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ABSTRACT 

EXPERIMENTS carried out using a split Hopkinson torsional bar have shown that only one shear band 
develops in specimens of hot rolled steel which break during testing. We observed, however, that in 
specimens which were not deformed to failure, several fine shear bands appeared. We believe that these 
formed during the loading cycle before the appearance of the final shear band and were not due to the 
effect of unloading. So we developed a numerical model to study the evolution of shear banding from 
several finite amplitude disturbances (FADs) in both temperature and strain rate. This numerical model 
reveals the detailed processes by which the FADs evolve into a fully developed shear band and suggests 
that beyond instability, the so-called shear banding process consists of two stages : inhomogeneous shearing 
and true shear-banding. The latter is characterized by the collapse of the stress and an abrupt increase of 
the local shear strain rate. 

NOTATION 

z shear  stress 
7 shear  s train 
y~ critical s t rain for instabil i ty to infinitesimal dis turbances  
~s s train at  which dis turbances  applied (in numerical  model)  
~'t s t rain for localization 

strain rate 
Y0 average strain rate 
0 tempera ture  
p density 
c specific heat  
k thermal  conduct ivi ty  
fl Tay lo r -Qu inney  coefficient 
/~ stress coefficient in const i tut ive equa t ion  
m strain rate ha rden ing  index 
n s train ha rden ing  index 
v thermal  softening index 
E d is turbance  energy 
2 dimensionless wavelength  of  d is turbance  
V0 bounda ry  velocity 
L gauge length 

t Present address : PCS, Cavendish Laboratory, Madingley Road, Cambridge CB30HE, U.K. 
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I. ] NTRODUCT1ON 

NARROW shear bands occur quite frequently in a variety of materials under dynamic 
loading and are usually termed adiabatic shear bands (ROGERS, 1979). The basic 
mechanism for them was proposed by ZENER and HOLLOMON (1944) as the thermo- 
plastic instability of material during dynamic loading, caused by thermal softening 
(due to heat generated by plastic deformation) being stronger than strain hardening, 
strain rate hardening and other hardening mechanisms. In analytical studies, the 
maximum shear load criterion (CuLvER, 1973: STAKER, 1980) was developed to 
determine the susceptibility of  materials to adiabatic shear banding and a one-dimen- 
sional model for simple shear was developed to study the process of dynamic shear. 
Using this model, instability as well as localization analyses have been carried out 
(CLIFTON et al., 1984; BAI, 1982: FRESSENGEAS and MOLINARI, 1987; BAI et  al., 

1986; MOLINAR! and CLIFTON, 1987). Computing codes have also been written to 
demonstrate various features of adiabatic shear banding (WADA and NAKAMURE, 
1978~ DREW and FLAHERTY, 1984; WRIGHT and WALTER, 1987; BATRA, 1987 ; KWON 
and BATRA, 1988). 

Although theoretical studies provide some operational rules to predict the onset of 
shear banding, they do not reveal the whole process. Perhaps the most difficult aspect 
of adiabatic shear banding is its nonlinearity and transient nature and only small 
progress on this issue has been made in recent years. 

Experimentally, the split Hopkinson torsional bar is one of the most commonly 
used instruments to investigate the behaviour of materials under dynamic torsional 
l o a d i n g  (CoSTIN et al., 1979). Recently, a high-speed infrared radiation detection 
system and a photographic technique have been used to study the process of shear 
banding (HARTLEY et  al., 1987: MARCHAND and DUFFY, 1988). By using these 
techniques, MARCHAND and DUFFY (1988) discovered that the process of shear 
banding consists of three stages : (i) a homogeneous strain state, (ii) an inhomogeneous 
strain state and (iii) a severe localization stage. In the third stage, severe localized 
strain quickly leads to a single shear band with the average stress dropping drastically. 
In a theoretical analysis of the shear banding process, BAI et  al. (1986) and WRIGHT 
and WALTER (1987) pointed out the significance of heat diffusion and plastic work 
rate in the evolution of the shear band and qualitatively simulated the various stages 
in adiabatic shear banding. 

