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Optimized trial functions are used in quantum Monte Carlo and variational Monte Carlo calculations of the Lit (X ‘El ) 
potential curve. The trial functions used are a product of a Slater determinant of molecular orbitals multiplied by correlation 
functions of electron-nuclear and electron-electron separation. The parameters of the determinant and correlation functions are 
optimized simultaneously by reducing the deviations of the local energy EL (E,= ‘#$ ’ H’Y,, where YT denotes a trial function) 
over a fixed sample. At the equilibrium separation, the variational Monte Carlo and quantum Monte Carlo methods recover 68% 
and 98% of the correlation energy, respectively. At other points on the curves, these methods yield similar accuracies. 

1. Introduction 

Potential energy curves and surfaces govern spec- 
troscopy and collision dynamics. To be useful for 
computing quantities such as cross sections and 
spectroscopic constants, however, these surfaces 
should be determined to very high accuracy. To- 
wards this end, accurate computations of the energy 
over a range of coordinates are required. 

Within the last ten to fifteen years quantum Monte 
Carlo (QMC) approaches, for obtaining numerical 
solutions of the Schrijdinger equation have yielded 
very accurate energies for small systems #I. In the 
diffusion QMC method with fixed nodes [ 1 ] (re- 
ferred to as QMC hereafter), the trial function, !&, 
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determines both the precision and accuracy of the 
QMC energy. Precision is determined by the 
smoothness of the local energy and accuracy is dic- 
tated by the quality of the nodal structure of !&. For 
these reasons, trial function optimization holds con- 
siderable interest in QMC. 

Recently, an approach has appeared based on 
minimizing deviations of the local energy over fixed 
samples [ 3,4]. Since the optimization is performed 
over a fixed sample, random walks are eliminated 
allowing greater efficiency during nonlinear opti- 
mization. 

The fixed-sample optimization approach is em- 
ployed here to obtain trial functions at several widely 
spaced internuclear separations of ground state Liz 
(X ‘C: ). With these trial functions, potential curves 
(PCs) can be computed following the VMC and 
QMC approaches. Liz serves as an excellent test case 
because its potential curve has been well character- 
ized theoretically [5-l 1 ] and experimentally [ 12- 
16]. 

In section 2 we describe the trial function and op- 
timization algorithm. In section 3 we present opti- 
mized trial function parameters, VMC and QMC 
energies at several internuclear separations, and the 
resulting spectroscopic constants. The QMC com- 
puted curve is compared with one deduced from ex- 
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periment and the QMC spectroscopic constants are 
compared with previously computed values and ex- 
periment. Finally, the dissociative behavior of the 
VMC and QMC curves is investigated with com- 
putations at very large separation. Section 4 contains 
concluding remarks. 

2. Trial function and optimization 

In this study we employ a relatively simple trial 
function form. It consists of a product of two deter- 
minants of molecular orbitals (MOs) containing 
electrons of opposite spin, multiplied by a correla- 
tion function of electron-nuclear and electron-elec- 
tron separations. The MOs, 1 a,, lo, and 2o,, for the 
ground state of Liz, are linear combinations of 1 s, 2s 
and 2p, Slater orbitals centered on each atom. Sym- 
metry restrictions on the MOs and trial function nor- 
malization yield six independent linear coefficients. 
Orbital exponents may also be varied, and, unlike 
conventional expansion techniques, different MOs 
may be constructed of STOs with different expo- 
nents. Here the first two MOs have identical orbital 
exponents, but those of the 20, are different, result- 
ing in six exponents for optimization and greatly en- 
hancing basis set flexibility. 

