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Abstract-Based on the idea proposed by Hu [Scientiu Sinica Series A XXX, 385-390 (1987)], a new type 
of boundary integral equation for plane problems of elasticity including rotational forces is derived and 
its boundary element formulation is presented. Numerical results for a rotating hollow disk are given to 
demonstrate the accuracy of the new type of boundary integral equation. 

1. INTRODUCTION 

The boundary element method has emerged as a 
powerful computational tool for stress analysis [ 11. 
The boundary element is based on a boundary 
integral equation of the problem. Recently, Hu [2] 
proposed a new type of boundary integral 
equation for the theory of elasticity to solve the 
plane problems of elasticity without rotational loads. 
This new type of boundary integral equation is 
different from the other type which was initiated by 
Rizzo [3] and Cruse [4] who used the method of 
weighted residuals. It is generated using a two-state 
conservation integral of elasticity. It expresses 
the stresses of the elastic body with the displacements 
and tractions on the boundary. The boundary 
integral equation by the above method is of the 
second-kind integral equation on the boundary where 
boundary displacements are given. This result is 
contrary to that of the Rizzo-type. So one can choose 
a Rizzo-type of boundary integral equation or a 
Hu-type depending on one’s needs, because this 
new boundary integral equation complements 
the R&o-type equation [5]. In this paper, we applied 
the new type of boundary integral equation proposed 
in [2] into a plane problem of elasticity with 
rotational body forces. The boundary element 
formulation is presented in detail. A numerical 
example of a rotating hollow disk is given to 
demonstrate the accuracy of the new boundary 
integral equation. 

2. TWO-STATE CONSERVATION INTEGRAL 
INCLUDING DISTRIBUTED LOADS 

To consider the plane problems of elastic body, 
we chose Cartesian coordinates. The components 
of displacements, strains, stresses and distributed 
loads in the region and tractions on the boundary 
are uir Ed, a,,fi and pi, respectively. Basic equations 

of elasticity are 

Lij = f (UiJ + +) (la) 

00 = Ail/m c/m (lb) 

Ui,,j +_,( = 0. WI 

For an isotropic elastic material, A,,,, is a constant. 
The equilibrium condition, when applied to the 

boundary B of the domain R, yields 

pi = aijnj (2) 

in which nj represents the direction cosines of the 
outside normal of B. 

The strain energy density U(c) is 

U(c) = f Av,,,,qjc,,,, . (3) 

If ui, cij, aij, J and pi satisfy (l), they constitute an 
exact elasticity state. Differentiating such a state with 
respect to x, and x2, respectively, we get two other 
exact states 

k 
ui = Ui,k 

k 
6 ij = Cijqk 

W 

(4b) 

k 
0 ij = bij,k (4) 

f: =&k (4.4 

pf = njat = njbijk, (k = 1,2). (4e) 

Note that pf is found by using the equilibrium 
condition, not by differentiating pi with respect to x, 
and x2. 
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Substituting an exact state and one of its generated 
exact states in (4) into virtual work principle, we have 

I 
A,,,,,c,& dR = 

J-* ’ I 
fu+ dR + 

n I 
piu: dB. (5) 

From (3) and (4), the left-hand side of (5) is 

! 
A,,,,,&,, dR = 

s 
[U(E)],, dR = 

s 
nk U(c) dB. 

n n B 
(6) 

Substituting (6) into (5) we get 

~~u.,dR=~*[n,U(r)-p,~,,~ldB. (7) 

Equation (7) is a single-state conservation integral. 
Suppose ui”, c(j), ai,“,fi”, pt” and ui”, cl;‘, u$‘, 

fj”, pj” are two exact elasticity states, their linear 
combination 

UP’ = u(” + a@’ , I @a) 

&’ = c!!’ + at!?’ U 1, 1, @b) 

g!!’ = 6!!’ + a&’ 1, 1, V PC) 

fj0’ =fj” + (g-p (84 

pp = pj” + 42’ W 

is also an exact state, where a is an arbitrary constant. 
Substituting (8) into (7) we have 

s 
fj”‘u$ dQ = 

j 
[nk U(e(“) -pj”‘ui”j] dB. (9) 

n B 

Because (9) is an identity with respect to a, the 
coefficients of the terms linear in a on the two sides 
of this equation must be equal, we obtain 

= 
s 

[n,Aij,,,,c$jz -pj”u$ -pj2’uj,j] dB. (10) 
R 

This equation is an identity satisfied by two exact 
elasticity states. It is called the two-state conservation 
integral. 