This paper reports an investigation into the process of shear banding which was 
carried out both experimentally and by numerical simulation. The experiments per- 
formed on a split Hopkinson torsional bar revealed only one tully developed shear 
band in specimens which broke during testing. Several fine shear bands were observed 
in specimens which did not break during testing. Based on the assumption that this 
"multi-fine-shear-band" phenomenon occurred before the appearance of the final 
shear band and was not an effect caused by unloading, a numerical model was 
established to study the evolution of shear banding from several finite amplitude 
disturbances (FADs) in both temperature and strain rate. Our numerical model 
successfully predicts both the severe increase in the local strain rate and the drastic 
drop in the stress within the specimen when a shear band fully forms. Moreover, it 
simulates the complicated processes which occur after the initial instability, namely 
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the evolution of several fine shear bands into a single shear band. Our simulation also 
shows that there exists a nominal strain 7l which divides the whole process into two 
stages, first the coalescence of  several fine shear bands and second their localization 
to form a single shear band. Numerical studies were also carried out to investigate 
the effects of  FADs on the process. These showed that FADs are necessary for the 
occurrence of  severe localization in a finite loading time. The maximum shear load 
criterion was found to be the lower bound to increasing inhomogeneous shearing. 

2. EXPERIMENT 

2.1. Description of experimental method 

The tests described were conducted with a split Hopkinson torsional bar. The input 
and output bars are 25.0 mm in diameter and made of  LY12 aluminium alloy. The 
connection of the specimen with the input and output bars is different to that used by 
MARCHAND and DUFFY (1988). In our experiments, we glue the specimen to two 
connectors and then screw them into the input and output bars. In the tests described 
here, the rise-time of  the loading pulse is about  30-50 #s and the duration of the pulse 
is about 1 ms. 

Tests were carried out over a range of strains all the way up to specimen failure. 
The average strain, strain rate and stress in the specimen can be inferred from the 
strains of  the input and output bars by a standard method given by HARTLEV et 
al. (1985). After testing, the specimens were sectioned and examined with optical 
microscopes and SEM to study the deformation and microdamage. 

Specimens were cut from a 2 0 #  hot rolled low-carbon steel (20#  HRS) bar, 
annealed at 900°C (see Table 1 for the chemical composition). They were then 
machined into thin-walled tubes with two circular flanges. The dimensions of  the 
flanges were designed so as to have the same torsional impedance as the aluminium 
Hopkinson bars. 

Figure 1 gives the profile and dimensions of the specimens. Figure 2 gives the texture 
of  the specimen (undeformed and uniformly deformed). The original texture is aligned 
axially, perpendicular to the shearing direction. 

2.2. Experimental observations 

Three specimens (3, 8 and 10) were deformed to failure at strain rates in the range 
1400 1600 s 1 and nominal strains of  about  1.25-1.40. Specimens 5 and 9 deformed 
"uniformly" (from the macroscopic point of  view) at strain rates of  1270-1450 s i, 

TABLE 1. Chemical composition of 20 # hot rolled low- 
carbon steel (wt%) 

C Mn P S Si 

0.210 0.520 0.016 0.011 0.340 
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FIG. 1. Dimensions and profile of specimen. 

up to nominal  strains o f  about  0 .9~1.13.  Specimen 11 was deformed at a strain rate 
o f  about  700 s 1, to a nominal  strain o f  0.55. The stress-strain curves and strain r a t e  
nominal strain curves o f  these six tests are shown in Fig. 3a and b. Table 2 summarizes 
these six tests. 

Al though at first glance, the scribe lines showed uniform shear deformation across 
the gauge section in specimens 5 and 9, metal lography revealed several fine shear 
bands or nonuniformities parallel to the direction o f  shear within the deformed region 
(Fig. 4a and b). Very interestingly, in specimens 3, 8 and 10 (which were deformed to 
failure), only one fully developed shear band (about  2 0 0 4 0 0 / ~ m  wide) appears at a 
nominal  strain o f  about  1.40 (see Fig. 5), when the stress drops severely and fracture 
occurs. 

2.3. Some results o f  our experiment 

For  20 # H R S  specimens loaded on the split Hopkinson  torsional bar at a strain 
rate o f  about  1270-1600 s l, the following three features are worth emphasizing:  

1. The nominal  strain at the maximum of  the stress-strain curve is in the range 
0.65-0.88 (Table 2). This corresponds to the critical strain given by the maximum 
shear loading criterion and the criterion from infinitesimal perturbat ion analysis. 

TABLE 2 

Deformation Nominal 
Specimen mode ~ (s ') 7 (at z,,,,x) strain 

03 Failed 1 6 0 0  0.76-0.80 1.40 
08 Failed 1 5 5 0  0.75-0.80 1.25 
10 Failed 1400 0.65-0.75 1.25 
05 MFSB? 1450 0.78 0.88 1.26 
09 MFSB 1 2 7 0  0.65-0.74 I. 12 
11 ++ Uniform 700 0.62 

t MFSB is the abbreviation of multi-fine-shear-band. 
$ The gauge length of this specimen is 3 ram. 
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FIG. 3. Stress-strain and strain rate-strain curves. (a) r-y curves, (b) #-7 curves. 

