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STRESS DISTRIBUTION AROUND A RIGID LINE 
IN DISSIMILAR MEDIA 

C. P. JIANG and C. T. LIU 

Institute of Mechanics, Chinese Academy of !Sciences, Beijing 100080, P.R.C. 

Abstract-The elastic plane problem of a rigid line inclusion between two dissimilar media was 
considered. By solving the Riemann-Hilbert problem, the closed-form solution was obtained and 
the stress distribution arotmd the rigid line was invest&ated. It was found that the modulus of the 
singular behavior of the stress remains proportional to‘the inverse square. root of the distance from 
the rigid line end, but the stresses possess a pronounced oscillatory character as in the case of an 
interfacial crack tip. 

1. INTRODUCTION 

THE INTERFACIAL ‘fracture problem has aroused great interest. The presence of inclusions at 
interfaces plays an important role in the fracture behavior. For the elastic plane problem of bonded 
dissimilar media, if the value of the elastic modulus of a flat inclusion is much greater than that 
of every matrix, it appears reasonable to consider it as a rigid line. From the viewpoint of 
inhomogeneities in solids, a rigid line and a slit crack are the two extreme cases of a flat 
inhomogeneity, namely, for a rigid line E + co, and for a crack E + 0, where E is Young’s modulus. 
For structural integrity assessments, these are the two extreme cases which result in stress 
concentrations and may result in rupture. 

Hitherto, a number of investigations on rigid lines in the homogeneous plane have been 
conducted. In ref. [l], Muskhelishvili gave a solution for a rigid line under a uniform stress state 
at infinity. Works by Li and Ting [2], Hao and Wu [3], Markenscoff and Dundus [4], and Jiang [5j 
provide examples of recent contributions. 

As a logical extension of the previous works, in this paper an attempt was made to find the 
solution to the elastic plane problem of a rigid line between two bonded dissimilar media, and to 
investigate the stress distribution around a rigid line end. 

2. STATEMENT OF THE PROBLEM 

The problem to be considered is as follows. Referring to Fig. 1, let medium I with elastic 
constants pi, K, and medium II with pz, K* occupy the upper and lower half-planes, S+ and S-, 
respectively, where p, is the shear modulus, and K, = 3 - 4v, for plane strain, rc, = (3 - v,)/( 1 + v,) 
for generalized plane stress, Vj being Poisson’s ratio. Let a rigid line lie along a part, L, of the real 
axis which is the bond line of the two media. Let L’ be the remainder of the real axis. Then the 
boundary conditions of stresses (ox, bv, zXy) and displacements (u, a) for the problem may be 
expressed as follows: 

(ul + iv,)+ = (u2 + iu2)- on L’ (2.2) 

h+iu,)+ =th+iuo+iSx on L (2.3) 

(u2 + iuJ = u, + iuo + idx on L (2.4) 

where subscripts 1 and 2 refer to media I and II, respectively, superscripts + and - refer to the 
value of the functions on the real axis as approached from S+ and S-, respectively, I+, and u. are 
the displacements of the midpoint of the rigid line and 6 is the rotation of the rigid line. Taking 

21 



28 C. P. JIANG and C. T. L.IU 

61 
i Y 

61 
a 

s+, I(% PI) 
i+ 

,_A 
Fig. 1. A rigid line between two bonded dissimilar half-planes. 

the derivative of (2.3) and (2.4), with respect to x, the addition and subtraction of these two 
equations yield: 

(u;+i~;)+(u;+itr;)-=2iS on L (2.5) 

(u;+i~;)+-((u;+iu;)-=0 on L (2.6) 

where 

(2.7) 

In addition, to determine solely the solution to the problem, the equilibrium conditions of the 
rigid line must be considered. Assuming that the rigid line is traction-free, we have 

s 
a (Q - irX,,, )+ dx - 

s 
a (Qy2 -iTXJdx -0 (2.8) 

-0 

J”.xCJ;dX -1 
(I 

xa&x =o. (2.9) 
--o 

Apparently, (2.9) can be rewritten as 

Re a 
s s 

0 
~(a,,, - ir,,)+ dx - Re x(aY~-irXY*)-dx -0. (2.10) 

