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Abstract-Dilatational plastic equations, which can include the effects of ductile damage, are derived based 
on the equivalency in expressions for dissipated plastic work. Void damage developed internally at the 
large-strain stage is represented by an effective continuum being strain-softened and plastically dilated. 
Accumulation of this local damage leads to progressive failure in materials. With regard to this micro- 
structural background, the constitutive parameters included for characterizing material behaviour have 
the sense of internal variables. They are not able to be determined explicitly by macroscopic testing but 
rather through computer simulation of experimental curves and data. Application of this constitutive model 
to mode-I cracking examples demonstrates that a huge strain concentration accompanied by a substantial 
drop of stress does occur near the crack tip. Eventually, crack propagation is simulated by using finite 
elements in computations. Two numerical examples show good accordance with experimental data. The 
whole procedure of study serves as a justification of the constitutive formulation proposed in the text. 

NOMENCLATURE 

7'' = Kirchhoff stress (contravariant tensor) 
0'' = Cauchy (true) stress (contravariant tensor) 

DI;"' = plastic deformation rate (covariant tensor) 
urn = mean stress 

0:) = plastic mean deformation rate 
a, = equivalent stress 

Dip) = plastic equivalent deformation rate 
D, =total equivalent deformation rate 
S' - deviatoric stress (mixed tensor) 
4 plastic deviatoric deformation rate (mixed tensor) 

6, = lo' D, dr 

6:) = f D!$dt 

Or 
g" = metric tensor 

E t )  = deviatoric plastic tangent modulus 
E$$ = volumetric plastic tangent modulus 

-= ' Jaumann rate 

E = Young's modulus 
v = Poisson's ratio 

V,,, = covariant derivative of velocity 

INTRODUCTION 

As a consequence of large plastic deformation and high triaxial tension, successive nucleation and 
growth of voids have been well examined and confirmed to be the main microstructural damage 
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that leads to final failure of ductile materials. Experimental reports, delivered by Hancock and 
Cowling[l], Beremin[2] and Xia et a1.[3], lay solid ground to show that there are usually two 
generations of void nucleation involved in steels. Firstly large voids (- 10 pm) around inclusions 
bonded weakly to the matrix are formed and can be taken as primary and initial voids. Afterwards 
secondary voids (- 1 pm) surrounding fine precipitates of carbides, which have a strong interfacial 
bonding with the matrix, can be nucleated under higher stresslstrain loading. 

Numerical analyses by Li and Howard [4] and Li et al. [5] for modelling void damage have shown 
that the interaction between these two classes of voids can cause detrimental effects which are much 
worse than if the material were damaged only by single size voids distributed periodically. The 
plastic loading points distinguished by the same amount of void volume fraction can no longer trace 
the regular and smooth surfaces as those in Gurson's paper [6]. When secondary voids are 
progressively developed to a large extent, the overall elastic response of material is shown by Li[7] 
to greatly deteriorate. The normality and convexity rules then become questionable. The 
assumptions underlying the constitutive characterization based on Gurson's model and others are 
also discussed by Becker et al. [8]. They concluded that the key issues for improving the modelling 
capability should be the matrix material constitutive characterization, the improved quantification 
of void nucleation phenomena and non-uniform void distribution effects. These points are indeed 
closely related to the role played by the nucleation and growth of secondary voids in the matrix 
around primary voids. 

Owing to these reasons, the prospective constitutive equations that can include the effect of 
ductile damage should be built on a more general basis. We therefore intend to employ in the 
present work, the equivalency in the expressions for the rate of dissipated plastic work. Based on 
microstructural studies, some criteria are proposed to predict the initiation of internal damage and 
final failure. A series of tests on axisymmetrically notched bars and smooth bars has been carried 
out previously, by Xia et al. [3 ]  (in conjunction with computer simulations) and by Yang and Li [9], 
to determine the constitutive parameters involved in the equations and criteria. 

Besides furnishing a theoretical framework to the constitutive equations, the main aim of the 
present study has been to assess the rationality and capability of those equations and criteria by 
applying them to modelling mode-I cracking problems. Two geometrical shapes of specimens were 
chosen for this purpose. Crack propagation was measured and compared with computational 
results. Distributions and evolution of stresses and strains in the region near the crack tip will be 
illustrated. 

