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Abstract-Plastic stress-strain fields of two types of steel specimens loaded to large deformations are 
studied. Computational results demonstrate that, owing to the fact that the hardening exponent of the 
material varies as strain enlarges and the blunting of the crack tip, the well known HRR stress field in 
the plane strain model can only hold for the stage of a small plastic strain. Plastic dilatancy is shown to 
have substantial effects on strain distributions and blunting. To justify the constitutive equations used for 
analysis and to check the precision of computations, the load4eflection of a three-point bend beam and 
the load-elongation of an axisymmetric bar notched by a V-shaped cut were tested and recorded. The 
computed curves are in good accordance with experimental data. 

INTRODUCTION 

IT IS NOW AN accepted fact that the stress intensity factor in linear elasticity can characterize the 
singularity condition near a crack tip only when the plasticity is limited within a small-scale yielding 
zone. Using a total deformation theory of plasticity, in conjunction with power-law hardening 
materials, Hutchinson [l] and Rice and Rosengren [2] presented the distributions of stress occurring 
at the tip of a crack for both plane stress and plane strain. This singular behaviour of stress under 
plastic conditions is known as the HRR field. A full understanding of its usefulness and limitation 

is absolutely necessary for appropriate application. Recently, Aoki et al. [3] shed light on this 
important subject by claiming that the field near a crack tip can be divided into four characteristic 
fields (in sequence the K field, HRR field, blunted crack tip field and the damaged region around 
the crack tip). Using a plastic dilatational constitutive model, Li et al. [4] also came to the 
conclusion that there is an obvious drop in the stress distribution near the crack tip. Based on these 

facts, we should avoid applying the HRR field to the damage zone. 
In this paper we intend to study the plastic stress-strain fields of two types of specimens loaded 

to large deformations. The effects of plastic dilatancy under large deformations and of blunting 
near either crack tip or notch tip on the stress-strain fields are examined. The quantitative extent 
of employing the HRR field for a plane-strain crack is estimated with the background of a low 
carbon low alloy steel. 

The updated Lagrangian formulation developed by McMeeking and Rice [5] is used for finite 
element analysis, in conjunction with the plastic dilatational constitutive equations proposed by 
Li and Howard [6] and recently re-examined by Li et al. [4]. The plastic tangent moduli of the 
material were determined by a previous test and justified by some computer simulations as done 
by Xia et al. [7]. The macroscopic responses of a three-point bend beam and of an axisymmetric 
bar notched by a V-shaped cut are given and compared with the computational results. Two 
numerical examples are in good accord with the experimental curves. 

CONSTITUTIVE MODEL FOR DUCTILE MATERIALS 

In view of the plastic dilatancy existing in ductile materials loaded to large deformations, the 
elastic-plastic dilatational constitutive equations proposed by Li and Howard 163 are adopted. The 
formulation is not dependent on a certain plastic potential nor on the so-called convexity and 
normality rule; the basis of derivation is an equivalent transformation between the expressions used 
for the rate of dissipated plastic work (see the re-examination work of Li et al. [4]). 

According to this theory, the total plastic deformation rate Dl;@’ is composed of two parts: 
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The first term on the right-hand side of eq. (1) represents the deviatoric part, whilst the second 
term is the corresponding volumetric contribution. r: is the Kirchhoff stress tensor. E$$ and Ejp,’ 
are the plastic tangent moduli, which are defined as 
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9/9t denotes the Jaumann rate with respect to the generalized time t. It is easy to check that 

cJ<, = (1 S;S;I)‘*2 (equivalent stress) 

S; = r/ - S;(: rt) (deviatoric stress) 

DIP’ = (3 @P’d;‘P))“? (plastic equivalent deformation rate) 

@p) = Dfp’ - S_i( f D:(“‘) (plastic deviatoric deformation rate) 

(T,,, = $ rf (mean stress) 

D’“’ = f 0:“’ “? (plastic mean deformation). (3) 

Therefore, E),P’ and E\$ are respectively the tangent moduli along the curve of equivalent stress 
6, versus plastic equivalent strain E$‘) and the curve of mean stress G,, versus plastic mean strain 
E$‘). Here 
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If no damage occurs and Ejf -+ CU, then eq. (1) reduces to the incompressible plastic 
deformation rate, which can be described by the Prandtl-Reuss theory. In this case, loading 
surfaces have a convex shape similar to the one traced by the von Mises yield function. Then the 
convexity and normality rule holds and it is well known that as a consequence 
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Here, E, = da/d6 is the tangent modulus on a uniaxial stress-strain (C-C) curve. It should be noticed 
that eq. (5) is true only under the assumption of plastic incompressibility and uniform stress 
condition in the testing bars. After necking occurs (stress distribution is non-uniform) or when Eli 
becomes finite (plastic incompressibility assumption fails) and if ductile damage prevails (strain 
hardening may change to strain softening), then the situation is much more complicated. Both 
microstructural study and an incorporation of experimental records and computer simulations are 
needed for the determination of these constitutive parameters. 