The electron-electron correlation function, S,, is 
chosen to have the form [ 171 

S,({rij}) =exp -b 1 exp( -aril) 
( > 

. (1) 
‘U 

The parameter a is constrained to be 0.5b. This con- 
straint is useful in reducing the variance in the local 
energy, EL= Y.f ’ H’Y,, since it removes the singu- 
larity in EL due to the coalescence of electrons of op- 
posite spin. (Removing the singularity for electrons 
of like spin is not important for present purposes be- 
cause !P=-+O as such electrons coalesce.) This cor- 
relation function is both easy to evaluate and yields 
a good description of electron correlation [ 171. The 
electron-nuclear correlation function, S,, further in- 
creases trial function flexibility and takes the famil- 
iar Jastrow form 

The total number of parameters to be optimized is 
15: six linear coefficients, six exponents, in addition 
to b of S,, and ,l and v of S,,. 

The trial function parameters are optimized by 
minimizing the sum of the deviations of local ener- 
gies, V, where 

V= i, [-%tRn) -&I’. (3) 

Here R, specifies the positions of the electrons and 
these points are selected using VMC from the dis- 
tribution 1 !Po I*, where Y0 is an initial trial function. 
ER is a reference energy and N= 1000 in the calcu- 
lations below. Trial function parameters are gov- 
erned by ER, the sample {R,}, YO, and the point at 
which optimization is assumed to be complete. Each 
of these factors is varied in the optimization pro- 
cedure. (For a detailed description of the optimi- 
zation procedure, see ref. [ 3 1. ) 

The first geometry considered was the experimen- 
tal minimum energy separation (5.05 bohr) with SCF 
MOs for YO. For the remaining internuclear sepa- 
rations, Y0 is chosen as the trial function optimized 
at the previous separation. 

3. Results and discussion 

Optimized trial functions were obtained over the 
range of internuclear separations from 2.5 to 10.0 
bohr. The resulting MO coefficients and exponents, 
and correlation function parameters are given in ta- 
bles l-3, respectively. For each of the internuclear 
separations at which an optimized trial function was 
determined, both VMC and QMC energies were 
computed; these are reported in table 3. 

Once the trial function is specified, the most im- 
portant requirement for QMC calculations is the re- 
moval of time-step bias [ 11. To ascertain the bias of 
the present calculations, QMC energies were com- 
puted to high precision (statistical error G 0.0008 h) 
over a range of time steps, 0.0025<r<O.O1 (har- 
tree)-‘, at R~3.5 and 5.05 bohr. Results of these 
computations are presented in figs. 1 and 2. At 
R, (5.05 bohr), time-step bias is not statistically sig- 
nificant until ~0.05 (hartree)-‘, and at R= 3.5 bohr 
this bias does not become apparent until ~0.02 
(hartree)-‘. Based on these results, we used a time 
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Table 1 

Optimized MO coefftcients versus R ‘) 

R (bohr) MO 

1% 

c(2s) C(2Pz) 

10” 

c(2s) C(2Pz) 

2% 

c(2s) C(2Pz) 

2.500 0.4307 0.0182 0.4111 0.0436 0.4810 0.0703 
3.000 0.4430 0.0206 0.4424 0.0171 0.3784 0.0793 
3.500 0.4519 0.0137 0.4306 0.0096 0.4505 0.0947 

4.000 0.3599 0.0005 0.3727 0.0099 0.2244 0.0269 

4.500 0.3585 0.0011 0.3563 0.0004 1.1882 0.2460 

5.050 0.3652 -0.0011 0.3306 0.0066 1.1646 0.2253 

6.000 0.4734 0.0009 0.4728 0.0007 0.8848 0.1045 

7.000 0.3563 -0.0055 0.3452 0.0014 0.5819 0.0402 

8.500 0.4147 -0.0038 0.3462 -0.0016 0.2860 0.0419 

10.000 0.3375 0.0009 0.3763 -0.0028 0.4096 0.0328 

‘) For the los and lo, MOs c( 1s) = 1, and for the 20, c( 1s) = -0.1. Coefficients are given for the orbitals centered on the atom with the 

origin at (0, 0, -R/2). All remaining coefficients can be obtained by symmetry. 