CONSTITUTIVE MODEL FOR DUCTILE MATERIALS 

According to the definition given by Hill[lO] for stress and strain to be conjugate, the rate of 
dissipated plastic work @') under up-dated Lagrangian formulation, that is to say with respect 
to the configuration at some fixed generalized time to, should be expressed as 

(1) WiP) = 'JD (P) = r iJ) i(P) 
11 J 1 

here T" is the Kirchhoff stress which is related to the Cauchy (true) stress criJ by a definition as 

here duo and dv are respectively the initial and the deformed differential volume, corresponding to 
some fixed time to and the current time t starting from to. The term D$) is the plastic part of the 
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deformation rate D,, which can be derived from the cavariant derivative of the velocity V, by 
stating that 

DtJ = i ( K l J  + 711). (3) 

Both the Kirchhoff stress tensor 7; and the plastic part of the deformation rate D!P) can be 

(44 

I (4b) 

resolved into their deviatoric and volumetric parts, correspondingly. 

7; = s; + dJ(iZf) 
D J ( P )  = dJ(P) + 8/(1DfP)) 

1 3  

and 
s; = Zj - G i ( I 7 k )  

1 3  k 

d{(P) = D/(P) - S((’Df(P)). 
1 1 3  

Substituting equations (4a) and (4b) into equation (l), we find 
@P) = s ( d i ( ~ )  + I k 

J i 3 ? k D ! .  

On the other hand, let us define 

Wip) = a, D $) + 3a, 0:). 

This expression denotes that the total rate of dissipated plastic work is obviously composed of two 
parts, one is done by the deviatoric components and the other belongs to the volumetric dissipation. 
It is easy to check that 

and 

represent the mean stress and the plastic mean deformation rate, respectively, in the volumetric 
part. We further nominate ae as the equivalent stress that has a definition of 

ue = (;s;s{)l’* (10) 

and we call D:p) the plastic equivalent deformation rate. Based on the need that equivalency must 
hold between equations (6) and (7) under whatever stress condition, with the equivalent stress being 
defined as equation (lo), an immediate conclusion can be drawn as follows: 

d{(p) = ?j(DLP)/a,)S{ (1 1) 

d;(p)d{(~)  = $ ( D ~ ~ / ~ ; ) s ~ s J .  I 1  (12) 

and 

Then, consequently we should have 
D(P) = (2di(P)d{(P))I/z. 

e 3 i  (13) 

This statement should not be taken as a definition but rather the consequence of the definition given 
for a, in equation (lo), and it is also due to the equivalency of the expressions attributed to the 
deviatoric part of the dissipated plastic work rate in equations (6) and (7). 
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Substituting equation (1 1) into equation (4b), we have 

here, E t )  = (%~,/9i)/D:p) and Eig = ( 9 ~ $ / 9 t ) / D : P )  are the plastic tangent moduli, in which 9 / 9 t  
denotes the Jaumann rate. Since 

90, 3 9T: 
9 t  - 20, Sh,, 

equation (14) can be rewritten as 

Assuming that the total deformation rate is composed of an elastic part following Hooke's law and 
of a plastic component given in equation (16), eventually we find 

0; = D;Ce) + D;(P) 

and its inverse form 

The expression for the elastic deformation rate DjW is an inference from Hooke's law commonly 
used in the small strain case in which, E and v are Young's modulus and Poisson's ratio, respectively. 

Equations (17) and (18) have the same forms as the dilatational plastic constitutive equations 
proposed by Li and Howard [l I]. The process of derivation clearly demonstrates that these 
equations are not dependent on a particular plastic potential nor on the so-called convexity and 
normality rule. They are also irrelevant to the restriction that within a stress or strain cycle the 
work dissipated must be positive. The basis of the derivation is an equivalent transformation 
between the expressions used for the rate of dissipated plastic work. Obviously this transformation 
form may not be unique. However, it has a kind of generality, since it implies no restrictions 
associated with conventional plasticity. 