2. The final shear localization occurs at a nominal strain of  about 1.25-1.40, when 
the stress drops severely and fracture occurs. Only one fully developed shear band is 
observed. 

3. The multi-fine-shear-band phenomenon was observed, from metallography, at 
a nominal strain from 0.94 to 1.13. Assuming that unloading acts uniformly on the 
specimen due to the very short gauge length and high sound speed of  the specimens, 
we calculate (using the recorded incident and transmitted pulses) that the nominal 
strain during the test for this phenomenon is about 1.1-1.26. This is in the range 
between the maximum of the stress-strain curve and the occurrence of  ultimate shear 
localization. Experimental evidence for uniform unloading is given in the metallograph 
of Fig. 2b, which was deformed at a strain rate of about 700 s i on the same 
instrument. 

3. N U M E R I C A L  S I M U L A T I O N  

A code making use of  the Green's function method and numerical integration was 
developed to study thermo-plastic instability in simple shear and the subsequent 
processes of shear banding due to FADs. 
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3.1. Governing equations 

As shown in Fig. 6, a block of  length L is deformed by a constant  driving velocity 
V0 under adiabat ic  boundary  conditions. The initial condit ions are that  the specimen 
is homogeneous ,  at r oom tempera ture  and in a strain free state. 

The .equations listed below which govern the specimen deformat ion  were first 
published by BAI (1982) (the overbar  means the variables are dimensional) .  Inertial 
and elastic effects can be neglected for the process of  shear banding (BAI, 1989). For  
deformat ion  that  is homogeneous  on the scale of  the specimen, the shear stress r is a 
function of  t ime only (f  = f(7)), so that  

= 0 .  (I)  6'X 

Plastic deformat ion  acts as a source of  heat, and the rate of  generat ion of  heat is 
some fraction 13 of  the plastic work rate £}T [[3 is usually taken to be 0.9 after TAYLOR 
and QUINNEY (1934)]. Thus  the one-dimensional  heat diffusion equat ion becomes 

pc 77 = fl~'7+k ~ 2 .  (2) 

In order  to compare  our  numerical  simulation with the results of  MOLINARI and 
CLIFTON (1987), we adopted  their consti tutive equat ion for H R S  

e = e(~-, ?, 6)  = m ; ' "? "O ' .  (3) 

The boundary  condit ions we adopted were as follows: we assume the deformat ion  
is rapid enough that  no heat flows out through the specimen ends (adiabatic 
deformat ion) .  Thus  

,9.7 o = c'~£ ,. = 0. ( 4 )  

Since the specimen is c lamped at £ = 0 and constrained to move  at a velocity V0 at 
£ = L ,  

i '~f(.7, 7 ) =  v0 (5) dx 

must  be true. Also the specimen is initially unstrained at i = 0 

?(.~, 0) = 0. (6) 

The initial strain rate at 7 =  0 is 

"7(x, 0) = % = Vo/L (7) 

and the initial t empera ture  6,, in the specimen is the same everywhere 

t~(~, O) = 6~,. (8) 

We may  define nondimensional  quantit ies as follows : 
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FIG. 6. Schematic diagram of deformed region 0 < x < L. 

X = .x/A, t = ~0 T =  ]/nominal, Z = T/Tb, 0 -~- ~ /00 ,  

k fl~b lt~'gO'o 
P --  R - A - , a = L / A .  

p c A 2 ~ o  ' pcOo '  Zb 

Here  zb is the characterist ic shear strength, 00 is the characterist ic t empera tu re  rise 
and A is the characterist ic width o f  a shear band.  In this paper ,  we take rb = 100 MPa ,  
00 = 100°C, A = 0.4 m m  (Xu e t  al . ,  1989). Equat ions  (1)-(8) m a y  be normal ized by 
substi tut ing the above  relations. Thus  we obta in  

z = r(t) ,  (9) 

0 0  020  
Ot = R r y , +  P Ox 2, (10) 

= ~(~, y, O) = A~mTnO v, (11) 

(12) 
oo oo 

o=~XX~ = 0 ,  

a ;)(x, t) dx  = 1, 

7(x, 0) = 0, 

~(x, o) = 1, 

O(x ,  O) = 0 e. 

(13) 

(14) 

(15) 

(16) 

3.2.  N u m e r i c a l  m e t h o d o l o g y  

In phase  I (0 < t < t,), we suppose that  the specimen deforms  uni formly  with the 
t empera ture  rising homogeneous ly .  ~, 7, 0 and  z at  this stage can be found  analytically. 

