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Abstract. The thermal conductivity of periodic composite media with spherical or 
cylindrical inclusions embedded in a homogeneous matrix is discussed. Using 
Green functions, we show that the Rayleigh identity can be generalized to deal 
with thermal properties of these systems. A new calculating method for effective 
conductivity of composite media is proposed. Uselul formulae for effective thermal 
conductivity are derived, and meanings of contact resistance in engineering 
problems are explained. 

Nomenclature 

k m  conductivity of the matrix 
ki conductivity of the inclusion 
k ratio of k i  to k ,  
him contact resistance or film coefficient on bound 

between two phases 
Qm domain occupied by matrix 
Qi domain occupied by inclusion 
T m  
Ti 
T 

temperature field in matrix domain 
temperature field in inclusion domain 
temperature field: it is T, in domain R, and 
Ti in domain Ri 
heat flow vector in matrix domain 
heat flow vector in inclusion domain 
outward unit normal on surface of inclusion 

gm 
4' 
nim 
TO applied temperature gradient 
BI Biot number 
Y,m(O, q)spherical harmonic function 
U T ( Q )  formal factor, defined by equation (32) 
a radius of inclusion sphere or cylinder 
f l ,  f2 volume fraction of inclusion for two-dimen- 

sional and three-dimensional system 
Ql,, VI, definite integrals, defined in (22) and (23) 
S,, T, definite integrals, defined in (28) and (29) 

1. Introduction 

The transport properties of inhomogeneous media 
have been of interest since the time of Maxwell [I]. 

0022-37271921020249 + 07 504.50 @ 1992 IOP Publishing Ltd 

The reason for this interest is, of course, the enormous 
variety of physical systems, in which inhomogeneities 
occur: all polycrystalline and composite media, for 
example, are inhomogeneous systems. Recently, eval- 
uating the property constants of composite media 
based on first-principle approaches has received much 
attention [2-51, because many important problems 
have been raised in the engineering field [2 ,6 ,7]  and 
some controversies with profound theoretical back- 
ground are related to it [S-lo]. 

This paper deals with thermal conduction in com- 
posite media with a periodic'structure. In a composite 
medium, heat transfer in the matrix and inclusion 
domain both satisfy Laplace's equation. Boundary con- 
ditions between interfaces of different phases are com- 
plex. If there is contact resistance the temperature 
potential suffers a transition at interfaces. The fol- 
lowing two typical situations explain the reason for the 
introduction of contact resistance (or film coefficient). 

(i) When two solid surfaces are pressed together 
they will not form a perfect thermal contact, owing to 
the air gaps that result from unavoidable roughnesses 
in the interface. Heat transfer is therefore due to con- 
duction across the actual contact area and to con- 
duction (or natural convection) and radiation across 
the air gaps [ I l l .  

(ii) Film condensation occurs when the condensate 
wets the solid cooling surface and forms a continuous 
film [12]. The heat being transferred must pass through 
this liquid film as it is transferred from the vapour to 
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the cooling wall. Because the thermal conductivity of 
liquids is low, the liquid film, thin as it  may be, presents 
a significant resistance to the flow of the heat. There 
may be several complicating features associated with 
film condensation. The character of the condensate film 
on the solid condensing surface can range from laminar 
to highly turbulent [12]. 

The processes in  thin films are intricate. Besides 
conduction, convection, radiation, gravitation and 
other processes play an important role in heat transfer. 
It is therefore out of the question to describe heat 
transfer in the film only by the governing equation 
of thermal conduction. Fortunately, proper boundary 
conditions and the associated film coefficient are good 
for manifesting the effects of the presence of a thin 
film on thermal conduction in composite media. In 
fact, it is a common procedure to reflect complex pro- 
cesses in a thin film by proper boundary conditions 

The paper is arranged as follows. In section 2, gov- 
erning equations and boundary conditions for thermal 
conduction of composite media are specified. In section 
3, generalized Rayleigh identities for two-dimensional 
and three-dimensional composite media are  derived. 
In section 4, a definition of effective thermal con- 
ductivities of composite media is established and a new 
calculating method for the effective constant of com- 
posite media is proposed. The method itself is a proof 
of the validity of Kayleigh technique. In section 5 we 
derive formulae of thermal conductivity for two dimen- 
sional and three-dimensional periodic composite 
media. In section 6 we apply these formulae to some 
practical problems. 

~ 3 1 .  

