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STRESS DISTRIBUTION AROUND A RIGID LINE
IN DISSIMILAR MEDIA

C. P. JIANG and C. T. LIU
Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080, P.R.C.

Abstract—The elastic plane problem of a rigid line inclusion between two dissimilar media was
considered. By solving the Riemann-Hilbert problem, the closed-form solution was obtained and
the stress distribution around the rigid line was investigated. It was found that the modulus of the
singular behavior of the stress remains proportional to the inverse square root of the distance from
the rigid line end, but the stresses possess a pronounced oscillatory character as in the case of an
interfacial crack tip.

1. INTRODUCTION

THE INTERFACIAL fracture problem has aroused great interest. The presence of inclusions at
interfaces plays an important role in the fracture behavior. For the elastic plane problem of bonded
dissimilar media, if the value of the elastic modulus of a flat inclusion is much greater than that
of every matrix, it appears reasonable to consider it as a rigid line. From the viewpoint of
inhomogeneities in solids, a rigid line and a slit crack are the two extreme cases of a flat
inhomogeneity, namely, for a rigid line E — o0, and for a crack E — 0, where E is Young’s modulus.
For structural integrity assessments, these are the two extreme cases which result in stress
concentrations and may result in rupture.

Hitherto, a number of investigations on rigid lines in the homogeneous plane have been
conducted. In ref. [1], Muskhelishvili gave a solution for a rigid line under a uniform stress state
at infinity. Works by Li and Ting [2], Hao and Wu [3], Markenscoff and Dundus [4], and Jiang [5]
provide examples of recent contributions.

As a logical extension of the previous works, in this paper an attempt was made to find the
solution to the elastic plane problem of a rigid line between two bonded dissimilar media, and to
investigate the stress distribution around a rigid line end.

2. STATEMENT OF THE PROBLEM

The problem to be considered is as follows. Referring to Fig. 1, let medium I with elastic
constants u,, x, and medium II with u,, k, occupy the upper and lower half-planes, $* and S-,
respectively, where y; is the shear modulus, and x; = 3 — 4v, for plane strain, x;= (3 — v,)/(1 +v))
for generalized plane stress, v; being Poisson’s ratio. Let a rigid line lie along a part, L, of the real
axis which is the bond line of the two media. Let L’ be the remainder of the real axis. Then the
boundary conditions of stresses (s,,0,,1,,) and displacements (u, v) for the problem may be
expressed as follows:

(6 —ity)* =(6,,—it,,) on L’ @.1)
(w+iv)* =W, +iv,)- onlL’ 2.2)
(u+ i) =uy+ivy+idx on L .3)
(u+ i) =uy+ivg+idx on L 49

where subscripts 1 and 2 refer to media I and II, respectively, superscripts + and — refer to the
value of the functions on the real axis as approached from S+ and S, respectively, %, and v, are
the displacements of the midpoint of the rigid line and J is the rotation of the rigid line. Taking
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Fig. 1. A rigid line between two bonded dissimilar half-planes.

the derivative of (2.3) and (2.4), with respect to x, the addition and subtraction of these two
equations yield:

wi+iv))+@;+ivy) =2 onlL 2.5)
(ui+iv))* —(u3+iv3) =0 onlL (2.6)
where
,_ 0w, Oy
uj=ol vj=2l. @7

In addition, to determine solely the solution to the problem, the equilibrium conditions of the
rigid line must be considered. Assuming that the rigid line is traction-free, we have

J. j (6,) — ity )" dx — f j (02— it,2) " dx =0 (2.8)

f xa;;dx—f x0,,dx =0. 2.9)
Apparently, (2.9) can be rewritten as

a

Rej x(0y — ity)* dx — Re‘[ x(6,, — it,,)” dx =0. (2.10)

—a -a

3. FORMULATION OF THE PROBLEM AND ITS SOLUTION

To formulate the problem, we use the complex stress functions ®,(z) and ¥,(z) which refer
to medium I and are defined in S*[1]. Applying the Riemann-Schwarz symmetry principle,
another analytic function Q,(z), which is defined in S, can be introduced:

Q@E)=802)+28,z)+ P, (z) zeS~ 3.0
where &,(z) = @,(Z). For an arbitrary uniform stress state at infinity, we have
D, (z)=T,+Py(z) zeS* 3.2)
Q@)=T+T+Q,(z) zeS~ 3.3)
where @,,(z) and Q,y(z) are holomorphic in S* and S -, respectively, vanish at infinity, and
M=o+ o) +iToep Ti=—Yo-o)e™ )

where ¢, and g, are the principal stresses at infinity in the upper half-plane, ¢{ is the rotation at
infinity and « is the angle between o, and the Ox axis.
Similarly, we can use ®,(z) and Q,(z), which refer to medium II and for which

D, (z2)=T,+ Py(z) z€S~ 3.5)
Q@)=+ +0y(z) zeS* 3.6)
where &, (z) and Q,,(z) are holomorphic in S~ and S*, respectively, and vanish at infinity.