Assuming that the total deformation rate is composed of an elastic part following Hooke’s 
law and a plastic component as given in eq. (I), eventually we obtain 

0; = D;“’ + D;(P) 
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with its inverse form as 
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STRESS-STRAIN FIELDS AND BLUNTING UNDER LARGE DEFORMATIONS 

Based on the updated Lagrangian formulation [5], two types of specimens were computed, 
using the computational procedure explained by Li and Howard [6]. One example is a three-point 
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bend beam in plane strain loading. The beam has a span S = 96 mm with its height W = 24 mm 

and a pre-existing crack length a = 13.1 mm. The other is an axisymmetric bar of gross diameter 
C$ = 16 mm notched axisymmetrically by a V-shaped cut into net diameter C#J~ = 10 mm. The 

geometrical dimensions, together with their finite element discretizations, are shown in Fig. 1. The 
half span of the three-point bend beam includes 755 triangular constant strain elements with 408 
nodes, while a quarter of the axisymmetric bar uses 956 elements with 509 nodes. 

The material parameters used for computations were taken from a series of tests reported by 
Xia et al. [7]. There, in order to estimate the plastic dilatation occurring in the ductile material 
loaded to large deformations, experimental observations were made not only on smooth cylinders 
but also on some round bars notched axisymmetrically by U-shaped cuts of different local radii, 

so that different values of triaxial stressvolumetric plastic strain can be obtained in the centre zone. 
Since the local strains in the specimens may be far beyond necking, and substantial plastic 

dilatation is found in testings, the two tangent moduli in eq. (2) can no longer be determined 
through simple tension tests. So far, the only method is to resort to a computer simulation 
technique, which is virtually a ‘trial and error’ method. Varying the values of the tangent moduli 
fed into the computer, one tries to gain computed responses that fit the experimental results as 

closely as possible. 
Adding the elastic contributions to the strains in eq. (4), we can obtain the total equivalent 

strains and mean strain. Figure 2a and b show respectively the equivalent stress-strain curve and 
the mean stress-strain curve, obtained through a computer simulation of the load+longation 
results recorded in the tests done by Xia et al. [7] on a low carbon low alloy steel. Using the curve 
in Fig. 2a, we obtain the data listed in Table 1 for E/E$) versus E,. In Fig. 2b, the straight line 
represents the elastic part of volumetric change marked with (e), whilst the plastic dilatation is 
shown by an additional portion of (p). Based on this figure, we take E/E’,: = 1.1 throughout our 
computations for the sake of simplicity. 

It should be emphasized that the values of the moduli listed above are associated with an 
implicit size scale parameter, since these moduli are determined through computer simulation using 
the finite element method. It is a well known fact that the magnitudes of local stress and strain 

b=lS 

Fig. I. Geometrical dimensions and finite element mesh (length in mm). (a) Three-point bend beam. (b) 
Axisymmetric round bar. 
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Fig. 2. The stress-strain curves of a low carbon low alloy steel. (a) Equivalent stress-strain. (b) Mean 
stress-strain. 

and the computed load-elongation curves of the axisymmetric bars all depend on the size of the 
elements chosen. Therefore we need to implement a ‘consistency’ principle in choosing the size scale 
for the elements within the most sensitive area where stress and strain are concentrated. Owing to 
this requirement, we use a 250 x 250 pm square and subdivide it into four equal triangles as shown 
in the mesh parts termed A in Fig. 1, to make it consistent with the smallest mesh size used 
previously by Xia et al. 171. Another important point is that the mesh size should not be too small, 
since the determination of the constitutive parameters is based on a ‘homogenized’ estimation. The 
actual microstructure of the steel is spheroidite with hard-phase inclusions of about 4,um on 
average. Around these inclusions, primary voids may initiate. Secondary voids are also seen under 
higher stress-strain loading. Therefore each element should include enough numbers of the 
characteristic size of actual heterogeneity in order to smear out the local discontinuity. Finally, the 
mesh size should be able to represent local concentration of stress-strain. Rousselier [8] used a mesh 
size of 500 pm. Our determination was based on a general balance and consideration of all the 
points stated here. 