In the up-dated Lagrangian formulation, the difference between Kirchhoff stress and Cauchy 
stress, as stated in equation (2), diminishes at each of the generalized times to initiated and fixed 
for referential configuration. Therefore the Cauchy stress will be used to represent the stress terms 
included in the calculation of the deviatoric stress SiJ or mean stress 6,. We need only distinguish 
the use of stress definitions in the stress rates. 

According to the damage situation, we shall mainly take notice of two categories for the 
determination of the plastic tangent moduli E$g) and E$!. 

Plastic strain without damage 
Usually this case refers to ductile material under small straining. When E1g-t co, equations (17) 

and (18) reduce to the forms of Prandtl-Reuss relations and fall into the category where 
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conventional plasticity holds. Drucker’s postulate and its consequences (the convexity and 
normality rule) can be brought into effect. If we assume that the loading surfaces have a similar 
shape as traced by the Von Mises yield function, then each loading surface denotes a fixed value 
of equivalent stress and has a one-to-one relationship with plastic equivalent strain. Consequently, 
the plastic tangent modulus E t )  can be taken as a single-valued function of @. To determine this 
function, a uniaxial stress-strain curve a+ can be employed and it is well known that 

1 1 1  
Eig) E, E (19) 

here, E, = da/dc, 0, = a (the uniaxial stress) and @) = L @ )  (the plastic part of uniaxial strain 6 ) .  In 
this case, the rules to distinguish elastic unloading from plastic loading are as stated in conventional 
plasticity. 

Plastic strain including damage 
According to microstructural modelling [4-61 and experimental studies [ 1-31 on void damage, 

it is clear and well accepted that the strain-softening effects and plastic dilatancy are the two main 
factors reflecting damaging behaviour. Obviously, these two factors can be incorporated into the 
plastic tangent moduli E$’) and E{$. Owing to the fact that some damage occurs in shearing, e.g. 
shear band localization, which may not be accompanied by a substantial volumetric change, we 
then prefer to treat the deviatoric part and the volumetric part, separately. The crucial point is to 
specify the two moduli E t )  and EIP,‘ . The specification needs to include: (a) the turning points where 
E t )  or/and Eiz divert from the strain hardening state to strain-softening behaviour, (b) the 
determination of these two moduli as functions of stress state u, plastic strain state E ( P )  and internal 
variables written in general form as components of vectors i,, i, after being strain-softened; that 
is to say 

Ei;) =fe(u, E @ ) ,  i,), Ei$ =f,(u, dP), i,). (20) 

In our following computations, we again make use of the knowledge and criteria obtained from 

(a) If either 

the previous microstructural studies on void damage [ 1-51 and propose: 

a, + Leae = a, or @) = 6 ,  (21) 

is reached, E$) becomes negative. The first equation is a stress criterion, while the second one 
indicates that plastic equivalent strain c$’) becomes dominant in strain softening. 

(b) When 

a, + &,a, = a, (22) 

then EIP,’ also softens and becomes negative. 
(c) The condition 

€2) + If@’ = €c (23) 

is taken as the failure criterion. This means that, after undergoing a certain extent of strain- 
softening, the plastic mean strain €2) and the equivalent strain €$’) have jointly accumulated to a 
critical amount, and then the material will be damaged such that it cannot carry any stress. In 
equations (21), (22) and (23), A,, ace, tee, I,, uc,, I, and cc are material constants to be determined. 
The three parameters I,, I, and A, play the role of balancing the influence between the 
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corresponding deviatoric and volumetric components. If Af = 0, the criterion of equation (23) 
virtually reduces to the critical void volume fraction principle used by Tvergaard[l2] to switch off 
the elements in his finite-element computations. 

In our calculations, we assume that El:) and E g ,  after being strain-softened, are negative 
constants. This modelling can be modified to have a better and more sophisticated form, yet for 
the time being it can be taken as satisfactory in our computational implementation. Equations (21) 
and (22) together with the negative values assigned for E$) and EIP,' in the strain-softening stage 
constitute a simple form of the functionsf, and f, in equation (20). The constants (T, and a,, are 
the critical values of stress state c, ece denotes the critical value of plastic strain state dp), while A, 
and A, represent the vectorial components of i, and i,. 