2. Equations and boundary conditions 

Consider a composite medium whose matrix, with con- 
ductivity k,, contains inclusions of conductivity k i ,  and 
suppose that the contact resistance (or film coefficient) 
on the surface of the inclusion is hi,, with hmi = hi,. 
The heat Row in matrix acd in inclusion have com- 
ponents given by 

qm = -k ,VT,  in R, (1) 

q' = -k iVTi  in R i  (2) 

and 

respectively. 

equations 
In t h e  steady state, heat Row satisfies the following 

V . q , = O  in R, (3) 

V . ~ ~ = O  i n Q i .  (4) 

and 

The condition for continuity of heat flow must be 
applied on surfaces of inclusion: 

ni, . q m  = n i m  ' 9 '  on ani 
where ni, is the outward unit normal vector on the 
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Figure 1. Layout of spherical polar coordinates and cells 
for different lattices: (a) for sc; (b )  for BCC; and (c) for FCC. 
0 is measured from the z axis and p is an azimuthal angle 
measured from the Dlane of xz. 

surface of an inclusion. The secondary condition for 
composite media with contact resistance is 

-ki(aTi/an,,) = hi,(Ti - T,) o n d R i .  (5) 

3. The generalized Rayleigh identity 

We first consider an array of cylinders embedded in 
a homogeneous medium. We apply a homogeneous 
temperature gradient Tu along, say, the x axis. The 
radius of the cylinder is a. The fraction of inclusion is, 
therefore, f, = na'. The origin of cylindrical coor- 
dinates is fixed on the axis of a cylinder. It is easy 
!n find genera! sn!utinr?s nf Lzp!...'. Pquz!iLln ir? the 
inclusion and matrix regions: 

I 

~ , ( p ,  P) = c,, + E pm[ch sin(mP) + ci, C O ~ ( ~ P ) I  

(6 )  
"l = I 

and 

T,(p, w )  = 
~ 

A, ,  + C { p " ' [ ~ ! , ,  sin(") + A ;  cos(mrp)] 

+ p-"(Bh sin(mq) + E ;  cos(mm)]}. 

WI=l 

(7)  
Applying boundary conditions on these solutions, we 
derive 

A 11 = CO 

A:, = BL/(H,,a*"')  i =  1,2 

C:, = 2R:,/(a2"'(1 - k + m k / B I ) )  i =  1 , 2  

where 

H,, = (1 - k + m k / B I ) / ( l  + k + m k / B I )  

k = k, /k , .  

E l  is the Biot number 

BI = h,,a/k,. 

For a composite medium with an array of identical 
spheres suspended in a homogeneous matrix, we attach 
the origin of the spherical polar coordinates to the 
centre of a sphere and apply a homogeneous tem- 
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Table 1. Coefficients and quantities in equations 
(35) for SC, BCC and FCC lattices. f, is the critical 
volume fraction at which the spheres touch, and 
a, is the critical radius corresuondina to it. 

SC BCC FCC 

a, 11.4666 193.6554 865.634 
a, 182.5208 126.9066 2557.3744 
a2 -12.432 -8.284 -7.526 
a, -3.4400 -58.0966 -259.6902 
a, -26.0744 -18.1295 -365.3392 
f, 14/3)na3 (813)na3 116/3)na3 . .  
fc n/6 id3i8)n (d2i6)n 
a, 112 d314 d214 

perature along the z axis. The radius of the sphere is 
a. The layout of coordinates for different lattices of 
spheres is shown in figure 1. Relations between the 
radius of sphere and fraction of inclusion, fi, are given 
in table 1 .  General solutions in both regions are 

and 
= I  

+ F,,,,r-/-I)Yl,,,(e> q). (9) 
Applying boundary conditions o n  surface of the 

central sphere, we derive 

E,,,, = Fi,,,/(Gla2'") (10) 

and 

Dl,,, = F/,,,(2/ + 1)/[/(1 - k + /k /B/ )a2 ' ' l ]  ( 1 1 )  

where 

G ,  = ( I  - k + /k /Bl ) / [k  + (I + l)// + ( I  + l ) k / B / ] .  