--(I --(I 

3. FORMULAT1ON OF THE PROBLEM AND ITS SOLUTION 

To formulate the problem, we use the complex stress functions @, (z) and Pi(z) which refer 
to medium I and are defined in S+ [l]. Applying the Riemann-$chwan symmetry principle, 
another analytic function n,(z), which is defined in S-, can be introduced: 

n,(z)=ib,(z)+Z8;(Z)+Jsli(Z) zes- (3.1) 

where 8, (z) = 0, (5). For an arbitrary uniform stress state at inflnity, we have 

G,(z) = r, + O,,(z) z Es+ (3.2) 

sz, (z) = r, + r; + Q,(z) 2 E s- (3.3) 

where &(z) and S&,,(z) are holomorphic in S+ and S-, respectively, vanish at inkity, and 

l-1 = s(b, + a*) + i 34 -ee;p 
1 +u, 

r; = -gu, - u,)e-& 

where rrl and a, are the principal stresses at infinity in the upper halfplane, sy is the rotation at 
infinity and a is the angle between gI and the Ox axis. 

Similarly, we can use 4$(z) and S&(z), which refer to medium II and for which 

@r(z)=r*+@m(z) ZES- (3.5) 

n,(z)=r~+r;+f&(z) zes+ (3.6) 

where a&z) and h(z) are holomorphic in S- and S+, respectively, and vanish at tinity. 



The basic equations for two-dimensional classical elasticity in the form used by Muskheiishvili 
are 

Q* + cyl= 2[@,(z) + 303 (3.7) 

gllr - %& = @j(Z) f q(Z) + (2 - z’)tpj (2) (3.8) 

2/J,@; + iu;> = K,@,(Z) - Q,(Z) - (2 - z’)@;(z). (3.9) 

From (2.2) and (2.6), we have 

(24; i- iu;)’ = (a; + it&)- on L + L’. (3.10) 

Substituting (3.9) into (3.10), we obtain 

%$+(t) 
Pl 

- $w) = 2 @g(t) --$nj+(t) on L+L' (3.11) 

where t denotes the coordinate on the real axis. 
Substituting (3.2), (3.3), (3.5), (3.6) into (3.11) and arranging, it is seen that 

-~(~~+~;t+~r,+d(P,+r;) on L+L'. (3.12) 

According to Liouville’s theorem and noting the behavior of 4$(z) and S’+,(z) at infinity, we obtain 

(3.13) 

Kl 

-Fl rl -~(r~+r;)+~r,+~(r,+r~)=o. (3.15) 

The substitution of (3.8) into (2.1) yields 

P%,(t) - Gd01’ = mo~0 - Wt}l- - r, + r* + r; + r, - r, - r; * 

Let 

(3.16) 

t?(z) = I @,&) -f&(z) z Es+ 

@m(z) -s&,(z) z E s-. (3.17) 

Then it is seen that e(z) is holomorphic in the whole plane cut along L and vanishes at infinity, 
and 

r*-r2-+r*--r,-r;, (3.18) 

Equations (3.15) and (3.18) show that if T1 and r; are prescribed, r, and r; will be determined, 
As an example, assuming that 

u$=O, tJ$=P, z$,=O, &‘P=;O 

then 

r I=; w, 1T;+P. 
From (3.15) and (3.18), we obtain: 

(3.19) 

(3.20) 

.r2,1f2(KI-3)+4P1um 
4P*(% + 1) 

, r,_2P1(K2 
z- 

- 1) -/k&I - 3) Q_ 
2cr,(& + 1) * 

(3.21) 
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Itisseenthata~=a”,r$= 0, but a2 # 0. The stress component a, has a jump across the bond 
line. In addition, it should be pointed out that the rotations E? and @at infinity cannot be set 
arbitrarily to zero at the same time unless r;, = 0. 