DETERMINATION OF THE CONSTITUTIVE PARAMETERS 

In order to present a complete view of our work, a recapitulation of the previous tests [3] and 
computer simulations [9] needs to be included to demonstrate the determination of the constitutive 
parameters quoted above. 

The material used for tests is a low carbon-low alloy steel. The chemical composition (% wt) 
is: 0.21 C, 0.25 Si, 0.66 Mn, 0.017 P, 0.010 S and 1.01 Cr. The specimens were quenched from 880°C 
and tempered at 710°C for 5 h. The microstructure is of a spheroidite form. The average size of 
inclusions is about 4 pm, while that of carbides is 0.1 pm, based on measurements taken from the 
photos of the scanning electron microscope. 

Three types of axisymmetric bars were designed. One group is of smooth round bars with slight 
thinning in the middle part to initiate necking. The other two groups are specimens notched 
axisymmetrically with different local radii. Their basic dimensions are listed in Table 1. In which, 
ro is the minimum radius at the middle section, R,, is the radius at the ends and R,  denotes the local 
radius of the notch with B, as its half width. The degree of triaxial tension in the central part of 
the bars increases when the value of ro/R,  increases. 

Cylindrical tension specimens (group A) and two groups of axisymmetrically notched specimens 
(groups B and C) were tested to measure axial load P and axial elongation AL. Each group contains 
14 specimens. Tests on groups A and B were performed with a cross bar velocity of 1 mm/min, 
whilst group C was pulled at the velocity of 0.5 mm/min. Each test was terminated and unloaded 
at different values of elongation. The actual radii r,, and r, referring to the smallest section of each 
specimen at the initial time and time of termination, respectively, were measured by an optical 
microscope. Thus, each specimen was pulled and stopped at a certain degree of internal damage 
distinguished by a necking parameter ro /r .  Five specimens were selected from each group after 
testing. Within each of those five specimens three 2 x 2 x 1 mm small samples were cut from the 
central part near the narrowest section of the specimen by a line electrode spark cutting technique 
with their height of 1 mm along the longitudinal axis, while the 2 x 2 mm surface was normal to 
this axis. The dimensions of these samples were carefully measured under a travelling microscope 

Table 1. The basic dimensions (in mm) of axisymmetric 
bars 

~ 

A 4- 4+ 03 

B 4.15 8 4.5 4.15 
C 4.75 8 1.5 1.40 
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and the weight of each sample was determined by a precision balance. Using this method we easily 
derived the void volume fraction fv ,  associated with each necking parameter at the termination of 
the test, from the corresponding material density y and its initial value y o ;  since 

f, = ( Y o / Y )  - 1. (24) 
Among the three samples of each case, the smallest density value obtained was taken as being 
representative, so as to avoid the local scattering influence of the material. The precision of such 
measurements were calibrated to have an error less than 1%. 

Some basic data and figures obtained from the material test were as follows: 

n,(lower yield stress) = 416 MPa 

a,(ultimate tension strength) = 620 MPa. 

and the necking parameters ro/r at rupture were ro/rf = 2.264, 1.625 and 1.471 for groups A, B and 
C, respectively. 

Figure l(a) shows the relation between normalized nominal stress P / o , A o  ( P  is the axial load 
and A,  is the initial area of the smallest section) and nominal strain AL/L, (Lo is the initial length 
scale for measuring elongation AL).  Based on the current radius r and area A of the smallest section 
at the termination of each test, we can obtain an average normalized true stress (= P / n , A )  
and the corresponding necking parameter ro/r .  Their relations are shown in Fig. l(b). Each data 
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Fig. 1.  Comparison of deformation characteristics via computed and experimental results for three groups 
of specimens (see Table 1). (a) Nominal stress P/uyAo vs nominal strain AL/Lo, (b) average true stress 

u,/uy vs necking parameter ro/r and (c) void volume fraction A vs necking parameter ro/r, 
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point represents one terminated test. The results of the void volume fraction are depicted in 
Fig. l(c). They are collected from 15 final data belonging to groups A, B and C at different stages 
of tension. 