According to Green function theory, discontinuities 
of temperature gradient and temperature at surface of 
inclusion are equivalent to new sources of temperature 
field with the intensity proportional to 

Q(0.  9) = (aTi /8r  - JT, /dr) ,= ,  
X I  

(12) 
(21 + 1 )  - [ / (2 /  + l ) k / B I ]  

(1 - k + / k / B / )  X Y / m ( O .  P) 

respectively. 
The sources of temperature are the applied tem- 

perature gradient and the induced sources of tem- 

perature field on the surface of each sphere, so the 
temperature field at an arbitrary point r is given by 

_L 

T(r)  = T,,z + (1/4n) Qi(s) d2s/lr - S I  
i=o  

+ ( l / h )  ,=U 5 (D,(s)n,(s)d,(l/Ir-sl)d's (14) 

where n,(s) is unit normal vector on the area element 
d2s.  Using addition theorem and orthonormality 
properties of spherical harmonics, we get 

1 - [ (2 /  + l ) k / B / ]  
1 - k + /k /B/  X r ' y d e ,  9) 

+ (Fim/pjtl)Y/,, ,(fl , ,  P,) + Tnz. (15) 

We see that the terms with BI in double summation 
due to D ( s )  just make a compensation for that due to e($), so the terms for I # 0 do not obviously depend 
on BI. 

In ( 1 5 )  the first sum comes from the central sphere 
and the second sum is over all other spheres. If we 
take lrl < a ,  then 

, # i l l = l m = - /  

= I  

T(r)  = T,(r )  = C C 
, = 1 m = - /  

(21 + l ) k / B /  
X Elm + Fi,,, 1 - [ ( ( 1  - k + /k/B/)a2'+l 

x r ' y d e ,  rp). (16) 

Comparing (15) and (16) we arrive at the desired iden- 
tity 
r /  

/=I m = - I  

= =  I 

( F / n t / ~ : + 1 ) Y ~ m ( e r 9  9,) + 'Fur. (17) 

A similar proof establishes the identity in the region 
exterior of the central sphere. This identity has the 
same form as the original one, but the restriction on 
continuity of temperature field on bound has been 
removed [14. 151. 

With a similar procedure, we prove the generalized 
Rayleigh identity for a two-dimensional system. It is 

,ill I= I m= - I  

+ B:f cos(mq;)] + T,,x. (18) 
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4. Effective thermal conductivity of composite 
media 

In this section, we propose a new calculating method 
for the effective constant of composite media. To illus- 
trate it, we discuss only composite media with cubic 
symmetry. For more general systems, the procedures 
are more complex, hut have no crucial difficulties [16]. 
In these systems the thermal conductivity tensor 
reduces to a scalar. So calculating effective thermal 
conductivity along axis z is enough for these systems. 
As usual, we have [17] 

( q z ) =  -k* (a ,T) .  (19) 
The average value of the heat flow is 

( q z )  = -1 ki  J,Ti dx  - 
ni 

= - ( k i - k , ) J  d , T i d x - k , ( d , T )  

+ (kik,/hi,) I (JTi/Jr)e, . dS  

Ri  

= -f*Dl,u(ki - k ,  - ki/BI)  - k,(a,T) .  
Combining these two formulae, we obtain 

k* = k, +f2Dl,o(ki - k, - ki /Bl ) / (d ,T) .  (20) 
instcad 0: appving the Greeii theorem, as McPhed- 

ran and McKenzie [14], or using a sample, as Suen el 
al [17], we Cdhbdte (aJ) simply by integrating the 
expansion of T over a cell. After performing the inte- 
gration, we have 

k* /k ,  = 1 - 3f2 (hu + a3  
* I  

1 = 2 m = - I  
-I 

x ( ~ 1 ~ ~ 1 ,  + Frmvrm)/Fi.u) (21) 

where 

h,l = [ f i ( l  - k - 2k/BI)  
+ 2 + k + 2 k / B I l / ( l  - k f k / B I )  

QI, = J a , ( r ' Y d 8 ,  v ) ) d x  (22) 
n. 

and 

Vr, = jam a Z ( r - ' - ' Y ~ , ( ~ ,  v)) dx .  (23) 

Owing to symmetry of the systems, we prove that the 
only non-zero Ql, and VI, are those with odd I and m 
divisible by 4. 

We give values of Qlm and VI, for I < 7 and m = 
0: 

(24) 

(25) 

Q 1 . u  = 1 - f 2 .  

