each case, the 
corresponding hysteresis loops were recorded on an X-Y recorder. 

The results of these tests carried out by two research groups, using various materials sub- 
jected to different heat treatments and also either varying or keeping approximately constant 
radial strain range, provide us with a solid ground and a wide scope of conditions to assist our 
final conclusions. 

EXPERIMENTAL OBSERVATIONS 

Figure 2(a) and (b) displays some typical hysteresis loops recorded during load cycling, in which, 
the x-axis denotes (a) the axial displacement range AL [Fig. 2(a), group A] and (b) the diametral 
deformation range Ad [Fig. 2(b), group A]. The y-axis represents load P. Figure 2(a) and (b) 
belongs to the records of the same specimen taken from group A. Figure 3 is the record of a 
radial-strain control test in group B, in which the x-axis is the radial strain range Acd. The curves 
in Fig. 2(a) and (b) clearly show that, although the axial displacement range AL is controlled, the 
diametral deformation changes with a monotonic trend after each loading cycle. The tension and 
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Fig. 2. Hysteresis loops with elongation range controlled. (a) P vs AL (N, = 8) and (b) P vs Ad (Nf = 8). 

compression displacements are symmetric, yet bring about a steady increase in the diameter at the 
neck of a specimen. Besides the material in group C ,  the other tests show a cyclic hardening 
behaviour. Inverted curvature can be seen near the bottom ends of the compression portions of 
the hysteresis loops when crack closure comes into effect. Once this phenomenon occurs, as 
specified by “A” in Fig. 2, the earliest fatigue crack can always be seen on the surface of the notch 
root. The corresponding number of cycles N,, is then called the fatigue life for crack initiation. If 
the earliest inversion in curvature cannot be distinguished in hysteresis loops, the value of N,, can 
also be defined as the number of cycles to cause a drop of 5% of load range AP from the stabilized 
values. Crack initiation consumes the major portion of life. The average ratios of N,,/N, are 0.86 
(for A,), 0.68 (for A*), 0.56 (for A3), 0.83 (for B,) ,  0.77 (for B2), 0.87 (for C,)  and 0.79 (for C,). 
A smoother notch root results in a larger portion of Ncr. 

Fig. 3. Hysteresis loops with radial strain range controlled. P YS (Nf= 26). 
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Owing to the non-linear behaviour and the non-uniform distributions of the strains around notch 
roots, we prefer to use the radial strain at the smallest section of the specimens as a parameter for 
measurement, that is, 

Ed = ln(d/$) (2) 

where, do and d denote the initial and current diameter at the minimum section, respectively. The 
corresponding radial strain range of each cycle is 

(3) 

It has been shown that AEd varies during cyclic loading of specimens in group A, although the 
amplitude of axial displacement is controlled. Hence, employing the concept of strain damage 
accumulation [8], we define AEd as an average radial strain range, to estimate the damage caused 
by cyclic straining. So that, 

Acd = €d(max) - €d(min). 

1 N' 
AZd = - A& dN = - (Acd)i for group A, 

Nf S' I Nfi=I 
(4) 

Here (Acd), denotes the radial strain range of the ith cycle. Naturally, when the radial strain range 
is controlled approximately to be a constant, then we have 

k d = A t d  for groups B and c. ( 5 )  

In terms of the Coffin-Manson formula, relationships between Nf and ACd are obtained from tests 
on each sub-group of specimens. As stated above, AZd is the average range value of the radial strains 
accumulated: 

AFd = 0.419N;0.590 y = -0.978 for A, 

Acd = 0.253N;0.5'0 y = -0.990 for A2 

&, = 0 . 2 5 2 N ~ O . ~ ~ ~  y = -0.994 for A, 

AFd = 0.369N;0.504 y = -0.962 for Bl 

AZd = 0.186N;0.522 y = -0.958 for B2 

AEd = 0.490N;0.555 y = -0.939 for C ,  

A& = 0.130N;0.5W y = -0.925 for C, .  ( 6 )  

Here, y is the correlation coefficient. Each of the equations in equations (6) is a statistical 
result, taking into account all the data of each sub-group of specimens and using the least 
square method. 