A large number of secondary voids were seen spreading around the primary voids, especially in 
group C, and they gave a bigger contribution to the total void volume fraction than the primary 
ones did [3]. The initiation of these tiny voids around carbides can be determined by a stress 
criterion, in the form of 

here, a, is the mean stress and ae denotes the equivalent stress, both are in the continuum sense. 
The material parameters, 1 playing the role of a balancing factor and ac being the critical stress, 
can be determined by employing the so-called limiting curve method which had been introduced 
and practiced by Beremin [2] for similar use but applied to primary voids. In the case of secondary 
voids, we have from the tests of Xia et d [ 3 ]  that 

a, + la, = a, (25) 

a, = 4.60, when 1 = 1.7. 

Computer simulation technique in conjunction with a “trial and error” method was implemented 
to determine the tangent moduli Ei:), Ei i  in equation (18) and A,, a,, ce, I,, a,,, and cc in 
equations (21), (22) and (23). According to a previous study of Li and Howard[l3], varying the 
value of A, within a certain range has only a slight influence on the final computational result. We 
prefer to take 

so that two of the above parameters can be fixed before a computer simulation test. The essential 
point of the whole process is to feed in varying values for the parameters concerned in order to 
gain computed responses that can fit in with the experimental curves or data as close as possible. 
In case the error is not small enough to be taken as satisfactory, new trials should be done. As 
a first trial one can make use of the Bridgman formula [14]. The principle is rather easy to say yet 
tedious to implement. So far, to the knowledge of the authors, this is the only way of determining 
the material parameters from tests, instead of relying too much on void models. Although void 
analysis does provide valuable and even probably essential information, such as for choosing the 
most important internal variables, there are still many actual assumptions and neglected factors 
involved in the modelling [5], which definitely prevents it offering a sufficient basis for a quantitative 
estimation of the full effects caused by ductile damage in different materials. The inadequacies of 
theoretical or numerical models will be, and perhaps nowadays can only be, compensated by 
experimental supplements. 

The final data, determined by the computer simulation technique, are listed in Table 2. We use 
linear interpolation between the values given in Table 2 for carrying out computations. When 
a,/ay = 5.3 or L ,  = 0.9, then E / E t )  = - 1000 for the strain-softening condition in the deviatoric 
stress-strain space. The ratio E/Eifh’ = 1.1 for strain hardening in volumetric stress-strain space and 
when am/ay = 5.5 is reached E/Ei t  = -70, after being strain-softened. The failure strain in 
equation (23) is determined as L ,  = 0.06 with I ,  = 0.035. 

= = 1.7 

Table 2. E / E t )  vs t L p )  

€ !P’ 0.030 0.040 0.050 0.065 0.080 
E/E$)  84 102 143 183 257 
6 $P’ 0.120 0.200 0.600 0.750 0.900 
E/E!,P’ 476 500 580 700 900 
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The computed curves produced by this set of determined parameters (including assigning 
1, = 1, = 1.7 as explained previously) are compared with the experimental results in Fig. l(a), (b) 
and (c). The general agreement is fairly good. Figure l(c) shows some noticeable difference between 
the computational and experimental results, yet the general trend and the final responses depicted 
by the simulated curves are still comparable with those of the experimental records. Taking into 
account the wide range and the whole stage of void volume development, we can still consider the 
results obtained as reasonably good. The finite-element mesh used by Yang and Li[9] for the 
simulation only consisted of about 700 triangular constant strain elements in each axisymmetric 
model of groups A, B and C. Probably the gap between experimental data and the simulated curves 
in Fig. l(c) could be remedied by using a finer mesh but at a greater cost of time and expenditure. 