Figure 3 shows the spread of the plastic region in: (a) the ligament beyond the crack tip (ct.) 
in the three-point bend beam, and (b) a quarter of the axisymmetric bar notched by a V-shaped 
cut. In the figure, A denotes the deflection at the middle of the beam and AL is the elongation of 
the bar within a length scale of L,. 

Figure 4 demonstrates the blunting feature at different loading stages. The crack tip is lowered 
in Fig. 4a as crack tip blunting increases; dX and dY are respectively the horizontal and vertical 
distances measured from the initial crack tip position. The crack tip opening displacement, CTOD, 
is determined by the turning point of two tangential lines. The crack tip opening angle, CTOA, 
depends on the inclined angle of the tangential line at the tip. In accordance with the sequence 
of A/W = 0.026, 0.030, 0.046 and 0.053, we have CTOD = 0.046, 0.065, 0.105 and 0.140 mm 
with CTOA = 10”25’, lS”9’, 23”38’ and 27”30’. Figure 4b indicates that the value of CTOA 
accelerates after A/W = 0.01, and it results in obvious blunting. Figure 4c shows the change of the 
peripheral contour of the notched bar with respect to its initial position. The con~guration of the 
notch tip constitutes an inclined angle called the notch tip angle, NTA. In Fig. 4d, the NTA speeds 
up quickly but slows down later. This is contrary behaviour when compared with that of the crack 
tip. 

0.002 
1000 

0.050 
143 

Table 1. E/E\:’ versus E e 

0.004 0.015 0.030 0.040 
1000 1000 84 102 

0.065 0.080 0.120 0.200 
183 257 476 500 
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Fig. 3. The development of plastic area. (a) Three-point bend beam. (b) Axisymmetric bar. 

In view of Figs 3 and 4, we can conclude that local blunting is based on a wide spread of plastic 
yielding. Blunting brings about not only concentration of the equivalent stress and strain but also 
a high amount of the mean stress and strain near the tips. Damage (or softening) occurs in 
the material used with a void volume fraction around 2% [7], which is tantamount to a mean 
strain of 0.007. Therefore, the amount of mean strain caused by blunting naturally leads to 
initial damage around the tips. Figures 5 and 6 show the distributions of the stresses and strains 
near the tips and support the above viewpoint, in which the stresses are normalized by the yield 
stress cry. 
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Fig. 4. The blunting features of the crack tip (a, b) and of the notch tip (c, d). 
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Fig. 5. The distributions of stress and strain near the crack tip in a three-point bend beam 

MACRO-RESPONSES OF THE SPECIMENS 

To justify the constitutive equations used for analysis and to check the precision of the finite 
element computations, we need to make a comparison between the computed results and the 
corresponding experimental curves. 

The first type of specimen we used had a pre-crack cut in the middle of its span and was 
sharpened by fatigue loading. The concise dimensions of its contour are as given in Fig. I with 
a thickness of 20 mm to guarantee the plane strain condition. The other specimen was an 
axisymmetric bar notched by a V-shaped cut. The local radius at the sharp end of the cut is about 
0.1 mm. 

The material used for the specimens was a low carbon low alloy steel. Its chemical composition 
(%wt) is: 0.21C, 0.233, 0.66Mn, O.O17P, 0.010s and l.OlCr. The procedure for heat treatment was 
to have the material quenched from 880°C and tempered at 710°C for 5 h. During testing, both 
types of specimens were loaded by an Instron-1195 test machine. 

Figure 7a shows the load-deflection curve of the three-point bend beam loaded at the centre 
by a concentrated force, while Fig. 7b refers to the load-elongation curve of the axisymmetric bar 
notched by a V-shaped cut and loaded along its axial direction, The experimental curves are 
depicted by solid lines marked by t. Good accordance is seen between the computed results (lines 
marked by c) and those of the tests. 

It should be emphasized that this sort of material has a flat plateau on its stress-strain curve 
(see Fig. 2a) and behaves in an ideally plastic manner after initial yielding until the equivalent strain 
E, reaches about 0.02. Afterwards, it is strain-hardened quickly. If we use the Ramberg-Osgood 
formula to characterize this material, there is no unique value for the hardening exponent that can 
be taken as appropriate. From Figs 5 and 6, we can see that, besides a small zone around the crack 
tip or notch tip, most of the plastic region is still in its small strain stage with equivalent strain 
less than 0.02. However, in the strain concentrated zone the maximum value of strain can be larger 
than 0.2 in association with our mesh size. If a unique value of hardening exponent were used, the 
computed load response of the specimen would be much higher than those predicted in Fig. 7, 
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Fig. 6. The distributions of stress and strain near the notch tip in an axisymmetric bar. 

because any hardening exponent chosen must yield a harder response than that of a (nearly) ideally 
plastic one. 