Plotted in Fig. 4(a) in log-log coordinates, are the regression lines based on each sub-group data 
which display the relation between the number of cycles to failure Nf and the average radial strain 
range AEd. Three solid lines represent the result of A,,  A, and A,. Broken lines denote those of 
B, and B, and dash-dot lines are for C, and C, . Two important factors can be immediately obtained 
from this figure. That is to say, the material constants C and a of the Coffin-Manson formula in 
equation (1) correspond to the position and slope of each regression line. However, the lines in 
Fig. 4(a) are wide-spread. The question then becomes: is there any unified relation with regard to 
these scattered data? 
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Fig. 4(a). (Caption opposite). 

A GENERALIZED CYCLIC-STRAIN RANGE 

A brief review of recent progress in the understanding of fatigue damage is necessary before we 
can take any measure to improve the scatter situation. Chell[8] proposed a crack growth damage 
accumulation model, in which damage is categorized to compose of two parts: one is attributed 
to the portion caused by static loading, while the other part is due to the fatigue damage 
accumulated under cyclic loading. Shimada and Furuya [9] developed a model based on a local 
crack-tip strain concept. Both fatigue crack initiation and propagation were treated under the same 
material failure condition, when the accumulation of load cyclic strains reached a critical value, 
this being a function of the number of cycles to failure. Based on these models, we can say that 
the first part of damage is of a “static” nature which represents the state of a material loaded 
monotonically to the maximum point (P,,,=) during the first cycle to straining. This static damage 
must be controlled by the fracture toughness of a material. The second part, called cyclic damage, 
is a cyclic accumulation of all the reversals of loading. It is assumed to follow the Coffin-Manson 
relation. 

Taking into account both the static and cyclic features of damage, we first define a damage 
criterion in the form of 



Fracture behaviour of axisymmetric bars under cyclic loading 1015 

t 
10-3 1 I I I I 1 1 1 1 1  I I I I I  I l l 1  I I I I I l l l J  

loo 10’ lo2 lo3 
N I 

Fig. 4(b) 

Fig. 4. The number of cycles to failure NE as a function of (a) the average radial strain range AE, (AEd 
vs Nf) and (b) the average plastic strain range A t  (A? vs Nf ). 

Here, the first term on the left-hand side refers to the static damage characterized by a parameter 
Z, or say 

(8) 
- 4 
t=- .  

t f  

This is the ratio of the loaded strain 6:  to the fracture strain cf, both are along the radial direction. 
Each specific sub-group, listed in Table 2, has its own value for fracture strain tf, determined by 
a static uniaxial test in a standard manner. The second term is an average radial strain range AE,, 
of the whole life and it is governed by the Coffin-Manson relation. 

If we further define an average plastic strain range of the whole lifetime as 

then equation (7) takes a modified form of the Coffin-Manson formula as 

AE = C N ; .  
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As the number of cycles to failure moves from Nf = lo2 and eventually reduces to Nf = 1 ,  
the proportion of static damage characterized by Z is in a status that can be taken, respect- 
ively, as negligible ( < 0.02), small (< 0.08) and substantial ( > 0.10). Table 3 clearly shows 
this trend. 

Equation (7) satisfies two extreme cases. When Z -P 0, it reduces to the original Coffin-Manson 
relation. However, if E becomes so dominant that AEd -+ 0, then it refers to the pure static fracture 
criterion, 6 :  = cf.  

For the sake of simplicity and clearness, we may just use the samples from group A to exemplify 
our approach to unify the experimental data. 

Let us first handle the data from group A by using the average plastic strain range AC 
as a generalized cyclic strain. Instead of the three equations leading in equations (6), we now 
have 

AF= 0 . 4 6 8 N ~ O . ~ ~ ~  y = -0.979 for A, 

AC = 0.359N~O.~'~ y = -0.994 for A, 

AC = 0.304N;0.625 y = - 0.994 for A, 

This step makes the maximum difference between the values of LY change from 
-0.510 + 0.593 = 0.083 to -0.576 + 0.625 = 0.049 with better conditions for the correlation 
coefficient y. As shown in Fig. 4(b), although the three regression lines are still separate, they 
are now more or less parallel with each other. 