Table 2 

Optimized exponents (C) 

R (bohr) MO 

2.500 

3.000 

3.500 

4.000 

4.500 

5.050 

6.000 

7.000 

8.500 

10.000 

108, 10” 

I( 1s) 

3.5029 

3.5478 

3.5601 

3.4234 

3.4074 

3.4005 

3.6098 

3.4020 

3.4443 

3.4126 

C(2s) C(2Pz) 

2.7593 2.6125 

2.7854 2.9315 

2.7847 2.7450 

2.7001 3.1443 

2.6871 1.3006 

2.6665 2.4707 

2.8421 3.1089 

2.6650 2.7902 

2.7189 2.8026 

2.7107 2.8039 

2% 

C(ls) 

1.8922 

2.3658 

2.3650 

2.7570 

1.8382 

1.9649 

1.9876 

2.7170 

2.7594 

2.8660 

C(2s) C(2Pz) 

0.7061 0.9837 

0.7514 1.1180 

0.7173 0.8276 

0.6797 1.1521 

0.7336 1.0049 

0.7328 0.9892 

0.7232 0.8283 

0.675 1 0.5555 

0.5935 0.7129 

0.5977 0.6120 

step of 0.010 (hartree) -’ for the other internuclear 
separations considered. 

We first examine the quality of the computed 
energies by considering results at R,. The optimized 
trial function at this separation yields a VMC energy 
of - 14.9564( 6) hartree while the QMC approach 
further improves the energy to - 14.9923(7) hat-tree. 
From the Hartree-Fock (HF) energy of - 14.872 
hartree #* and the estimated exact non-relativistic 
Born-Oppenheimer energy of - 14.9945 hartree 

s* For the Hartree-Fock energy, see ref. [ 19 ] 

[ 201, the VMC and QMC approaches recover 
68.9(5)% and 98.2(8)% of the correlation energy, 
respectively. In a separate calculation, one of us [ 2 1 ] 
has computed a QMC energy for Li atom of 
- 7.47809( 24) hartree, the exact non-relativistic 
Born-Oppenheimer energy is - 7.47807 hartree 
[ 221, allowing a QMC estimate of D, to be obtained. 
After correcting for finite mass, i.e. multiplying the 
energy by M/ (M+ m,) where M is the Liz mass, the 
QMC value of D, is 1 .OO ( 3 ) eV. This result is in good 
agreement with the experimental result of 1.06 eV 
[ 15,161. 
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Table 3 
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Optimized correlation function parameters, VMC energies, and QMC energies versus R ‘) 

R Parameter Energy 

b I V VMC b’ QMC b’ QMC c’ 

2.500 0.3765 - 0.0276 4.1659 - 14.8048(7) 
3.000 0.3868 -0.0634 4.4632 - 14.8723(5) 
3.500 0.3994 -0.0843 4.4533 -14.9165(5) 
4.000 0.3927 -0.1503 40.9298 - 14.9372(6) 
4.500 0.4012 -0.0788 40.9707 - 14.9539(5) 
5.050 0.3884 -0.0159 0.5754 - 14.9564(6) 
6.000 0.3910 -0.0646 2.2921 -14.9507(6) 
7.000 0.3869 -0.0222 4.4623 -14.9397(5) 
8.500 0.3886 -0.0217 4.4755 - 14.9241(5) 

10.000 0.4142 -0.0001 4.4754 - 14.9099(5) 

- 14.8480( 11) 
- 14.9117(09) - 14.9069(7) 
- 14.9522(08) 
- 14.9753( 12) 
- 14.9877(09) 
- 14.9919(07) - 14.9876(6) 
- 14.9860(09) 
- 14.9783(08) -14.9775(5) 
-14.9651(10) 
- 14.9592(09) 

a) Energies are in hartree and distances in bohr. In tables 3-5, numbers in parentheses are one standard deviation in the mean. 
b, This work, QMC are energies computed at T= 0.0 1 (hartree) - ‘. 
‘) With ‘&, of ref. [IS]; energies computed at r=O.Ol (hartree)-‘. 