NUMERICAL ANALYSIS OF CRACK TIP BEHAVIOUR AND CRACK PROPAGATION 

Based on the up-dated Lagrangian formulation and its finite-element procedure quoted 
previously by Li and Howard[4] and by Yang and Li[9], the constitutive descriptions given 
previously can be used to analyse the stress-strain distributions around a crack tip and simulate 
crack propagation by switching off elements that reach the failure criterion (23). Two types of 
specimens were chosen using the same material as the bars described previously. One is a 
plane-strain example employed widely as the three-point bend beam. The span of the beam is 
S = 96 mm with its height as W = 24 mm and a pre-existing crack length of a = 13.1 mm. Another 
sample is an axisymmetrical round bar of diameter 4 = 16mm notched by a V-shape cut into a 
net diameter 4 = 10 mm. These geometrical designs together with their finite-element meshes are 
shown in Fig. 2(a) and (b). Some 755 triangular constant strain elements with 408 nodes are 
included in Fig. 2(a) for a half span of the three-point bend beam, whilst 956 elements with 509 
nodes are used to discretize a quarter of the axisymmetric bar in Fig. 2(b). The length and area 
of the minimum elements distributed close to the crack tip or V-notch tip are designed to be the 
same as those used in the axisymmetric bars employed for computer simulations quoted in the 
previous section. Since the magnitudes of stress and strain in each element depend on the size of 
element, we have to follow a “consistency” principle in choosing the size scale for the elements 
within the most sensitive area of vital concern, so as to apply those material parameters determined 
previously. That is to say, the determined material parameters are associated with an implicit size 
scale parameter. If we change the latter, then the values of the material parameters will also change. 
This view reflects the fact that an absolute size scale is also one of the governing factors that 
influence the problem. According to our experience, we determine the size scale of the minimum 
element via the following considerations: 

(a) Large enough to smear out the local inhomogeneity of material, so that microstructural 

(b) Small enough to represent the drastic gradient of stress and strain near the crack tip. 
(c) To implement the “consistency” principle mentioned previously, we use a 250 x 250 pm 

square and subdivide it into four equal triangles as shown in the mesh parts named A in 
Fig. 2(a) and (b). 

effects can be included in a continuum modelling. 

Figure 3(a) shows the development of plasticity in the ligament region of the beam for a different 
deflection of loading, A, at point C. Each A value is normalized by the height W of the beam. The 
plastic area first embraces the crack tip in a dumb-bell shape. Then it emerges from the top side 
close to the concentrated loading point. At A/W = 0.016, the two discrete plastic areas join 
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Fig. 2. Finite-element idealization (length in mm). (a) Three-point bend beam and (b) axisymmetrically 
notched bar. 

together, yet leaving an elastic part enclosed in a round area between the crack tip and the top 
of the ligament section. The round area shrinks when the plastic region expands under further 
loading. In conjunction with the spread of the plastic area, the crack tip gradually blunts as shown 
in Fig. 3(b). 

The total equivalent strain c, and mean strain c, are determined by conventional definitions as 

The distributions of normalized stresses (equivalent stress I J ~  and mean stress IJ, , both normalized 
by the yield stress oy) and of strains (equivalent strain c, and mean strain cm) near the crack tip 
along the centre line of the beam are shown in Fig. 4; the crack starts to propagate when A/ W 
reaches about 0.055. The pictures depicted in Fig. 4 demonstrate that the distributions of stresses 
and strains remain almost constant during crack propagation. Since a strain-softening model is 
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Fig. 3. Illustrations in the three-point bend beam. (a) The development of plastic area in the ligament 
under the normalized deflection AjW = 0.004 (m), 0.009 (m), 0.016 (-) and 0.055 (---) and (b) 
blunting of crack tip at X = O  in the initial loading stage [the directions of X and Y are specified in 

Fig. 3(a)]. 
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Fig. 4. Distributions of stresses (oe, om) and strains (ce, cm) near crack tip of the beam during crack 
propagation. 
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IIb’ 

Fig. 5. Extension of strain-softened (damaged) zone (m) 
and cracked material (a) in the beam. (a) A/ W = 0.055 and 

(b) A/ W = 0.096. 

Fig. 6. The development of plastic area in the axisym- 
metric bar notched by a V-cut under axial elongation 
AL/L,=0.015 (/T/), 0.052 (zm) and 0.083 

</7/7/7). 

used in the computations, there is an obvious decrease in the stress distribution near the crack tip 
both in the deviatoric and volumetric space. At this location, strains can be highly concentrated 
as long as ductility permits. These features can be considered as a more realistic representation of 
material behaviour within the damaged zone, where the HRR field [ 15, 161 cannot apply. This trend 
is in qualitative accordance with the demonstration of Aoki et a1.[17] using Gurson’s model [6] as 
their basis for the constitutive equation. 