At  t = t,, a number  o f  F A D s  are in t roduced into the distr ibution o f  strain rate and 
temperature .  Each dis turbance is in the fo rm of  a Gauss  function, distinguished by 
its posit ion,  ha l f  width and dis turbing energy (expressed as a percentage o f  the total  
thermal  energy).  

In phase  I I  (t, < t < t e )  , numerical  calculat ions are carried out  to simulate the 
process in which F A D s  evolve into shear bands.  A Green ' s  funct ion for  the adiabat ic  
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boundary and numerical integration were used in this phase. Details of the numerical 
methodology are given below. 

3.2.1. For 0 < t < ts. The specimen is supposed to deform homogeneously and the 
temperature rises homogeneously too, i.e. 

80 87 8i~ 
8x 8x 8x O. (17) 

The governing equations at this stage are 

dO 
dt = Rr);, (18) 

"~ = A T m T " O  v, (19) 

)' = %t, (20) 

= % = l ,  ( 2 1 )  

0l,=0 = 0e+2.73. (22) 

Integrating these equations with respect to time, we obtain 

F1 - v  . +  ] ~ , ,  v 
= ' 2.73)' ~J - (23) 0 [ l+-n  RAt  + (Oe + 2.73, 

z = AtnO v, (24) 

~, = t, ( 2 5 )  

7 = % = 1. (26) 

Here 0e represents the nondimensional temperature of the environment. 

3.2.2. For t = ts. At this time, disturbances of finite amplitude in temperature were 
introduced into the homogeneous background (Fig. 7). After the disturbance, the 
temperature distribution was supposed to be 

0 

X 

FIG. 7. Schematic diagram of disturbed temperature distribution. 
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N 

O(x, t +) = Ob + ~ a~f(x), (27) 
i=1 

where N denotes the number of  disturbances, f (x) represents the distribution function 
and ai the magnitude of  the ith FAD. In this paper, f (x)  is a Gauss function 

(x-x,)2] 
f.(x) = exp AxE _]' (28) 

where Axi is the characteristic half width and xi is the location of  the ith FAD. It is 
supposed that 2Ax~ << a (i.e. disturbances have a short wavelength). Therefore, we 
have 

; Ii ['x-x,'2l 
f.(x) dx = _ exp Ax E j dx = 4(~z)Axi. (29) 

If  the time interval between t7 and t + is so small that" 

(a) the strain state of  the block in Fig. 6 remains unchanged, 
(b) the total energy of  the block does not change, 

then along with the following assumptions that : 

(c) elastic and inertial effects can be neglected, 
(d) the constant velocity and adiabatic boundary conditions remain true, 

we have 

y(x, tj-) = ?(x, t+) ,  

f f  O(x, t; ) dx = f f  O(x, t~+ ) dx, 

(30) 

(31) 

00 I 00 a 0, (33) 
Ot o 

z = A~"?"O v. (34) 

Thus, each FAD in temperature is distinguished by its position xi, its half width Axe, 
and the percentage concentration energy Ei. Here E~ is defined as 

energy concentrated in the ith FAD ai ;~ f(x)  dx 
- ( 3 5 )  

Ei = total energy (thermal) fao O(x, t,) dx 

By solving Eqs (27)-(35), we obtain 

~f ~(x, t;-) dx = f f  ~(x, t~) dx, (32) 
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a~= [E, fi'O(x,t.; dx]/(x/(~)Ax~), (36) 

Oh = 1 -- Ei O(x, t,. ) dx, 
a i = l  

(37) 

N 

O(x, t +) = 0h + Y~ a , f , (x) .  (38) 
i -  I 

From Eq. (34) and O(x, t +) obta ined in Eq. (38), 7, "; and r at t + can be found 
analytically as 

),(x, t, ) = 7(x, t +) ,  (39) 

T l,m : a (40) 

f, , a 

(ATnOV) ~.m dx t=,~ 

';' = [-A~0~J I'=t.:" (41) 

NOW, it is very clear that,  for a given N, Ei, x,. and Axi, we may  find the disturbed 
O(x, t? ), ~(x, t? ), 7(x, t, +) and r(t,?) f rom Eqs (36)-(41).  

3.2.3. For ts < t < to. At  this stage, a numerical  calculation is carried out, based on 
Eqs (9) (16), to simulate the process in which F A D s  evolve into a shear band.  
Numerical  integrat ion and a Green ' s  function for an adiabat ic  boundary  are used. 
Here,  Eq. (10) is rewritten as 

~0 c')20 
at = R Q + P  •x 2, (42) 

where Q = z~), subject to the same boundar ies  condit ion and constitutive relations as 
before. 

