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Abstract. In this paper an isolated magnetic flux tube confined in stratified atmosphere is studied for slender 
and axisymmetric model. The functions of the pressure, density, and temperature are expanded as a Taylor 
series of magnetic surface function ~b. Several models of an isolated magnetic flux tube confined in a stratified 
atmosphere are constructed, and the external pressure of the stratified atmosphere decreases reasonably 
with increasing height. The distribution of thermal dynamic quantities and the magnetic pressure in the flux 
tube are also obtained. 

1. Introduction 

In astrophysics, most of the theoretical models of magnetic field deal with the continuous 
fields. However, observations, for example, in the solar atmosphere, show that the 
magnetic field often appears generally in concentrated configuration known as discrete 
and isolated flux tubes with magnetic field of a few ofkG. These flux tubes are embedded 
in a surrounding medium without or with very weak field (Parker, 1979; Spruit, 1981). 
The case is perhaps similar for other celestial bodies. An isolated magnetic flux tube is 
generally the basic configuration of cosmic magnetic fields. 

The problem of magnetostatic equations under the boundary condition of total 
pressure conservation is a nonlinear problem with free boundary. Therefore, it is difficult 
to be tackled analytically even in the simple case of a potential field. Various limitations 
have been made in order to get approximate solutions. The simplest model is one- 
dimensional, which assumes all physical quantities be uniform across the flux tube and 
depend only on height in flux tube (cf. Roberts and Webb, 1978 ; Unno and Ribes, 1979). 
Parker (1979) considered a cylindrical flux tube which properties are uniform in the 
direction ofte symmetric axis. However, the two-dimensional model is more acceptable. 
Browning and Priest (1983), Pneuman et al. (1986) describe a method in which all 
quantities are expanded as a power series of the radial distance from the axis. Wilson 
(1977) gave a two-dimensional magnetostatic model of a tapering flux tube. The problem 
is simplified in these models by prescribing the shape of the flux tube and, then, giving 
the external pressure pe(z) from boundary condition, though, the pressure is physically 
expected to be prescribed. Hu employed the perturbation method to get the two- 
dimensional features of flux tubes and obtained an asymptotic expression based on the 
small angle between the field and the symmetric axis of the slender tube (Hu, 1987, 
1989). 

In the present paper we discuss a slender flux tube whose longitudinal length scale 
is large compared with the radius. Since the radial variation will be weak and @ is an 
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intrinsic quantity which describes the boundary shape, expanding all quantities in a 
series of g) can be applied. In Section 2, the general magnetostatic equations are 
presented. Mathematical treatment are included in Section 3. Section 4 gives a sort of 
model. The last section is the discussion and conclusions. 

2. F l u x  Tube  M o d e l  

The magnetohydrostatic equations may be written (cf. Hu, 1986) as 

1 
- -  (V x B * )  x B *  - p*g  - 7 p *  = 0 ,  ( 2 .1 )  
4= 

7 . B *  = 0 ,  (2 .2 )  

p* = p * T * k / m ,  (2.3) 

where B* is the magnetic field, p*, p*, and T* are, respectively, the thermodynamical 
pressure, density, and temperature of plasma, g the gravity acceleration, m the mass of 
particle, and k the Boltzmann constant. In the cylindrical coordinate we have 

GM* 1 
g - ( r2 + Z2) 3/2 (e r + %) = - G M * V  ( r2 + g2) 1/2 , (2.4) 

where G and M* are, respectively, the gravitational constant and the mass of the star. 
We consider the polytropic process for simplification, and it requires 

p* = cp *n , (2.5) 

where c is a constant and n the polytropic index. 
Now we introduce the dimensionless quantities 

B *  p *  p* T *  
B = - - ,  p -  , p -  , T = - - ,  

Bo Po N 
(2.6) 

r* Po CM*po/ro a 
r = - - ,  f i = - -  , o - -  , 6 =  , 

r o B2/4= B~/4= fi 

where the subscript 0 denotes the typical value. 
The dimensionless magnetostatic equations inside the flux tube can be written as 