05 -14.9540 - 
w 
= -15.9550 . 

1 -14.9560 - 

2 -14.9570 - 
l- 

-14.9580 - 

W 

5 -14.9950 - 

-_I -14.9960 - 
;-Q 0 -!4.99?0 - 

+-- -14.9980 

-14.9590. -14.9990 _ 

-14.9600 I I I I I -15.0000 -- I I I I I 
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TIME STEP(h-‘) TIME STEP(h-‘) 

Fig. 1. The QMC energy versus time step at R= 3.5 bohr. Fig. 2. The QMC energy versus time step at R=R, (5.05 bohr). 

Spectroscopic constants extracted from our cal- 
culated PC are listed in table 4 and compared to pre- 
vious results. The mean values and statistical errors 
in our reported spectroscopic constants were ob- 
tained from the computed Monte Carlo energies as 
follows. At each separation studied, an energy was 
sampled from a Gaussion distribution with Monte 
Carlo-computed mean and standard deviation listed 
in table 3. The mean values of R, and E(R,) were 
determined from a sixth-order polynomial fit of the 
selected energies over the range of 2.5 to 7.0 bohr. 
The remaining constants were obtained from a stan- 
dard Dunham analysis employing the expression 

d(r) =E(r) -E(R,) 

=r2(ao+a,r+a,r2+a3r3), (4) 

for 3<R< 10bohr with r= (R-R,)lR,. A new set 
of energies was then sampled, constants computed, 
and the procedure repeated until the means and 
standard deviations of the quantities reported in ta- 
ble 4 were determined to high precision. 

The VMC and QMC energies are either among the 
lowest or are the lowest, computed by ab initio meth- 
ods, see table 4. Monte Carlo values are somewhat 
less accurate, relative to experiment, than the best ab 
initio results. Also, quantities which are most sen- 
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Table 4 

Total energies at R. and spectroscopic constants of Liz (X ‘Z: ) 

Ref. 

6 

7 

8 

9 

this work 

12 

Method 

MCSCF 

val. CI 

MC/C1 

JSTS 

MCSCF 

MCCI-2 

MCCI-4 

VMC 

QMC 

exp. 

E (hartree) R. (bohr) 

5.009 

5.003 

5.107 

5.092 

5.047 

5.056 

- 14.8977 5.094 

- 14.9622 5.117 

- 14.9652 5.058 

- 14.9032 5.088 

- 14.9652 5.085 

- 14.9571(7) 5.12(6) 

-14.9931(10) 5.16(9) 

- 14.9945 a) 5.05 1 

0. (eV) W, (cm-‘) 

1.053 352.4 

1.080 356.9 

0.893 335.2 

1.037 347.4 

1.012 350.5 

1.001 351.9 

0.880 339.5 

0.920 342.7 

1 .ooo 351.9 

I .029 347.1 

1.013 348.5 

382( 10) 

1.00(3) 366( 17) 

1.057 b’ 351.4 

1.056 c’ 

wd, (cm-‘) cxc (cm-‘) 

3.66 

3.66 

2.64 0.0073 

2.54 0.0070 

2.58 0.0070 

2.56 0.0073 

2.64 0.0078 

2.60 0.0078 

2.56 0.0073 

3.60 

3.70 

2.60(41) 0.0052( 12) 

2.72(71) 0.0056(20) 

2.61 0.0068 

‘) Estimated exact non-relativistic Born-Oppenheimer energy, ref. [ 201. ‘) Ref. [ 15 1. ‘) Ref. [ 161. 