3.2.4. Integral method. The tempera ture  0 at (x, tn) in Eq. (42) can be solved within 
the region shown in Fig. 8 as 

f;o ; O(x,t . )= R Q G ( ~ , q ; x , t . ) d ~ d ~ +  O(~,t~ ~)G(~,t,, ~ , x , t . ) d ~ ,  (43) 

where G(~, r/; x, t,,), the Green 's  function for an adiabatic boundary,  is determined by 



Adiabatic shear in hot rolled steel 1031 

11 

t n + l  

tn 

(x,~.O 

I 

- t  - -  _ 

0 

FIG. 8. Integral domain of Eq. (42). 

OG OeG 
O~ + P ~ = 6(~ - x ) f (q  - t.), (44) 

subject to the boundary conditions 

OG 0G a 

0~ 0 = ~  - = 0 ,  GI, = 0 .  (45) 

Integrating Eq. (44) over t2 < ;I < t + , we obtain 

0G 02G 
Or/+ P ~ -  = 0, (46) 

0G 0G 
o = O~ a = O, G[,=,o = 6(~-x) .  (47) 

Thus, we have 

2 
G(~, q ; x, t.) = - ~ exp [k .P(r / -  t.)] cos (k.x) cos (k.~), 

an=o 
(48) 

where k. = ng/a, n = 0, 1, 2 . . . .  From Eq. (47), using trapezoidal integration over 
t. l < r~ < t., Eq. (43) becomes 

O ( x , t . ) =  f f [ t " 2  t" ' R Q ( ~ , t . _ , )  

+O(~, t .  ')1 G ( ~ ' t " - l " x ' t " ) d ~ + R Q ( x ' t " ) t " - t "  2 (49) 

Equation (49) is a very important formula, because it shows that the temperature 
distribution O(x, t.) is determined by the previous temperature O(x, t. ~), the intensity 
distribution of previous heating point Q(~, t. 1) and the intensity of present heating 
Q(x, t.), while Q(x, t.) = z(x, t.)7(x, t.) is solved by Eqs (9), (11)-(15). 
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3.3. Numerical simulation 

To investigate the shear banding process in detail, a number of  numerical simu- 
lations were carried out. In running the code for HRS, the material parameters were 
taken as : 

V0 = 3 . 0 m / s ,  L = 2 .0  m m ,  J0 = 1 5 0 0 s  t 

p = 7 . 8 2  x 103 k g / m  3, c = 4 . 7 3  x 1 0  2 J / k g  ° C ,  k = 0 . 4 9 4  x 1 0  2 J / s  m ° C  

/~ = 7 5 8 7  x 1 0  6 S . I . ,  m = 0 . 0 1 3 3 ,  n = 0 . 1 2 ,  v = 0 .51 .  

Parameters #, m, n and v for HRS were given by MOLINARI and CLIFTON (1987). 
Our calculation shows that there is very little effect on the features of  the shear 

banding process (including the width of  the final developed shear band) of  using three 
different kinds o f  mesh size, i.e. 100, 150, and 200 divisions in the block (Fig. 6). The 
differences in Y/(defined in next paragraph) are less than 3% for these three meshes. 
In this paper, all calculations are carried out using a mesh of  200 divisions. 

Figure 9 shows the relationship of  the dimensionless stress and local shear strain 
rate at the centre of  the shear band vs nominal shear strain 7. Line 1 stands for the 
uniform analytic solution of  quasi-static approximations which gives a strain of  0.84 
for the maximum. This is in good agreement with the experimental result 7<. between 
0.65 and 0.88 (Table 2). Line 2 represents the disturbed stress with four equal-in- 
amplitude FADs,  which were applied at the stress maximum 7, = 0.84. Table 3 gives 
the parameters of  the four F A D s  and the calculated Yr. Here Yl is a nominal strain for 
localization and is defined to be the point at which the disturbed stress drops 5% 
from the uniform analytical solution. Line 3 in Fig. 9 is the development of  disturbed 

T A B L F  3 

E Etota I Ax },~ ~/ 

0.5% 2.0% 0.1 0.84 1.50 
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strain rate. It is clearly shown that, before 7 = 7z = 1.50, the stress evolves close to 
the uniform solution and the strain rate at the centre of  the shear band grows slowly. 
But after ~ > 7~ = 1.50, a drastic drop in the stress and a sharp increase in the local 
shear strain rate occur simultaneously. As pointed out by MARCHAND and DUFFY 
(1987), the sharp drop in stress during an experiment is due to cracking. But in our 
calculation, cracking effects are not considered. So the stress drop in Fig. 9 is not as 
sharp as in those experiments. 