-- tiDY Q (r  2 -k z2 )  1/2 q- (V x B)  x B = 0 ,  (2 .7)  

V ' B = 0 ,  

p = p T ,  

p =  pn,  

(2.8) 

(2.9) 

(2.10) 
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where 

f, Q = - dp. (2.11) 
P 

In the region outside the flux tube, the magnetic field is relatively weak and the 
dimensionless static equilibrium condition given by the stratified atmosphere mode 
require s: 

ripe 
- -  + & g  = O,  ( 2 . 1 2 )  
dz 

Pe = f ( P e ) ,  (2. 13) 

where subscript e denotes the value outside the flux tube. 
The boundary of magnetic flux tube F should be a 'contact' discontinuous surface. 

It requires that 

+ = Pe, (2.14) 
F 

here we assume that the magnetic field inside the flux tube has no influence on the 
distribution of stratified atmosphere outside. In this case, the problem of solving 
Equations (2.7)-(2.13) under boundary condition (2.14) may be decoupled, and we 
solve only equations of flux tubes (2.7)-(2.13) under boundary condition (2.14), where 
Pe is given from (2.12) and (2.13). Even in this decoupled problem, the exact solution 
is not easy to be obtained due to the nonlinear property in equations and in boundary 
condition. In the cylindrical-coordinate system, the axisymmetric magnetic field may be 
expressed as 

B = (  -lr &~'B~ 1 - ~ O ) = B ~ 1 7 6 1 7 6  r vr/ (2.15) 

where function ~is the magnetic surface function. According to Equations (2.7)-(2.10), 
we have 

%. (7  x B) x B = 0,  (2.16) 

6 
B . V I Q  (r2 + z2)1/2] = 0. (2.17) 

Thus we obtain 

1 
B o = - G(O), (2.18) 

r 
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f  -dp P (r 2 + z2)1/2 - f ( O ) .  (2.19) 

By use of (2.18) and (2.19), Equation (2.7) becomes 

( + - - =  - r a f i p - - + G  . (2.20) 
8r 2 r 8r 8z 2 8 0 

It shows that the magnetic surface function 0 is an intrinsic quantity of the problem. 
This is the reason why we use it as an expansion quantity. 

3. Mathematical  Treatment 

The magnetic surface function 0will be small for a slender tube, if we take its zero value 
at the symmetric axis. We can express 

r l =  ~ S n + I ( Z )  I/] s~+l , (3.1) 
n=O 

where 0 = 0 associate with r = 0. 

The functions f(0) ,  G(0), and P(0, z) may be expanded as 

f ( O )  = ~ fn/l~/~/' , (3.2) 
n--O 

~ G ,//~/l (3.3) 6 ( 0 )  : . / t ~ ,  , 

p = ~ p,~n(z)~./~/z , (3.4) 
n = 0  

where f , ,  Gi are suitable constants and l is a constant no less than 2 due to the 
requirement of regularity. By substituting (3.1)-(3.4) into (2.20), we find that only l = 2 
is appropriate. A neglect of terms larger than second-order of magnitude in the ex- 
pansions, requires that 

G o = O, G1/2 = O, G3/2 = 0 ,  ( 3 . 5 )  

.fl/2 = O, f3/2 = O, Pl/a = O, P3/2 = 0 ,  (3.6) 

s~-2(8s2 + s , s , z  z - 2s~z ) - f i s , p o f  , = G ] ,  (3.7) 

s ~ 3 ( -  16s~ - 2s,s2s ,z  Z + lOs2s~z + s~s2z ~ - 6s,S,zS2z + 12sis3) - 

- fi(S2Pof~ + s l P i A  + 2Slpof2) = 3 G I G 2 .  (3.8) 

Thus, the magnetic field components are expanded as 

B~ = G~s{  ~ 0 + (2GIG2S~ -~ - GZsas ;  2) 02 + o(03),  (3.9) 