Additional efforts are then made to bring together the three almost parallel lines. The aim 
is achieved by taking into account the influence of the triaxiality conditions in the central zone 
of each type of specimen. The parameter cm/ce, which is the ratio of mean stress to equivalent 
stress, is adopted to characterize the actual degree of the triaxial stress state. According to the 
close form of the formula given by Bridgman [lo] for calculating the stresses in axisymmetric bars, 
we find 

Table 3. E versus N, in specimens of group A 

A, A, A3 

Q = -0.695 t f=  -0.530 6, = -0.442 

Nf e Nf r " r 
509 0.0106 43 1 0.01 17 283 0.0099 
38 1 0.0124 360 0.0158 152 0.0158 
273 0.0129 84 0.0245 104 0.0212 
265 0.0141 37 0.0566 82 0.0245 
217 0.0140 12 0.0753 37 0.0387 
144 0.0150 3 0.2217 20 0.0758 
93 0.0181 If  0.3768 11 0.0772 
64 0.0210 8 0.1456 
41 0.0261 8 0.1240 
20 0.0351 
9 0.0561 
5 0.1171 
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in which, the geometrical notations follow the specifications in Fig. 1, do and R denote, respectively, 
the minimum diameter of the specimen and its notch radius before loading. The results for the three 
sub-groups A, ,  A, and A, are listed in the bottom line in Table 4. However, in the case of a large 
strain condition, the curvature of the local notch changes depending on both its initial profile and 
the stage of straining. As strain increases, the sharp notch is blunted and may become smoother 
(such as in A,). On the contrary, a smooth notch sharpens after the occurrence of necking (for 
example, in A, and A?). Employing the large-strain finite-element computational results of Yang 
and Li [l 11, we have the results of om/oe given in Table 4, which take into account the large strain 
effects stated above. They are related to the number of cycles to failure, since Nf depends on the 
amplitude of strain. Although the value of o,/oe varies along the radial direction of the bar, in 
our tests, we take the maximum value related to the centre as the nominal representative for each 
subgroup. 

To include the triaxiality effect of stress, we further modify the strain range parameter AZ given 
in equation (9) by defining a generalized cyclic strain range A€ as 

Here, ( ~ , , , / o ~ ) ~  is a value based on the standard smoothly notched bar used for fatigue tests. At 
the initial moment of loading, it has the value of (om/oe)o = 0.37. The term in is an experimental 
parameter depending on the material used; it reflects the sensitivity of materials to the notch 
condition. In fact, the sequence displayed by the three lines in Fig. 4(b) is in accordance with the 
degree of triaxiality existing in each sub-group of specimens. 

The whole factor ((om/oe)/(am /oe)o)m plays the role of bringing the three almost parallel lines in 
Fig. 4(b) together into one solid line of group A, as is shown in Fig. 5 .  

The determination of the parameter in is based on a statistical process, by using the experimental 
data of each group of samples. With regard to the value chosen for m and its corresponding 
correlation coefficient y ,  a relation curve can be drawn for each group of specimens. The value of 

Table 4. The corresponding values of u,/u, with respect to N, 

A, A2 A, 

N, %J~, Nf %JQ, N, .,I% 
509 0.42 431 0.81 283 1.18 
38 1 0.43 360 0.81 152 1.18 
213 0.43 84 0.85 104 1.18 
265 0.43 37 0.88 82 1.18 

Yang and Lit111 217 0.43 12 0.88 31 1.18 
144 0.43 3 0.89 20 1.20 
93 0.44 1 0.89 11  1.15 
64 0.44 8 1.11 
41 0.44 8 1.14 
20 0.44 
9 0.45 
5 0.45 

1.28 - Bridgman [lo] - 0.37 - 0.76 
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Fig. 5. The number of cycles to failure N ,  as a function of the generalized cyclic strain range AE 
(A6 vs Nf). 

m which can yield a relative maximum y is taken as the actual parameter and shown in Table 5. 
Materials of better ductility have a lower value of m, and are less sensitive to the triaxiality 
effect. 