To simulate a number of  fine shear bands appearing near the experimentally 
observed stress peak, up to five FADs with a total ene~'gy ranging from 0.1% to 3.0% 
were adopted in computation. All cases show similar late-stage behaviour, namely a 
single shear band appearing in the deformed region. A typical evolution is shown in 
Fig. 10a-c. There, four FADs gradually merge into a contracting localized area at 
about ~ = 7t = 1.50, where a drastic decline of  the disturbed stress occurs. Afterwards, 
as the shear strain rate and the temperature of  the shear band increase rapidly, the 
band shrinks. Finally, the ultimate shear band is formed, showing a quite stable band 
width, although the temperature continuously diffuses. The width of the final shear 
band is found to be independent of  the FADs chosen. 

3.4. Discussion of the numerical simulation 

3.4.1. Two stages from the application of FADs to the final shear band. A detailed 
study of the process of  shear banding reveals that there seems to be two distinct stages, 
separated by ~z (see Fig. 9). During the first stage (y < Yt), the stress evolves close to 

t. 

C. 
-IO 

FIG. 10(a). 

. O  
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IG. I0. Evolution of one shear band from four FADs. (a) Strain rate evolution, (b) temperature evolu 
(c) strain evolution. 
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that of  the uniform solution (Fig. 9) and the FADs coalesce into one local area (Fig. 
11), whereas during the second stage (7 > Yt), severe localization occurs, the shear 
band shrinks to its final form (Fig. 12), the stress drops drastically and the strain rate 
at the centre of  shear band increases sharply (Fig. 9). Therefore, the first stage can be 
denoted the coalescence stage and the second stage to be the localization stage. 

3.4.2. The effect of  FADs on the shear bandin9 process. Numerical simulations 
show that different FADs give different coalescence behaviour but similar localization. 
7t is an indicator for the occurrence of  localization. The smaller the Vt is, the earlier 
the localization occurs. This section investigates the effects of  different aspects of  
FADs on 7~. 

In Fig. 13, three kinds of  FADs are applied at different disturbing strains 7, ranging 
from 0.22 to 1.2, the relationships of  their localized strain 7t and disturbing strain 7~ 
are given in the upper three curves. The horizontal line at the bot tom of  this figure is 
a reference line, representing a strain value of 0.84 (the critical strain 7c at the maximum 
of the stress curves), obtained from infinitesimal perturbation analysis. The fact that 
the three curves in Fig. 13 are superior to the 7c = 0.84 reference line means, for these 
kinds of  FADs,  that ~ > 7,., so we can say the critical strain 7c is the lower bound for 
increasing inhomogeneous shear, i.e. no shear band occurs before 7,.. Figure 13 also 
shows that the FADs imposed in the vicinity of  ~c lead to the lowest value of  7~. So 
in all examples below, we take ~s = 7c. 

The effect of  the wavelength is shown in Fig. 14 which indicates that disturbances 
of  short wavelength give low values of  7~, due to the faster growth rate of  short 
wavelength disturbances compared to that of  long wavelength disturbances. This 
result is in accordance with the statement, put forward by CLIFTON (1984) and BAI 
(1982), that disturbances of  short wavelength grow first. 

Figure 15 discusses the effects of  disturbance energy to the value of  7t- One can see 
that as the disturbance energy E increases, the value of  7t decreases. Disturbances 
with low energy (0.2-1.0%) decrease faster than those with high energy (2.0-3.0%). 
All these results suggest the importance of investigating the effects of  short wavelength 
disturbances with low disturbance energy on adiabatic shear banding after reaching 
the maximum of the stress-strain curve. It is worth noting that, in Fig. 15, for 
E < 0.1% no 7J < 2.0 occurred. This suggests the importance of FADs with a certain 
amount  of  energy on localization in finite loading time. 

Furthermore,  the effects of  the distribution of FADs on the site and time (7~) of  
localization were studied. 

The site of  localization, i.e. the position of the final developed single shear band, is 
found to depend on the distribution of  FADs, but does not correspond to any 
individual FAD. A typical result is shown in Fig. 16. There, two FADs with total 
energy of  1% were applied initially at ~s = 0.84 at x = 2 and 3, respectively. Thr rugh  
a very complicated evolution process, the final developed shear band appeared at 
x = 2.5, which is not the position of  any individual FAD. This is qualitatively con- 
sistent with the experimental observations by SHOCKEY (1985). He discovered that 
the final shear band formed between two disturbed sites. 