B~ : 2 S l  I - 4 s 2 s 1 2 0 -  4s2sf302 + 0(03),  (3.10) 
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9 2  = S 1 3 S 2 2 4  ' Jr- ( 2 S 1 3 S l z S 2 z  -- 5 S 1 5 S 2 z S 2 ) @  2 q- O ( @ 3 )  . ( 3 . 1 1 )  

The magnetic pressure is 

B 2 = 4 S l  2 - ( 1 6 s 2 s ~  3 - G21s~ -1 - $ 2 z S 1 3 ) 4 '  + ( 2 G 1 G 2 s I -  ' - 

- G~s2s~ 2 + 2 s f  3SlzS2z -- 5 S 1 5 S 2 z S 2 ) 4 '  2 @ 0 ( 4 ' 3 ) .  (3.12) 

According to the observations, the boundary condition of flux tube at, for example, 
z = z o may be given by observations (Hu, 1989), then the undertermined function s,(z) ,  

pi(z) and constants f., G, may be obtained order-by-order of magnitude. 
Therefore, Equations (2.9), (2.10), and (2.19) can be solved and they give two types 

of solutions: 

T = 1, (3.13) 

po = exp ( !  + f o ) ,  (3.14) 

p = p = Po + PoZ 4' + pof2 4' 2 + o (4 '3 ) ,  

for uniform temperature model/7 = 1, where 

(3.15) 

f o  = l n p o ( Z o )  _ _3 , f~ - P~(z~ , f 2  - P2(z~  
Zo Po(Zo) po(Zo)  

and 

r e ) ?  = / 7 - 1  a + y  ~ 

Po I_ /7 \ z 
(3.16) 

/ 7 - 1  n - 1  
r =  p~ l + - -  f i 4 ' + - -  f24'2 + o(4 '3) ,  (3.17) 

/7 /7 

1 1 
p = po + - pg - " L  4' + - po ~ - % 4'2 + o ( 4 ' 3 ) ,  

/7 /7 
(3.18) 

p = p~, + p o L O +  poY2r 2 + o (4 '3 ) ,  

for a polytropic model of non-uniform temperature distribution n r 1, where 

n b 
fo  - ~ Pd- l (Zo)  - - -  , f l  = nP~(Zo)P~-2(Zo),  

/7 - -  Z 0 

f 2  = /7P2(Zo)P~3 - 2 ( Z o )  - 

(3.19) 

By use of the solutions (3.13)-(3.15) or (3.16)-(3.19), the pressure, and the other 
quantities &the  stratified atmosphere, may be given by the total pressure at the flux tube 
boundary (2.14) and Equations (2.12) and (2. I3). 
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In this approach, the magnetostatic problem of the isolated flux tube confined in the 
stratified atmosphere, may be, in principle, solved. 

4. Types of Models 

Now we take 

r 2 = s~ ~ + s 2 O  2 + o ( ~ 3 ) ,  

where the functions si(z) are expressed as 

(4.1) 

a 1 
S 1 = , (4.2) 

a 2 + (a3z  + a 4 ) e  - a S z  

l _ 2 .., ,-~ 2 2S2z S lS lzz  S 2 = ~ N l t l a l  q- f i f l p o s l )  + - = 

l ^ 3 r _ - I  1 "~ 
= ga~ ts ,  + ~Po + a f  l(a3a~z + a4a ~ - 2a3as) e . . . .  ] ; (4.3) 

where we will take 

1 5 
~= 1, f l = g ,  n = 5 ,  z o = 0 . 5 ,  po(z0) = 1, p l ( z 0 ) = 0 . 6 ,  G l =  I .  