The strain-softened region is very localized at the crack tip. It moves forward and widens as the 
crack propagates continuously. In Fig. 5 ,  the elements hatched illustrate the area being softened 
(damaged), while the black (empty) elements show the crack propagation. These areas are so local, 
we keep their shapes edged instead of smoothed as we did for the plastic areas in Fig. 3(a). 

Following the same routine, we worked on the second example of the axisymmetric bar notched 
by a V-cut. In Fig. 6 the plastic areas first develop separately in the wake of the notch tip and 
around the centre line of the bar at an elongation AL/L, = 0.015. These two separate parts join 
and form a mushroom roof covering a convex layer of an elastic region at AL/L,=O.O52. 
EventualIy, the plastic region spreads almost throughout the bar and leaves only a disk-like 
boundary enclosing the last elastic volume at the top. 

According to the computations, cracking initiates when ALIL,, = 0.044. The distributions of 
normalized stresses (equivalent stress a, and mean stress a,, both normalized by the yield stress 
a,,) and strains (equivalent strain 6, and mean strain E ~ )  near the crack tip along the radial direction 
lying on the minimum section are shown in Fig. 7. Again, the wavy distributions of stresses and 
strains move in the direction of crack propagation. A damage zone is also seen located near the 
crack tip with a large accumulation of plastic strain. As illustrated in Fig. 8, this zone (marked 
by elements hatched) is the precursor of fracture (shown by black elements) and is restricted within 
a narrow region. 
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AL/L. =0.042 

0.05 1 

1.25 1.5 

0.042 4 

Fig. 7. Distributions of stresses (ue, urn) and strains (ce,c,,,) near the tip of crack in the axisymmetric bar 
notched by a V-cut. 

Comparison between Figs 7 and 8 of this example and Figs 4 and 5 of the previous one 
demonstrates that, independent of the presence of a pre-existing crack, the general features of stress 
and strain distributions and of the cracking process are similar, and are not affected by the initial 
geometry of specimens. This phenomenon proves that the constitutive model proposed in this paper 
can correctly describe the internal damage and fracture in ductile materials, since it is based on 
and derived from an understanding of the effects caused by internal voids. 

TESTS ON CRACK PROPAGATION IN DUCTILE MATERIAL 

To validate the computations presented above, we have designed two series of tests using the 
same low carbon-low alloy steel. 

One test was a series of three-point bend beams as shown in Fig. 2(a). Precracking was performed 
by a cut at the middle of the beam followed by fatigue loading. The geometrical dimensions and 
loading parameters of this series of tests are listed in Table 3. 

In Table 3, B and Ware respectively the thickness and the height of the beam and Aa denotes 
crack propagation with a,, as the initial crack length and a as the crack length at the termination 
of each test. During testing, each beam was supported at its two ends with a fixed span 
FFEMS IS/Z-D 
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Fig. 8. The extension of the strain-softened (damaged) zone 
(m) and cracked material (m) in the axisymmetric bar 
notched by a V-cut. (a) AL/L,=O.O51 and (b) 

AL/L, = 0.065. 

Fig. 9. Schematic demonstration for measuring (a) the 
initial crack length and propagation in a three-point bend 
beam and (b) the crack propagation in an axisymmetric bar 

notched by a V-cut (F: fatigue area; R: rupture area). 

S = 96.04 mm and underwent a displacement loading at a speed of 0.5 mm/min which was stopped 
at the normalized deflection value A/ W (A is the deflection at the middle of the beam) shown in 
Table 3. 

Another series of tests was done with axisymmetric bars notched by V-cuts as depicted in 
Fig. 2(b). The bars did not have initial cracks before testing. The precise sizes with respect to the 
notations are marked in Fig. 2(b) and the extent of loading of each bar is given in Table 4. The 
local radius p at the sharp end of the V-cut is about 0.1 mm. Each bar is loaded under an axial 
displacement speed of 0.5 mm/min and stopped at an elongation AL/L, shown in Table 4. 