Five examples representing five kinds of  FADs distribution are given in Table 4. 
There, FADs with total energy of  1% were added at 7s = 7c = 0.84. The results in 
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Table 4 show that different distribution gives different 7t. This is understandable 
because different distributions show different coalescence processes. It  is worth noting 
that the FAD distribution in example 5 shows very interesting features. The amplitudes 
of  the five FADs are not identical, but give a contour of  one single disturbance. This 
makes the FADs coalesce more easily and faster than that of  examples 3 and 4. The 
fact that ?t in example 5 is smaller than that of  example 3 and 4 suggests that the 
easier the FADs coalescence, the smaller the value of  T~is, i.e. the earlier the localization 
occurs. 

4. SUMMARY 

The process of  shear banding was studied experimentally and numerically. The 
experiments showed that for the strain rate about  1270-1600 s - t :  

1. The nominal strain at stress maximum for 20 # HRS is about  0.65~0.88. 
2. The final shear band occurred at nominal strain of  1.25-1.40. The width of this 

ultimate band is about  0.2-0.4 mm. 
3. Observations on the texture of  two deformed specimens revealed multi-fine- 

shear-bands over their gauge section and the texture also gives a nominal strain about  
0.94-1.13. The reason for this phenomenon is not clear and the exact time for the 
occurrence of  this phenomenon needs to be studied in further experiments. 

Numerical simulation using a Green's  function and numerical integration was 
devised to investigate the evolution of finite amplitude disturbances (FADs). Based 
on our numerical model, the critical shear strain ?c at the peak of the shear stress, 
obtained from infinitesimal perturbation analysis, seems to be a lower bound to 
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TABLE 4. The effect o f  the FAD distribution on 7/ 

Example d l s t r l b u ± l o n  
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5.O 

• o I i i 

• 5.O 

2~ 

O.O 

§.0 +:I 
6.O 

5 

O.O 

/bt/b~ 

I 
X 

I 
X 

I 
X 

X 

I 
X 

1,28 

1.37 

1,54 

1.64 

1.45 

increasing inhomogeneous shearing. In the range of 0 < 7 < Y~, no shear localization 
occurs in the numerical simulations, even when some disturbances were imposed (as 
shown in Fig. 13). On the other hand, no shear localization appears until a nominal 
shear strain of  2.0, when disturbances with very low energy were applied (Fig. 15). 
Thus, FADs with a certain amount  of  disturbance energy are very important  for the 
occurrence of  severe localization in a limited loading time. As far as shear banding is 
concerned, there seem to be two distinct phases, separated by the localization strain 
7t. In the first stage (7 < 7~), the finite amplitude disturbances coalesce, and the stress 
evolves close to that of the uniform solution. Then in the second stage (? > 7~), 
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localization occurs, the shear band shrinks to its final form, the stress drops drastically 
and the strain rate at the centre of  shear band increases sharply. This is the localization 
stage, in which a single shear band formed. This is qualitatively consistent with the 
experimental observations. 

Furthermore,  the effects of  different aspects of  finite amplitude disturbances on the 
evolution of  shear bands were examined numerically. Firstly, the FADs imposed in 
the vicinity of~c lead to the lowest value of  localization strain 7~. So do the disturbances 
with highest energy and shortest wavelength. Secondly, the position of the final 
developed shear band depends upon the distribution of FADs and not on any indi- 
vidual FAD. Finally, the distribution of  FADs is found to have an important  influence 
on the value of  ~. Generally speaking, the easier the FADs coalesce, the smaller the 
Yt is, i.e. the earlier the localization occurs. It  ought to be noted that all numerical 
results in this paper  are dependent upon the constitutive equation given by MOLINAR~ 
and CLIFTON (1986). 
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ABSTRACT 

A METHODOLOGY for the calculation of higher-order terms in asymptotic elastoplastic crack tip solutions 
is developed. The J2-deformation plasticity theory with power law hardening is used to describe the 
constitutive behavior of the continuum. A two-term expansion of the solution in the near crack tip region 
is developed. Plane stress and plane strain solutions for a crack in a homogeneous material as well as for 
a crack lying along the interface between a rigid substrate and an elastoplastic medium are obtained. For 
the case of a plane strain crack in a homogeneous material, it is shown that, when the hardening capacity 
of the material is small, the effects of elasticity enter the asymptotic solution to third order or higher, when 
there is substantial hardening, however, elastic effects enter the solution to second order and the magnitude 
of the second term in the expansion of the solution is controlled by the J-integral. 