3. BOUNDARY INTEGRAL OF DOMAIN 
DISPLACEMENTS AND STRESSES BASED ON THE 

TWO-STATE CONSERVATION INTEGRAL 

For plane strain applications where the funda- 
mental solution corresponds to unit point loads 
applied within an infinite plane (Kelvin), the 
components of the fundamental displacements and 

tractions are given by 

u: 1 = - 87rG(l - v) [ (3 4v) In - 1 6,, + 1 
r 

r,ir,h (11) 
“= 1 - 4x(1 - v)r i d’ an [( 1 - 2v)6, + 2r,ir,h] 

- (1 - 2v)[r,inh - r,,nJ I , (12) 

where r = r(l, x) represents the distance between the 
load point r and the field point x and its derivatives 
are taken with reference to the coordinates. Applying 
Betti’s reciprocal theorem of work to an unknown 
elasticity state and the fundamental solution, we have 

(13) 
so 

u,,(t) = 
I 

a(piu) -P:u,)dB + j$“dn (14) 
i n 

in which 5 is a point in the domain R, and the domain 
integral of body forces can be suitably transformed 
into a surface integral. Equation (14) is the expression 
of boundary integral of displacements. In order to 
obtain the expressions of domain stresses, we first 
have to get the derivative of domain displacements. 
We choose two states of the conservation integral as 
the outstanding state and fundamental solutions, 
respectively 

- f;ufi,dR. 
s R 

(16) 

Here we obtain the expressions of domain displace- 
ment derivatives represented by the boundary 
integral. Equation (16) is the main formula of the new 
type of boundary integral equation. 

For the plane problems of elasticity, 1; = 0 is 
assumed, we have a further rearrangement to (16) 

Uh.1 (r) = (~i2~1.s + 6!2~2J -PiU:l) dB (17) 

4.263 = 

s 

(-dIqs - d,u2,, -pi421 a. (18) 
B 
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Substituting (17) and (18) into the constitutive 
equations of elasticity, we have the expressions of 
boundary integral of domain stress. For the plane 
strain problems of isotropic elastic body, the domain 
stresses are 

(I - v)E 

ull (O = (1 + v)(l - 2v) s % I[ ( 
611-+, 

V 
> 

dB 

(1 - v)E 

a22(t) = (I + v)(I - 3) 
4, 

+ UlJ 62 

V 
--g1 

l-v 22 

dB 

-. 

(1% 

V 
-6’ 
l-v I2 ) 

m 

in which E is the modulus of elasticity, v is Poisson’s 
ratio. 

An important remark is now due: all the 
expressions presented here are assumed to be valid 
for plane strain problems, the plane stress case can be 
dealt with by the same equations, providing E is 
replaced by 

pJ* +zv) $7 

(1 + v)* 

and v by 

i=(llv). 
4. BOUNDARY INTEGRAL EQUATION OF ISOTROPIC 

JL4STIC BODY 

When the point e ER is (17) and (18) approaches 
boundary B, the boundary integral in these formulae 
becomes singular at t;, So we need to extend the 

Fig. 1. 

formulae to the boundary. Suppose (Cl, t2) is a point 
on the boundary B, where the boundary curve has 
continuous tangent. Let B, be a half circle with radius 
c, centred at ({,, (r). Let Q, be the half curve region 
surrounded by B, , as shown in Fig. 1. Apply eqn (10) 
on Q, with one outstanding state and another being 
the fundamental solution of elasticity body. Since in 
Q,, f{” =fj2’ = 0, so 

= I [n,A~,rn~ij~k -Piu:, - P$‘S,kI dB 
B-8, 

On the boundary, substituting (11) into the integral 
in (22) and letting c-to, we have 

$%,k(C)= B(nkAijtmEy~k s - Piu$ - ph,d dB, (23) 

where B represents the integral in the sense of Cauchy 
principal value. Equation (23) can be further written 
as 

and 

f~,2(t)= 

s 

(-o:,u,,-a:,uz.,-Piuf;,)dB. (2.5) 
B 

Substituting (24) and (25) into the constitutive 
equations, we obtain 

V 
--g2 

l-v I2 

h72*(5) = 41 

V 
-----_I 

l-v I2 

+ u,,(c& - c:,)] -pi(Fjz dB* (28) 

Let n,, n2 be the direction cosines of the outward 
normal of the boundary curve on (g, , &). Applying 
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boundary conditions, we have 

+n2 (4(1 + v) -!%42-4,) 1 
+U2J 

(1 - v)E 

% 

+fl2 &(42 - 42)] --hpi}d~ (29 

(1 - v)E 
41 

V 

+n2 (1 +v)(l -2v) 
--ul 

l-v I2 >I 

V 
-_ul 

l-v 22 )I I -pip: dB, 

where 

PI = nluil + n2u;2 @la) 

pi = nlui2 + n2ui2. (31b) 

Equations (29) and (30) are the final forms of the 
new type of boundary integral equations in plane 
elasticity. 