By appropriate choice of the parameters ai, which keep the order of terms s i not 
greater than o(1), a sort of models of slender flux tubes in a stratified atmosphere may 

be investigated. From (4.1)-(4.3), it was shown that the twist has no effect on the shape 
of the tube to the first-order of magnitude. But the field becomes more twisted, accom- 
panying with increasing G~ to the second-order, and the configuration of the flux tube 

will be expanded. 
The results are displayed in detail in Figures 1, 2, 3, and 4 for a, = 2 and 

a 2 = a 3 = a 4 = a 5 = 1. The field geometry of the model is plotted in Figure 1. A bundle 
of forced lines show that the flux tube is divergent. A definite r corresponds to a definite 

value of 0, and the larger the radial distance, the greater the value of ~ at a fixed level 

z. The tube will be less slender for smaller az, a3, and a a or larger a~ and a s, and 
vice versa. 

The curves in Figure 2 give the profiles of the ratio of azimuthal and longitudinal 

magnetic field components B o / B  ~. According to (3.9) and (3.10), we have 

B o _  1 

B~ 2 
_ _  _ _ a , s { / 2 0 1 / 2  + 0 ( 0 3 / 2 )  

Since ~ is small, sl is of order o(1) and G 1 be a constant, the azimuthal field B o is not 
strong compared with the longitudinal field B z. But the ratio will be larger if Oincreases, 
it means that the twisting becomes stronger, and the azimuthal field B o will play an 
important role in the fat tube. This can also be seen from the figure that the twisting 
affect the configuration of the flux tube. 

The profiles of the magnetic pressure and the external plasma pressure at different 
levels are presented in Figures 3 and 4. It seems that both of them decrease with the 
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The configuration of the flux tubes for various values of ~. 

increasing height. As ~ increases, the magnetic pressure at the boundary will increase 
in case of the presence of B o. However, the present model gives that the twisting will 
associated with the decrasing of the longitudinal field B z due to (3.10) and (4.3). The 
magnetic pressure will decrease and the thermodynamic pressure increase from the axis 
to the boundary to balance the external pressure. 

A type of isothermal models of the flux tube is similarly obtained by substituting 
Equations (3.13)-(3.15) into (4. i)-(4.3) with n = 1. Furthermore, the model of force- 
free twisted tubes results from neglect of the internal thermodynamic quantity could be 
analyzed also. For this simplified case of force-free field, our result is consistent with 
Browning and Priest (1983) who studied the same physical problem by expanding all 
variables in r. They discussed how twisting affect the tube's shape and concluded that 
a fairly slender tube would be expected to have its shape not significantly affected by 
twisting. 
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Z 

Fig. 4. The  profile o f  ex te rna l  p l a s m a  p r e s s u r e  Pe" 

5. Discussion and Conclusions 

In the preceding sections we have obtained an approximate solution by calculating the 
pressure, density, and temperature from a prescribed cylindrical-symmetric field using 
an expansion procedure. This mathematical method allows us discussing a wide-ranging 
area with different similar parameter. Here we extend Browning and Priest's work of 
the force-free field to the non-force-free field and obtained the general property of the 
slender flux tube. It seems that the configuration of tube in the force-free field is relatively 
more slender than the one of the non-force-free field. The results show that this 
expansion is effective. 

From the viewpoint of physics, it is readily seen from the figures that the external 
pressure is reasonably decreased with the increasing height. We could construct the 
theoretical model of the flux tube confined by atmosphere, which will agree with the 
observations. This provide the flux tube with divergent configuration. If the tube is less 
slender, twisting does affect the shape of flux tube. This result is practically comparing 
with the realistic solar atmosphere (Allen, 1973). 
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A shortcoming of  the present  method is that  we confine ourselves to discuss the 

configuration of  the slender flux tube in the physical  model,  and the problem is not  

solved due to a coupled distr ibution of  a tmospher ic  pressure  Pe in the mathemat ica l  

model.  In reality, the configuration of  free surface is a main point  of  the problem to be 

answered when the thermal  dynamic  quanti ty can be acquired by observat ion.  These 

problems will be t reated in further studies by a numerical  method.  
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