From (3.13), (3.14) and (3.17), we obtain: 

O,,(z) = KZp’ 8(z) z ES-- , 
x2/4 + P2 

Substituting (3.9) into (2.5), and noting (3.22)-(3.25), we obtain 

e+(t) -se-(t) =f 

K,P2++1 

f= K, 

The general solution of (3.26) is [l] 

e(z) =&X(z) s &jj$ + cm) 

where C is a complex constant, and 

x(z) = (z + c)-1/2+k9(z _ a)-V2-iB 

which is the single-valued branch, such that zX(z) + 1 as Jz] + co, and in which 

B =&lnJg]. 

Noting that 

X+(t) =gX-(t) on L 

X+(t) =X-(t) on L’ 

(3.22) 

(3.25) 

(3.26) 

(3.27) 

(3.28) 

(3.29) 

(3.30) 

(3.31) 

(3.32) 

we have 

1 

s 

1 dt 1 1 

s 

1 dC 
211i ,X+o’t-r=l-gXi hX(r)‘r-Z 

(3.33) 

where A is a clockwise closed contour encircling L, and c is the coordinate on A. According to 
the Cauchy formula for an infinite region, the contour integral can be calculated; thus general 
solution (3.29) becomes 

8(z) = & + -& (-z + 2i#lu)X(z) + CT(z). (3.34) 

The constants S and C in (3.34) are determined from the equilibrium conditions of the rigid line. 
Substituting (3.8) into (2.8), we obtain: 

[@:(t)+ni(t)]dt- [@,(t)+G(t)]dt=O (3.35) 



which can be reduced to an integral along a closed contour A encircling L: 

s 
e(z) di! =a 

h 
(3.36) 

Similarly, from (2.10), we obtain: 

Re 
i 

iqz)=O. (3.37) 
A 

Integrals in (3.36) and (3.37) can be evaluated by using the residue theorem, thus we obtain: 

C=O (3.38) 

6=Im ” 
[ Grl+ $r* 

2 

--&+r;)-&(r,+r;) . 
I 1 

Lastly we obtain the solution of the problem: 

where 
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(3.39) 

(3.40) 

(3.41) 

In a special case in which the two media are identical, we have 

j.q = c(2 = /l, K, = K2 = K, g = - 1, j? = 0 

r,=r2=r, r+r;=r’. 

From (3.2), (3.3), (3.22), (3.25) and (3.40), we obtain 

(3.42) 

(3.43) 

r r 
-r+:+; . >( 

Q(z)=r+r’+fRe(rcr -r-r’)* 

(3.44) 

(3.45) 

which are in agreement with the classical results [l]. 

4. STRESS DISTRIBUTION AROUND THE RIGID LINE 

It is of practical importance to investigate the stress distribution around the rigid line, 
especially at the rigid line end. As an example, we discuss the normal stress bvl and the shear stress 
r XYl on the upper surface of the rigid line. From (3.2), (3.3), (3.8), (3.22) and (3,25), it is seen that 

(4.1) 

Substituting (3.40) into (4.1), we obtain: 

(cy, - k,J+ = A, + iA + B(--t + 2ij%z)X+(t) -a < t < u 

where 

f A,=Rer;+r,+Z’i+- 
( 

Pl K2Pl 

1-g w4z++,-~2PI+P2 > 

A,=Imr; 

3 f PI 
=I-_g 

K2Pl 1 

K,p2+pI-Fc2C(I+p2’9 * > 

(4.2) 

(4.3) 

(4.4) 

(4.5) 



Noting that 

,,,)_~~[sin(Bm~)-icos(~In~)] --a<t<a (4.6) 

Furthermore, we consider the singular behavior of the stresses at the rigid line end (t 3 a_,,). Let 
r =a -rt; we then have 

(4.10) 

From (4.9) and (4.10), it is seen that the modulus of the singular behavior of the stresses 
remains proportional to the inverse square root of the distance from the rigid line end, but the 
stresses possess a pronounced oscillatory character, as in the case of an interfacial crack tip_ Une 
would expect very high stress concentrations at the rigid line end, which may result in cracking, 
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