Figure 9 schematically demonstrates the method for measuring (a) the initial crack length a, and 
crack propagation Aa in the three-point bend beam, and (b) the crack propagation Aa in the 
axisymmetric bars notched by a V-cut. After the termination of each static loading test, the 
specimen underwent high frequency cycling loading to induce a fatigue crack. This mechanism 
delineates a clear borderline between the fatigue area and the dimpled surface caused by a ductile 

Table 3. Specimens for three-point bend tests 

B(mm) W(mm) A/W a(mm) Aa/a, 
20.02 24.03 0.048 13.38 
19.97 24.07 0.042 12.68 
19.95 24.07 0.060 12.72 
20.02 24.06 0.079 12.78 
20.03 24.07 0.074 12.32 
19.94 24.06 0.087 12.74 
20.04 24.06 0.125 10.96 
20.03 24.06 0.096 12.10 

0.0073 
0.0072 
0.0110 
0.0161 
0.0168 
0.0174 
0.0392 
0.0245 

Table 4. Axisymmetric bars with V-cut notches 

R(mm) ro(mm) b(mm) AL/Lo Au/ro 

8.03 5.24 1.50 0.0372 0.013 
8.04 4.85 1.48 0.0469 0.045 
8.03 4.99 1.50 0.0593 0.068 
8.04 5.00 1.57 0.0705 0.123 
8.04 5.05 1.50 0.0755 0.163 



Crack tip behaviour and crack propagation in ductile materials 20 1 

aa/ re 
0.18 

0.1 5 

0.12 

0.09 

0.06 

0.03 
* /  

I I 

0.01 0.05 0.09 0.13 0.02 0.04 0.06 0.08 
4L/L. 

Fig. 10. Crack propagation in (a) three-point bend beams and (b) axisymmetric bars notched by a V-cut 
(0, experimental data, -, computed curves). 

fracture. Measurements were taken under a travelling microscope. The final value given in Tables 
3 and 4 for each specimen is based on an average of five measurements as indicated in Fig. 9. 

Comparison between the experimental data of crack propagation and the computed curves is 
shown in Fig. 10 for (a) the three-point bend beams, and (b) the axisymmetric bars notched by 
a V-cut. Good agreement between the test results and computational predictions can be seen. 
Hopefully, even better accordance would be obtained if it were able to improve the numerical 
simulations in Fig. lfc) for void growth. Both Fig. l(c\ and Fig 10 show a commnn trend nf - 'o' - .. - ---------_- _--__- -_ - -0. -\-/ ---- _..._ -.. -. .. - .._ _ _ _  - - ~ .  - ,-, _ _ _  . _ -_  ~- - . . ___. - - ___ 
numerical predictions with a lower speed of void growthlcrack propagation at the beginning but 
a faster rate by the end. Numerical simulation of cracking was implemented in our computations 
by employing the empty element technique suggested by Tvergaard[l2]. The criterion (23) was _. ~ . -  I ~- - . .  . .  . . .  applied to switch otf very soRened elements. Examples, showing the cracking process simulated 
by empty elements (in black) have already been illustrated in Figs 5 and 8 for the three-point bend 
beam and the axisymmetric bar notched by a V-cut, respectively. 

CONCLUSIONS 

(1) The studies introduced in this paper serve as a justification for the constitutive formulation 
proposed for characterizing ductile damage and fracture. 

(2) The material we used has microstructural damage caused by the generations of two classes 
of voids. This mechanism, physically speaking, cannot be characterized by Gurson's model [6] 
which is based on one population of voids. Therefore the present demonstration provides another 
approach for examining ductile fracture problems. 

(3) Computer simulation techniques in conjunction with experimental data obtained from 
material tests pave the way to incorporate microstructural effects and internal damage into 
macroscopic (continuum) constitutive formulations. Although the method has the disadvantage of 
tediousness in implementation, it provides a meaningful approach which takes into account 
physical effects hitherto neglected by other theoretical models. 

(4) The considerations quoted in the paper for choosing the minimum size of finite element 
suggests that (if cost and time allows) a finer mesh (probably not smaller, however, than 100 pm) 
can be used to improve the numerical analysis. 
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