5. BOUNDARY DISPLACEMENT DERIVATIVE 

In this section, we discuss how to express Q and 
uZJ in (29) and (30) by using ui and pi on the 
boundary. Boundary tractions are 

pl = 4 ull + n2u12 

p2 = nl u12 + n2u22. (W 

For the plane strain problems of elasticity, the 
stresses are 

(1 - v)E 
611 = (1 + v)(l _ 2v) %I f & 112.2 

> 
(334 

(1 - v)E 
422 = (1 + v)(l _ 2v) u2.2 + & 4.1 

> 
Wb) 

Q12 = $7) (UL2 + U2,I 1. (33c) 

Since the boundary is divided into several elements. 
In each element we have 

aui aui ax, -=-._ 
ah ax, ah ’ (34) 

where tlk is the local coordinate on one element. 
To linear element, displacement ui and coordinate 

x, of arbitrary point on boundary can be represented 
as 

UiCf(U{.’ +u{)+$ (uf” -u{)q2 (35a) 

x,=~(X’,‘I+Xjm)+f(Xi,+‘-X~)~2, (35b) 

respectively, where j and j + 1 are the nodal numbers 
of the element. 

Since (35) has nothing to do with local coordinate 
ql, there are 

~~;(u{+’ -d) 

2 

ax, 
-=I 
aq2 

l(x’,‘l-XI,). W) 

The displacement derivative can be represented as 

U] l(x{+’ - xj) + u,,,(x’,” -x’,) = ,{+I - u{ (37a) 

U2J (x{+ I - x’) + u~,~(x$+’ -xi) = u$+’ - td2. ; (37b) 

Solving simultaneous equations (32) and (37), sub- 
stituting into prescribed conditions, we will obtain the 
displacement derivative u~,~. Since 

ul.s = nl ul,] + n2rk2 (3ga) 

u2.s =nlu2,1+n2u2,2. (W 

So we can get uls and u2* represented by using 
boundary displacement ui and traction pi. 

6. BODY FORCE 

When 1; # 0, the boundary integral equation has 
one more item than the equation which J;: is equal to 
zero. This item is the body integral of body forces 

Bhk = 
s 

j& dR. 
n 

(39) 

Because Bhk is domain integral, the calculation of Bhk 
requires the domain to be divided into internal cells; 
it would lose the advantage of boundary element 
method. 

For rotational problems, the body force is a 
centrifugal load. If the axis of rotation passes through 
the origin of the coordinate system, the problem is 
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equivalent to a prescribed body force of the form 

Jl- pw2xi w 

in which w is the angular velocity, p is the material 
density. 

Let us call G, the Galerkin tensor which is related 
to the fundamental solution uf by the following 
expression 

For the two-dimensional plane strain state 

Gih = & r2 In A 6,. 
r 

so 
1 

“=8nG(l -v) 

7 - 8v 
2 ati + rrir,h 1 (41) 

the difference between (41) and (11) simply 
corresponds to a rigid-body translation, The above 
expressions, (40) and (41), when substituted into (39) 
lead to the following boundary integral 

=pw2 c{[x,u$-u;}dR. 
s 

(42) 

There are two ways to deal with pm”&-, ((x~u)],, 
-ui} dS2, the first is 

bk = PW ’ G&h 4h.j - - 
2(1 -v) 1 nj d4 W4 

the second is 

b, = pw2 Gkh,jnj 
Gkj,j 

- 2(1-v) nh 1 dB. (43b) 

Also we get two expressions of BM 

Bg= pw2 
8nG(l- v) 

7-8~ 
- 2 8, +  ‘,i’,k 1 

--(I -v)(zr ln: -r) 

WO 

Bj$= pw= 
8nG(l -v) 

& •(- r,ir,h 1 
-(I-v)(2rlnf-r) 

I 
~khr,~nj-2(1r,knh I} a WW 

The small difference of the two expressions will be 
discussed later. Therefore, the displacement deriva- 
tives are 

uh.l(t)= (a:zu,s+a:,u,,-p,u2,)dB-B,, 
I B 

WI 

‘k,t(CZ)= 

s 
(-a:,u,,~-a:,u,,~-PiU:*)dB -BE. 