Stress distribution around a rigid line in dissimilar media 29

The basic equations for two-dimensional classical elasticity in the form used by Muskhelishvili
are

oy +0,=200,z) + &) )
Oy — iy = D,(z) + Q&) + (z — )P/ (2) (3.8)
2uu; + iv)) = x,P(z) — Q(2) — (z — 2)Pj(2) . 3.9

From (2.2) and (2.6), we have
(ui+iv))t=@3+iv;)” on L+ L. (3.10)
Substituting (3.9) into (3.10), we obtain

K, 1 _ Ky . 1
- ()~ —Qr () =—=D;()~—Q(t) on L+L’ 3.11
P Q) 0 (1) P 7(0) uzﬂa() (3.11)

where ¢ denotes the coordinate on the real axis.
Substituting (3.2), (3.3), (3.5), (3.6) into (3.11) and arranging, it is seen that

xl ]. + Kz 1 - K]
NLY: —Q =j—=0¢ -0 ~—T
[M m(‘)‘*‘“2 zo(’)] [”2 20(t)+ll| 10(1)] Rl
1 K 1
—— L+ )+ 2 +— ([ + I L+L. (312
I, 2)+ﬂ2 2 Fn( 1 1) on (3.12)

According to Liouville’s theorem and noting the behavior of @,4(z) and Q,,(2) at infinity, we obtain

5 o(2) +—Qp(z) =0 zeS§* (3.13)
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3¢20(z)+lnm(z)=o zeS~ (3.149)
url'——(r2+r2)+ Pz+ (T1+T1) 0. (3.15)

The substitution of (3.8) into (2.1) yields
[0(t) — (D] =[P () — Q)] =T+ T+ 5+ 1L, - T, - T (3.16)
Let

0(2)={¢10(2)"on(2) zeS* G.17)

Dy (2) - Qip(z) zES.

Then it is seen that 8(z) is holomorphic in the whole plane cut along L and vanishes at infinity,
and

-I-F=r,-T,-T (3.18)

Equations (3.15) and (3.18) show that if I', and I'{ are prescribed, I', and I'} will be determined.
As an example, assuming that

03=0, of=0%, 15=0, e°=0 (3.19)
then
I=ie®, TI'i=ic>. (3.20)
From (3.15) and (3.18), we obtain:

I,= #z("u - 3)+4y o® I-.,:zl"l('cz— 1) — (6, —3)
4y (e + 1) » 0 2u, (ki + 1)

(3.21)



30 C.P. JIANG and C. T. LIU

It is seen that 6,3 =0, 15,=0, but 03 # 0. The stress component o, has a jump across the bond
line. In addition, it should be pointed out that the rotations ¢° and ¢Pat infinity cannot be set
arbitrarily to zero at the same time unless 75, = 0.

From (3.13), (3.14) and (3.17), we obtain:

4510(2)——;2—:—10(2) zeS*t (322)
Kl
=__"F g + .
Q(2) ot (z) zeS (3.23)
¢20(Z)__2;1T—20(Z) zeS~ (3.24)
Q __ Kl - .
0(Z) = __zﬂl T 0(z) zeS (3.25)
Substituting (3.9) into (2.5), and noting (3.22)—(3.25), we obtain
0*(t)—gb~()=f (3.26)
where
Ko (5 4y + 141)
=-2172 717 3.27
Kk (11 + 1) (3.27)
_ K} + H Ky , _l_ A .
yotbti [ (M I+ zrz) T+ T+ 5 (1'2+T2)]+2u5. (3.28)
The general solution of (3.26) is[1]
L e
0(z)= S X(2) L X0 1=z + CX(2) (3.29)

where C is a complex constant, and
X@)=(z+a) ¥z —a)~'2"¥ (3.30)
which is the single-valued branch, such that zX(z) » 1 as |z] - o0, and in which