We may now assume that the new generalized cyclic strain range Ac in equation (13), follows 
the Coffin-Manson relation, so that 

In the case of small-strain low-cycle fatigue, Z -+ 0 and (om/oe) -+ (om/uJO, then equation (14) 
reduces to equation (1), or say 

Ac(or AEd) = Acp = CNp (1 5 )  

Table 5. The parameters used in equation, (13) and (14) with 
(u,,,/c~)~ = 0.37 

Group rn C U Y 

A 0.45 0.515 -0.609 -0.986 
B 0.88 0.521 -0.543 -0.960 
C 1.34 0.683 -0.567 -0.929 
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in which, AC denotes an average plastic strain to substitute the constant strain range, when the 
amplitude of strain varies during the life time. All the regression lines in Fig. 4(a) are given in this 
sense, although most of the samples have undergone large straining, the effects of static damage 
and life reduction caused by triaxiality are not yet taken into account. 

Figure 5 shows the regression lines obtained from equations (13) and (14) for groups A, B and 
C. Each line has a very satisfactory condition in terms of the correlation coefficient. This situation 
indicates that we can indeed unify the experimental data of each material to one regression line 
by taking into account the static damage and triaxiality effect. A thin line is depicted in Fig. 5 and 
is marked as C-M for the result of the original Coffin-Manson relation, using the data of group 
A only. This line is obviously the lowest line, along with the heavily modified line. Both regression 
lines tend to coincide, only when N f  approaches to lo3, because then the effects of static damage 
and stress triaxiality become negligible. But, our modification provides a better fitting line for the 
experimental data within the range of N,= 1-100. 

This fact supports and proves the validity of modifying the original Coffin-Manson relation 
by substituting a generalized cyclic strain A€. More confidence is felt, since the results are 
mutually checked by the two sets and test arrangements stated previously. One set is the 
material in group A subjected to varying amplitudes of strains. Another is conducted with the 
materials of groups B and C, using rather constant cyclic strain range at the minimum diameter 
of each specimen. 

Although our modification given in equation (13) might look as empirical as the Coffin-Manson 
relation does, our efforts should not be taken as an arbitrary manipulation of curve fitting. 
Actually, the original notion for the formulation or derivation of equation (13) can only be 
obtained through a thorough understanding of the mechanical nature existing in the range 
concerned and searching for the influential factors which have previously been neglected. The 
revelation of these factors is further shown by the following study on the material fracture 
mechanisms. 

SEM AND TEM OBSERVATIONS 

The fracture mechanism of materials subjected to high triaxial stress and large strain cycling, 
undergoes a transition from ductile tearing to fatigue cleavage. It depends on the number of cycles 
to failure N f  or equivalently on the extent of the generalized cyclic strain range A€. After rupture, 
the fracture surfaces of the group A specimens were examined by a scanning electron microscope 
(SEM). Some typical pictures are selected and shown in Fig. 6. Figure 6(a) is the fracture surface 
of a specimen with Nf = 431. It has a typical nature of low-cycle fatigue. There is a fatigue source 
near the zone marked by the letter “a”. Then stream lines specified by A, B, C etc. emanate from 
this source and are located between cleavage areas. Tiny voids can be seen spreading in and near 
these curve lines. A similar feature is also seen in other samples with a relatively high value of Nf. 
But no obvious fatigue source nor stream lines are found among the group A specimens when Nf 
is lower than 100. 

Figure 6(b) displays the picture from a specimen with Nf = 93. It is clear that fatigue cleavage 
is still a dominating mechanism of fracture. However, voids are now seen widely dispersed and 
dotted on the cleavage surface in a random manner instead of being localized within some of the 
stream lines as in Fig. 6(a). 