Q 5.1) = -71'96% 

Q3.u = 0, 

Q7.u = 1/96 
V3,,, = 4.105 54, V1.U = 0,  

V,,,,  = 0.341 675, V7,11 = -2.954 19. 
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At the lowest approximation, that is, omitting the 
last term in the denominator of (21), we reproduce the 
Lorentz-Loren2 equation or Maxwell-Garnett 
equation. We see that it is not the coefficients, D,,, 
El,,,, Fl,, but the ratios of them to F,, , ,  entering into the 
formula for effective thermal conductivity, the problem 
about the convergence of U Y ( Q )  is, therefore, solved 
naturally [14, 171. 

For two-dimensional periodic composite media with 
square symmetry, we have following formula 

k * / k ,  = 1 - 2f1 (io + u2 5 (ALS,,, + 527,)) 
- I  

m = 2  

(26) 

where 

j u  = [ ( l  - k - V l ) f l  + I + k + k / B I ] / ( l  - k + k / B I ) .  

S, and T, are definite integrals. They can be per- 
formed analytically 

SI = (27) d,(pcos q ) d x  = 1 - f l  

Q m  

(28) T ,  = J' a,(p-l cos q) dx  = 0 
- $2," 

S, = J d,(pm cos(mq)) d x  
n!. 

- - 2(3-")/* sin[(l + m)n/4]  

- 2-"{sin[(m - l ) n / 2 ] / ( m  - 1)  

+ sin[(m + l ) n / 2 ] / ( m  + 1 ) )  

T ,  = 1 a,(p-, cos(mq)) dx  
- L l m  

- - 2(3+"12 sin[(l - m)n/4] 

- 2"'(sin[(m - l )n/2]/(m - 1 )  

+ sin[(m + l)n/2]/(m + I ) } .  (30) 

5. Formulae for effective thermal conductivities 

We consider three-dimensional composite media. In 
order to determine unknown coefficients F21-l,m. we 
apply the Rayleigh identity at two points within the 
unit cell, namely Q = (r,]. 8,). qo)  and Q = 0 = 
(0.0, O), and equate odd-order derivatives with respect 
to z of both sides of (17). The procedure yields a 
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81 1/81 

1.6 

1 2  

h' 

0 8  

O L  

31 1/81 81 1/31 

set of linear equations for F21-I,m. A typical equation, 
obtained from the (2n + 1)th partial derivative is 

1/ 2 1 - 2 " - 2  
21-2" - 2  A ? A 2 ~ ~ ' E 2 1 - l . m r o  

I = " + ]  m = u  

x p;j-2n-2(cos %)cos(mvl,) 

I = I m = U ; = l  

x p;21-2'1-1P;+2,(cos 0;) cos(mrp;) 

= T d n . o  (31) 

where 

L = 2 I - l  

and 

A ;  = n / ( n  - k ) .  

In the sums over i we run over the lattice points 

(U. U ,  w )  for all positive or negative integers (U. U ,  w) 
excluding (O,O,  0). Define 

. 

UY(Q)  = p;'-'P;'(cos Oj)cos(mp,;) (32) 

where each U ; ( Q )  depends on the coordinates of Q ,  
since 

;= I 

pi  = [(X" - u ) 2  + (Yi, - U ) 2  + ( Z o  - w)2]"2 

COS 6; = (x" - u ) / p ;  

and 

cos rp; = ( y o  - U)/(Z" - w). 

A E ? 1 - 1 F 2 1 - l . m r o  21-2n-2(COS 8 0 )  

By using (31), (32) becomes 
= 21-2"-2 

2 1 - 2 n - 2 p m  

I = " + ]  m=u 

x c o s ( m ~ ~ ) / ( G 2 ; - ~ a " ' - ' )  
1. 

+ C. A,u,::"-~F 21-1.m u ; + 2 n ( Q )  

= TiiG,,o. (33) 

I = 1  m = o  

For electrical conduction, when the  conductivity of 
the inclusions is infinite and they are nearly touching, 
conductivity of the composite medium will develop a 
singularity. Because of the presence of contact resist- 
ance, this singularity will not occur in the case of ther- 
mal conduction of composite media. We expect, 
therefore, that the convergence of the numerical 
method will be much better. Numerical calculations 
make us believe that the convergence of the numerical 
method is rather rapid and azimuthal terms have little 
influence on thermal conductivity of composite media. 