1
B =5 Inlg. (3.31)

Noting that

{X *(t)=gX"(t) onlL o
X*(t)=X"(t) onlL’
we have

Lf_L 1 L[ 1 &

EELXJ'(O t—z 1-g sz,\X(g) {—z (3.33)

where A is a clockwise closed contour encircling L, and { is the coordinate on A. According to
the Cauchy formula for an infinite region, the contour integral can be calculated; thus general
solution (3.29) becomes

0(z) = T—J_:—g + Té; (—z +2ifa)X(z) + CX(2). (3.39)

The constants é and C in (3.34) are determined from the equilibrium conditions of the rigid line.
Substituting (3.8) into (2.8), we obtain:

f "0t +Qr (O] de j [05()) + 05 (0] dr =0 (3.35)
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which can be reduced to an integral along a closed contour A encircling L:

j 0(z)dz =0. (3.36)
A
Similarly, from (2.10), we obtain:
Rej z0(2)=0. (3.37)
A
Integrals in (3.36) and (3.37) can be evaluated by using the residue theorem, thus we obtain:
C=0 (3.38)
5=1m[—"~‘-r +ap_ L +r')——1-(rz+r;)]. (3.39)
LT R ™
Lastly we obtain the solution of the problem:
__f f .
0(z)= T—g + T—g (—z +2ifa)X(2) (3.40)
where
Kt + 1 K L2 1 1
=——"—"Re| ~| —T+—I }+— T+ T} +——1"+1’"]. 3.41
F==5 [ Qm ,2M2) 2 O+ T+ (T4 Ty (3.41)
In a special case in which the two media are identical, we have
M=h=p, K=K=x g=-1, p=0 (3.42)
r=r,=r, ri=r;=r’. (3.43)
From (3.2), (3.3), (3.22), (3.25) and (3.40), we obtain
r r z
= 1 - —_——
&(z) F+2Re( I‘+K+ x) (1 z’—a’) (3.44)
Qz)=L+I"+iRe(xl ~T — I")-(l - -——f—-———z), (3.45)
zt—a

which are in agreement with the classical results [1].

4. STRESS DISTRIBUTION AROUND THE RIGID LINE

It is of practical importance to investigate the stress distribution around the rigid line,
especially at the rigid line end. As an example, we discuss the normal stress 6, and the shear stress
7,1 on the upper surface of the rigid line. From (3.2), (3.3), (3.8), (3.22) and (3.25), it is seen that

oy —itg)t =+ T+ T4+ —Eg+) = 22 _g-(p). 4.1
(O = )* =Ty T T =B 00— 2200 @
Substituting (3.40) into (4.1), we obtain:
(0 —ity) =4, +id,+ B(—t +2ifa)X*(t) —~a<t<a 4.2)
where
A =Rer1+r +r + f ( " - Ky Jy ) 4.3
: B TSP PR “3)

A,=ImTI (4.9)

f < [ Kyl 1)
B= - -} 4.5
l—g\kitla+m xp+i g @5
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Noting that
e™ ) L a+t a+t
XH1) = -1 hadl —_
) \/m [sm(ﬂ lna — z) i cos(ﬁ lna — z)] a<t<a (4.6)
we obtain:
8
= A, +m”2—e—2[-: sin(ﬁ In ﬁif)mﬂa cos(ﬁ 1nii"l)] —a<t<a @7
at—t a—t a-—t

Be¥ a+ a+t
Thi=—4,— v"f;—T—f {2&: sin (,6 In —~—) +1 cas(;? In —w—;) —a<t<a {4.8)

Furthermore, we consider the singular behavior of the stresses at the rigid line end (r »a_,). Let
r =g —t; we then have

o= —Be® \/fz; P [—sin(ﬁ In 12;) +28 cos(ﬁ In :’2{_:) r<a @49
1} =—~Be? \/-;- rein2 [Zﬁ sm(ﬂ In~ ) + cos(ﬁ In ?;)] r<a. 4.10)

From (4.9) and (4.10), it is seen that the modulus of the singular behavior of the stresses
remains proportional to the inverse square root of the distance from the rigid line end, but the
stresses possess a pronounced oscillatory character, as in the case of an interfacial crack tip. One
would expect very high stress concentrations at the rigid line end, which may result in cracking.
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