-JO00 - 

-4000 

-5000 

-6000 - 

-1000 - 

-8000 - 

,““” , 3 k 5 b f b 9 16 7; 72 13 

R (Bohrs) 

Fig. 3. QMC potential energy curve of Liz. The solid curve is de- 

duced from experiment, see ref. [ 15 1. 

sitive to the shape of the PC, O_X, and (Y,, are found 
to possess large statistical errors. Therefore, while 
agreement with experiment is reasonable, and per- 
haps encouraging (fig. 3 ) , the overall quality is gen- 
erally beneath that of the other ab initio approaches. 

Finally, we consider trial function optimization and 
the subsequent computation of VMC and QMC 
energies at large separations. As is well known, a sin- 
gle-determinant trial function does not dissociate to 

two ground-state Li atoms. Instead, in the asymp- 
totic limit our trial function consists of equal rep- 
resentations of the Li--Li+ and neutral ground 
states. Therefore, the correct representation of the 
“ionic” and “neutral” components of the trial func- 
tion is required in the fixed sample to correctly in- 
tegrate over 1 !Po) 2. Since points representing these 
components are easily discerned at large R by count- 
ing the number of electrons around each atom, a fixed 
sample of high quality is readily obtained. In the 
guided VMC walk employed here [ 181, walkers may 
infrequently cross regions where 1 YyI 2 is small. At 
large R, we have observed little interchange between 
ionic and neutral configurations causing conver- 
gence from an incorrect proportion of ionic versus 
neutral to be time consuming. Therefore, a 50% ionic 
/50% neutral ensemble is employed to start VMC 
calculations. 

For the optimization at R= 30 bohr, we selected 
1150 points from I !Po) *. We then minimized devia- 
tions of the local energy about a reference energy 
ER= - 14.900 hat-tree - the estimated exact energy 
of two Li atoms is - 14.956 hartree. The variance, V, 
is reduced from an initial value of 1.25 to 
0.10 (hartree)2. The resulting VMC energy is 
- 14.884 ( 1) hartree corresponding to recovery of 
20% of the correlation energy, exact and Hartree- 
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Table 5 
Liz QMC energies. R = 30 bohr 

T (hartree)-’ - E (hartree) 

0.010 14.960(3) 
0.005 14.957(2) 
0.002 14.954(2) 
0.001 14.960(2) 
2&.&Li) 14.956(l) 
2&,,,, ( Li 1 14.956 

Fock are taken as twice the atomic energies. This 
value is far below the accuracy obtained with VMC 
at the minimum-energy separation where 69% of the 
correlation energy is recovered and is due to im- 
proper trial function dissociation. 

Table 5 lists QMC energies computed at 30 bohr 
over a range of time steps. We see from the good 
agreement between the computed energies that time- 
step bias lies beneath the statistical error. Most sat- 
isfying is the excellent agreement between Liz QMC 
energy and the estimated exact asymptotic value of 
- 14.956 hartree for two isolated ground-state atoms 
confirming proper dissociation of the QMC PC - de- 
spite the presumed inappropriateness of the trial 
function in this region. This result is readily ex- 
plained. The ionic part of the trial function repre- 
sents a highly excited state and, as such, is rapidly 
removed by the QMC walk which converges to the 
ground (neutral) state and a statistically exact en- 

ergy. 

4. Concluding remarks 

The VMC and QMC potential curves reported here 
both yield spectroscopic constants in reasonable 
agreement with ab initio and recent experimental 
values. We note that the VMC and QMC results agree 
statistically. Although QMC recovers a significantly 
greater portion of the correlation energy than VMC 
( r 30% at R,), no significant improvement in the 
PC is obtained. This may be due, in part, to the large 
statistical errors of the spectroscopic constants. 
However, the trial function, a single Slater deter- 
minant multiplied by simple correlation functions, 
may be readily improved. Efforts along these lines 
should yield large reductions in statistical error and 
an improved PC. 

370 

As a final point, we note that the QMC walk elim- 
inates the ionic component of a single-reference trial 
function and reproduces the exact asymptotic energy 
at large separation. Even though the trial function 
does not dissociate properly, our QMC PC yields the 
correct asymptotic behavior. 
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