Owing to rapid convergence of the numerical 
method, we can derive neat formulae for effective ther- 
mal conductivity of composite media. The solution of 
equation (33) to order four, without azimuthal terms, 
yields the following formula for effective thermal con- 
ductivity of composite media 

k * / k ,  = 1 - 3f2/(h, + a 'h , )  (34) 

Table 2. Effective thermal conductivities of an array of copper pipes immersed in steam. The 
conductivity of copper pipes and conductivity of steam are 342 W 
0.6845 W m-l K-' respectively. The film coefficient is 1 1  400 W m2 K-'. Figures in the last row 
are effective conductivities of the system, if we neglect the effect of the thin film. 

K-' and 

Radius of cylinder 
Length of 
cell side (m) 0.18 0.24 0.30 0.36 0.42 0.48 

0.1 0.8378 0.9838 1.21 96 1.6262 2.4749 5.9816 
0.05 0.8367 0.9820 1.21 66 1.6207 2.4617 5.8832 
0.01 0.8279 0.9678 1.1934 1.5787 2.3621 5.2189 
h. = P 0.8390 0.9856 1.2226 1.6317 2.4882 6.0841 

Im 
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0 

Figure 3. Effective thermal conductivities of cylindrical lead 
castings in a copper mould. Conductivity of the copper 
mould and conductivity of the  lead castings are 
342W m-l K-' and 33.4 W m-' K-', respectively. Film 
coefficient is 150Wm-2 K-'.The top curve is effective 
conductivity of a similar system, but having an ideal 
thermal contact. Figures near other curves are lenglhs of 
the cell side. 

where 

hi = V,.oh,/h,  + (h , /h , ) [Qs . , i / (Gsa")  + Vs.01 

+ hdQ7,0 / (G7a")  + V7.01 

.. hi = !C;.,C;.;.1R)-1 + "i;/!C.'jn") - 0: 

hi = a 3 / ( G S a " )  - a l a 3  
h4 = a , / ( G 3 a 7 )  + aoa3 - a l a 2  

h, = a,G7a".  (35)  
The coefficients all ,  a l ,  a 2 ,  a3  and a,. for different 
lattices are listed in table 1 .  

For two-dimensional Deriodic comDosite media. we 
derive the following formula 

k x / k ,  = 1 - 2 f / ( j u  + a 2 j l )  

where 

.. i ,  = BjT ,  +ASSS + B i T ,  

B? = r& - j d j d  

B: = B ? L / I S  

B: = - H , a 6 ( a S B :  + 35a,B:) 

= - H 7 a l J ( a 6 B :  + 330a7B:) 

j 2  = ( H l a * ) - ]  - 3a:H3a6 - 7aiH7nl4  

j ,  = 105asa,H,a6 + 2310a6a7H7aI4 

j 4  = 21a,a,H,ah t 462a,alHla" 

j s  = (H5a"') - '  - 735agHsah - 152460a:Hla" 

a ,  = 3.15085, ah  = 4.25577, a7 = 3.93885. 

7. Conclusion 

Using formulae (34)  and (36).  we study influences of 
contact resistance on thermal conduction of composite 
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media. The dependences of effective thermal con- 
ductivities of three-dimensional composite media on 
the Biot number are depicted in figure 2 .  

We use formula (34)  to discuss two engineering 
problems. 

(i) Cylindrical castings condensing in a mould: when 
a crust is formed at the periphery of a casting, either 
the casting touches the mould on an extremely rough 
interface, or an air gap lies between the casting and 
the mould. In both cases, there is a contact resistance 
on the bound of the castings, and it retards the con- 
densation of castings. Figure 3 shows effective thermal 
conductivities of lead castings in a copper mould. 

(ii) Metal pipeh immersed in steam: the influence 
of film coefficient on thermal conduction of the system 
is much more subtle, and we present the effective con- 
ductivities of it in table 2 .  

In [ 5 ]  we showed that the existence of contact resist- 
ance on surfaces between different phases of composite 
media changes the thermal properties dramatically. 
The above examples show that for some thermal con- 
duction systems we need to take into account the 
effects of contact resistance. However, boundary con- 
ditions for thermal conduction complicate the problem 
and are an obstacle to theorctical treatment. It is, 
therefore, reasonable to consider first the thermal 
conductivity of composite media with spherical or  
cylindrical inclusions. Besides, the new calculating 
method proposed in section 4 has no problems regard- 
ing the convergence of U ! ( Q ) ,  and it is valid for com- 
plex composite media, for example, the frequency- 
dependent conductivity of colloid systems [13]. 
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