1. INTRODUCTION 

THE CHARACTERIZATION of  the stress and  de fo rma t ion  fields in the region near  the t ip 
o f  a crack is essential  for  the deve lopmen t  o f  sound  fracture cri teria.  HUTCHINSON 
(1968) and  RICE and  ROSENGREN (1968) deve loped  the e las toplas t ic  a sympto t i c  
so lu t ion  for the near - t ip  stresses in a homogeneous  mate r ia l  (known as the H R R  
solut ion)  and showed tha t  the magn i tude  o f  the d o m i n a n t  te rm in the expans ion  o f  
the so lu t ion  is de te rmined  by  the J - in tegra l  (RICE, 1968). I f  the region o f  dominance  
o f  the l ead ing-o rde r  term in the expans ion  o f  the so lu t ion  is sufficiently larger  than  
the region over  which the f racture  mic ro -mechan i sms  take  place,  then the J - in tegra l  
can be used as the f racture  pa ramete r .  I f  the region o f  J -dominance ,  however ,  is 
smal ler  than  the f racture  process  zone, then two or  more  pa rame te r s  m a y  enter  the 
f racture  cr i ter ion.  LI and  WANG 0 9 8 6 )  suggested the use o f  a p a r a m e t e r  k2, which is 
the magn i tude  o f  the second te rm in the near - t ip  stress plas t ic  solut ion,  as the second 
p a r a m e t e r  to be used together  with the J - in tegra l  in the fracture cr i ter ion.  BETEGrN 
and  HANCOCK (1991) used a modif ied  b o u n d a r y  layer fo rmula t ion  o f  the small-scale 
yielding p rob lem,  in which the b o u n d a r y  condi t ions  are  defined in terms o f  the mode  
I stress intensi ty  fac tor  Kt and  the cons tan t  stress te rm T tha t  enters  the near- t ip  
expans ion  o f  the elastic so lu t ion  (LARSSON and  CARLSSON, 1973; RICE, 1974), and  

t Author to whom correspondence should be addressed. 
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suggested K~ and T as an alternative set of parameters that can be used in the criterion 
for fracture initiation. 

L~ and WANG (1986) also presented a two-term expansion of the plastic solution 
near the tip of plane strain crack in a homogeneous material. They formulated the 
problem in terms of a stress function and presented numerical results for values of  
the hardening exponent n = 3 and 10. In this paper, we develop a methodology for 
the calculation of higher-order terms in two-dimensional asymptotic elastoplastic 
solutions near crack tips. The J2-deformation plasticity theory with power law harden- 
ing is used to describe the constitutive behavior of  the material. The problem is 
formulated in terms of fundamental quantities, namely stresses and displacements, 
thus avoiding the algebraic complications arising in the stress function approach. The 
formulation is quite general and it can be used for plane stress as well as plane strain 
problems. An asymptotic expansion of the solution in the near crack tip region is 
attempted, where both the first and the second terms in the stress expansion are 
assumed to be separable in r and O, (r, O) being polar coordinates at the crack tip. A 
hierarchy of problems is obtained, in which the leading-order problem consists of  a 
set of  five non-linear homogeneous ordinary differential equations that define the 
angular variation of the first-order stress and displacement components. The second- 
order problem can be a linear eigenvalue problem or a set of  non-homogeneous linear 
ordinary differential equations, depending on the value of the hardening exponent 
and the problem under consideration. Solutions are presented for the case of crack 
in a homogeneous material as well as for an interface crack with contact zones, the 
crack lying along the interface of an elastoplastic material and a rigid substrate. For 
the case of the plane strain crack in a homogeneous material, it is found that for large 
values of the hardening exponent n (which corresponds to materials with small 
hardening capacity), the effects of  elasticity enter the solution to third order or higher ; 
in this case, the second-order problem is a linear eigenvalue problem that defines the 
next-order stresses and displacements to within a multiplicative constant, as well as 
the second r exponent of  the stress expansion. When there is substantial hardening, 
however, the elastic effects enter the solution to second order and the magnitude of 
the second term in the expansion of the solution is controlled by the J-integral. 

Standard notation is used throughout. Boldface symbols denote tensors, the order 
of  which is indicated by the context, and the summation convention is used for 
repeated Latin indices. 

2. FORMULATION OF THE PROBLEM 

We consider the two-dimensional problem (plane strain or plane stress) of  a crack 
in a homogeneous isotropic elastoplastic material. 

The constitutive behavior of  the continuum is described by the J2-deformation 
theory for a R a m b e r ~ O s g o o d  uniaxial stress strain behavior, namely 

l + v  1 - 2 v  3 [cr~\" 's,/ 
(2.1) 

where ~ is the infinitesimal strain tensor, a is the Cauchy stress tensor and s its 