SINGULARITY IN A CRACK TIP FIELD 

Based on a deformation type of constitutive theory, Hutchinson [l] and Rice and Rosengren [2] 
found a new singular field different from the one characterized by the stress intensity factor in 
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Fig. 7. The macroscopic responses in (a) a three-point bend beam and (b) an axisymmetric bar notched 
by a V-shaped cut. 
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elasticity for the plastic zone near a crack tip. This is now known as the HRR field. With regard 
to this model, the equivalent stress distribution near the crack tip takes the form 

1 0 
I!??+ I 

a,xK, - 
r 

where & is an amplitude factor related to the applied stress, r denotes the distance from the crack 
tip and n represents the hardening exponent of the material used. 

Figure 8 shows the distribution of the equivalent stress ge with respect to the distance r from 
the crack tip border in the three-point bend beam. 

Observing the stress and strain distributions approaching the crack tip shown in the log-log 
figure of cr, (normalized by rrY) versus r/CTOD in sequence, we find the following features: 

(a) There is a straight line in the elastic zone, dominated by the stress intensity factor K. 
(b) Next to this the field is controlled by the HRR model in plasticity. Since the equivalent 

strain E, in this region is still small, it falls into the yielding-plateau part of the stress-strain curve 
in Fig. 2a. Hence an approximate value of the hardening exponent can be obtained as n = 30, 
although it varies greatly once E, > 0.02. 

(c) Owing to the blunting of the crack tip, the HRR field for stress shifts away from the tip 
towards the elastic field as the local strain is enhanced, leaving a crack tip blunting field behind. 

With regard to the strains shown by Figs 5 and 6, both the equivalent strain and the mean 
strain caused by plastic dilatation are accumulated and well concentrated. The interaction between 
the deviatoric and volumetric parts should not be neglected. Therefore, any non-dilatant 
constitutive description of the material in the blunting field would not be appropriate once the 
strain is large. 

Following the procedure of loading, we can say that initially the K field is dominant 
throughout the whole field, except in the small-scale yielding zone. Then the HRR field comes into 
effect before crack tip blunting, at the stage of A/W d 0.01 (which is the turning point in Fig. 4b), 
and the plastic zone ahead of the crack tip is still limited. As the plastic zone enlarges, blunting of the 
crack tip occurs and the influential zone of the HRR field shifts apart. An interesting point worth 
noticing is that when we use the normalized distance r/CTOD as abscissa in Fig. 8, all the stress 
distributions at different stages of loading coincide with each other and the HRR field holds with 
the zone given by (4 < r/CTOD < 11). This indicates that r/CTOD is an important characteristic 
measuring scale to find the self-similarity in stress distribution and the blunting field has its effect 
only within a characteristic length scale of r /CTOD < 4. This conclusion is in accordance with the 
numerical result of McMeeking [9] using incompressible Prantdl-Reuss materials and an initial 
crack tip with a finite root radius. As the load reaches A/W = 0.05, crack tip blunting becomes 
very large with CTOA > 27”, and the damaged field will replace the blunting zone to be the most 
dominant field near the crack tip. Concerning this topic, Li et al. [4] have already made a report. 
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Fig. 8. The distributions of u,/u, versus r/CTOD. 
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CONCLUSIONS 

Based on the computational results given above, we can conclude the following. 

1. Plastic dilatation is an important phenomena accompanied by the event of blunting at either 
the crack tip or notch tip. It is a stage of material behaviour, linking up that of small strain without 
damage and large strain including damage. 

2. Blunting causes large local strains and a wide spread of plasticity or vice versa. 

3. A self-similar distribution of stress near the crack tip is also found with respect to the 
parameter r/CTOD with the material background of this paper. 

4. As a consequence of blunting, the HRR field is shifted from the plane strain crack tip, 
r/CTOD 2 4. That is, before the occurrence of local damage, blunting has its influential zone within 

r/CTOD < 4. 
5. The good accordance obtained between the computed and tested curves of the macroscopic 

responses serves as a check for the constitutive equations used and for the precision of the 

computations undertaken. 
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