In striking contrast to the previous two pictures, Fig. 6(c) provides an enhanced nature of ductile 
fracture when the number of cycles to failure reduces to N f  = 37. Here, voids and dimples are found 
to be gathering together within an area. Microcracks are also developed. 
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Fig. 6.  Scanning electron micrographs. 

Lastly, the fracture surface ruptured by cyclic loading for Nf = 12 is shown in Fig. 6(d). Scattering 
large voids and tearing regions together with microcracks are seen. The whole surface has a fibrous 
and uneven nature. 
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Fig. 7. Dimpled area fraction Fd vs cycles to failure Nf. 

The fractography study stated above is quantified by using an image analysis system to measure 
the amount of dimpled area within each picture, which is a magnification of an area of 150 x 
180pm. Five such areas are randomly chosen to obtain an average evaluation of a ductility 
parameter, nominated as the dimpled area fraction Fd, which is the proportion of dimpled area 
within each area of each specimen taken for observation. The data thus obtained from the 
specimens of group A are shown on Fig. 7, which clearly demonstrates a descending trend of the 
dimpled area fraction Fd with respect to the number of cycles to failure Nf. 

This microstructural study strongly supports the view that static ductile damage does par- 
ticipate in material failure with a monotonically increasing degree, as Nf decreases (or A6 

increases). The effect is associated with the triaxiality condition which affects the initiation and 
growth of voids. 

The steels used for groups B and C are high stacking-fault-energy materials. Dislocations 
patterned as cell wall structures are usually found in such steels under cyclic loading. According 
to the report of Feltner and Laird[12], the cell size increases as the plastic strain amplitude 
decreases. Their observations were made after the specimens were cyclically strained at two differ- 
ent amplitudes for 20 and 1000 cycles. These numbers of cycles corresponded to 20% of 
the life of the specimens. Therefore, the situation in the cases of Nf less than 100 should be 
investigated. 

Thin film samples were made from the specimens of groups B and C for a transmission electron 
microscope (TEM) study. Figure 8 presents dislocation cell wall structures located in two specimens 
subjected to different amplitude cyclic strains which eventually cause the material to fail at Nf = 32 
and 142. A few tangled dislocations are still seen within each cell. Statistical analysis, based on the 
known method of linear intercept, provides us with the data given in Fig. 9 for the cell size 
parameter 2. We extended the observation to the cases with Nf less than 100. Again, the cell size 

FFEMS IJ/I&D 
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Fig. 8. A comparison of dislocation cells. (a) N,= 32 and (b) Nf= 142. 
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Fig. 9. Dislocation cell size a versus cycles to failure Nf. 

- 
d is seen to be decreasing with the decrease of the number of cycles to failure, or the increase of 
the amplitude of cyclic strains. 

CONCLUSIONS 

(1) A definition of generalized strain range A6 is provided as a characterizing parameter to 
describe the fracture behaviour of materials subjected to high triaxial stress and large strain 
cyclic loading. This modification extends the applicability of the Coffin-Manson formula to 
the range of cycles to failure N,, i.e. 10'-10' cycles. The parameter A6 includes the following 
factors: 

(a) the average plastic strain range ACd enforced during cyclic loading, 
(b) the effect caused by static damage Z, 
(c) the high triaxial tension stress influence reflected by the factor [(a,/a,)/(a, 

(2) The ratio value of N,,/N,, is dependent on the triaxiality condition. It decreases as the local 
radius of a notch root decreases, or the triaxiality increases. 

(3) Fractography studies demonstrate that the microstructure at failure undergoes a tran- 
sition from ductile dimple to fatigue cleavage, when the cycles to failure Nf varies from 10' 

(4) Microscopic observations also prove that dislocation cell size increases as the amount of the 
generalized strain range A6 decreases or the corresponding cycles to failure Nf increases from 10' 
to lo2. 
Acknowfedgement-Financial support offered by the Chinese Academy of Sciences is gratefully appreciated. 
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