B 

When the point 1; approaches boundary B 

WW 

We can prove that the integral of BM on B, is also 
zero. But the integral limit is changed to & Now the 
boundary integral including body forces is 

7. THE BOUNDARY INTEGRAL EQUATIONS 
INCLUDING BODY FORCES 

Substituting (46) into the constitution equations, 
we have the boundary integral of stresses 

htr, = 42 
V 

--g2 
l-v ” 

+‘“zs a:,--41_.2 ( l-v I2 >I -Pia:, 

(1 - v)E 

- (1 +v)(l-2v) >I dB 

(47) 
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V 
+ U2.r 42 

--fJ’ 

l-v 22 >I - Pi42 

(1 - v)E 

_(l+v)(l-2v) 
(48) 

- P&l2 - 4(1 + v) L!--_- (42 + B,,) (49) 

so 

(1 - v)E 
= 

(1 + v)(l - 2v) 
012 

V --02 
l-v ” 

E (:2-fltJ +n,p c 
4(1 + v) 1 

(1 - v)E V 

+ u2.s 4 _ -..-a2 
(1 + v)(l - 2v) al2 l-v I2 

E ( :2-d*) +n,p 0 
4(1 + v) 1 

-Pips- 
(1 - v)E 

n1(1+v)(l_2v) B1l+ I_~ yB22 

+ n2 &(42+ 41) II dB 

(1 - v)E V 

+n2(1+v)(l-2v) ( 
6, --r7;2 

l-v )I 

(50) 

(1 -VW 
+n2 (1 +v)(l-2v) 

o2 y& 
12- 1 -v >I -PIP: 

- 
[ 

y&+42+B,,)fn, c1 y;;y2vj 

x 
( 

B2* +- ’ B,, dB. 
l-v >I> (51) 

The above two equations, (50) and (51), are the 
boundary integral equations including rotational 

q=l 

(qs----F~ i 
Fig. 2. 

loads, in which u,,$ and u2J consist of boundary 
components ui and pi, uz can be deduced from the 
fundamental solutions of elasticity. Dividing the 
whole boundary into several elements and applying 
(50) and (51) to each element, we can deduce matrix 
equations, including boundary displacements and 
tractions. Substituting the prescribed boundary con- 
ditions separating the known and unknown variables 
on each side of the equations and solving the 
equations, we can find the unknown boundary dis- 
placements and tractions. Once the nodal values of 
boundary displacements and tractions are calculated, 
the values of displacements and stresses can be 
computed at any internal points of domain by simply 
using (14) and (19)-(21). The whole problem can be 
solved. 

Now we discuss the small difference of B&! and 
Bg, we use (50) as an example. The influence of 
rotational forces on the equation is 

R, = 
S[ B 

-!?._ (42 + 4,) 
+ n2 4(1 + v) 1 dB, 

since B\‘/ = Bj2,‘, B\g = Bf,), B$‘j = Bjq, B$y = B#, it 
is identical in choosing B&’ or B& and has no 
influence on the final result. 

8. NUMERICAL RESULTS 

Calculating a rotating hollow as shown in Fig. 3 we 
only deal with a 30” sector of the disk, the shape 
parameters are: 8 = 30”, r. = 10 mm, rb = 100 mm; 
the physical parameters are given in Tables 1 and 2. 
The exact solutions of displacements and stresses can 
be found in every textbook of elasticity mechanics. 
Tables 1 and 2 show the relative errors of displace- 
ment II, and stress erg, respectively. 

9. CONCLUSION 

From the numerical results given in Tables 1 and 
2, we see that the errors decrease when the nodal 

I4 e 

5 
rb 

Fig. 3. 
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Table 1. Relative errors of displacement u, 

R tJ 55,o 55,30 loo, 15 IO,15 55,15 

Element A 3.15 3.16 3.23 3.41 2.84 
Element B 2.92 2.92 3.05 3.32 2.75 

E = 16,000 MPa, v = 0.3, p = 8.01 g/cm’, w = 58,000 
rev/min. Nodal number of element A = 40, nodal number of 
element B = 52, unit: R, mm; 0, degree. 

Table 2. Relative errors of stress oD 

R, 6 55,o 55,30 loo,15 10,15 55,15 

Element A 3.14 2.46 4.47 3.31 5.74 
Element B 2.82 2.25 4.02 3.08 4.83 

numbers of elements increase. The new type of 
boundary integral equations provide better numerical 
results for the case when boundary displacements 
are given than the ones for the case that the bound- 
ary tractions are given. The new type of boundary 

integral equations have a great potential. It is 
worth extending the applicable regions of the new 
method. 
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