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ABSTRACT

The dilatational plastic constitutive equation presented in this paper is proved to be in a
form of generality, Based on this equation, the constitutive behaviour of materials at the
moment of bifurcation is demonstrated to follow a loading path with the respomse as “soft”

as possible.
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I. INTrRODUCTION

Ductile fracture is an important topic in studying material failure. Tiny voids
and shear bands initiate within materials as stress is enhanced. Their growth and
coalescence eventually result in cracks?¥. Two immediate questions arise. First,
how can we account for the damaging effect and dilatation caused by voids in the
constitutive equation of continuum? Secondly, what is the loading path followed by
material behaviour at the moment when the shear-band type of bifurcation occurs?

Based on the analysis of void models, Gurson™ modified the von-Mises type of
potential that is widely used in conventional plasticity and incorporated into his plas-
tic loading surface containing a parameter called the void volume fraction f,. This
surface shrinks in stress space as the value of f, increases, that is to say, the interior
damage induces strain-softening effect. Under the assumption that the normality rule
still holds, Gurson proposed his formulation of dilatational plasticity. For the shear-
band type of bifurcation, Hill and Hutchinson™ derived the governing equation in
analysis. But, they still followed the assumption of “consistent loading” in buckling
(bifurcation) of structures (cf. Ref. [5]). :

Recent developments in researches demonstrate that: (i) Besides the larger voids
(about 10um), secondary voids in a smaller size (1 gm) can also develop when
stress is enhanced. The interaction between these two generations of voids is so
strong that the material is then much deteriorated. The smoothness and convexity
of the plastic loading surfaces, distinguished by different inherent values of void
volume fraction f,, no longer exist as depicted by Gurson and a simultaneous
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decrease in the overall Young’s modulus may occur®”. (ii) The tests by Anand and
Spitzig® indicated that the solution given by Hill and Hutchinson yielded much
higher values of critical strain in the shear band than those obtained from experi-

ments.

The present paper intends to set up a theoretical frame for deriving dilatational
plastic constitutive equation in a general form, and to provide a theoretical explana-
tion for choosing a “soft” loading path in the bifurcation analysis of materials with
microstructural damage.

II. DerivaTion or DiraraTionarn Prastic EqQuation

In our previous papers’®”’, we have demonstrated that as the interaction between
elasticity and plastic damage causes a drastic decrease in Young’s modulus, the
loading surfaces become irregular, and the conventional convexity and normality rule
no longer holds. Therefore, any effort for setting up a rational constitutive equation
in plasticity has to resort to a more general principle, instead of restricting to the
requirement that the work done by cycling stress or strain should be positive. So, we
shall base the following derivation on the equivalency in expressions for dissipated
plastic energy.

Firstly, let the stress tensor ¢;; and the increment of plastic strain de{P be re-
solved into their deviatoric and volumetric parts. In Cartesian coordinates, they can
be written as

;i = Sij + 8iiGms (1)
de{] = defD + 8;ideld, (2)

where §;; (=a,-,' -——%b‘,-,‘au) and o, (m—;au) are the deviatoric stress and mean

stress, respectively. deil (=ds£§" ——;-&,-;dsi‘.’t’) and def.{”(= -;—d«i‘i’) represent re-
spectively the corresponding deviatoric and mean parts of the plastic strain increment.

The increment of dissipated plastic energy can then take the form
AW = g;ide{P = (S;i + 8ijcn)(defP + 8;jde?) = S;jde}’ + 30,deP, (3)

It needs to be emphasized that the stress ¢;; and plastic strain 6}’ quoted in Eq.
(3) are all general terms, applicable to both small- or large-strain condition. The
requirement is that the scalar multiplication between the stress and the increment of
an associated plastic strain can represent an increment of dissipated plastic energy.
For example, we can express dW'™ with different configurations corresponding to
generalized time ¢ at 0 (initial), ¢z (current) and z, (fixed). Correspondingly, dW‘®
can be written as

(a) aW § = SiPdefp (3a)

in the Lagrangian formulation. S{¥ is the second Piola-Kirchhoff stress, and e??
represents the Green strain in plasticity.

(b) AW = ¢;iDf}’ (3b)
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in the Eulerian sense. Then, o;j is exclusively used to represent the Cauchy (true)

stress, and D}’ (= —%— V;i+ V,-,;)“”) is the plastic part of deformation rate with

V; being the components of velocity.

() W = 7;;Dp (3c)
when the up-dated Lagrangian description is preferred. Here, 'Z',-i‘ is called the Kirchhoff
¢ with dV and dV, re-

stress, which is related to the Cauchy stress as 7;; =
I}

presenting an infinitesimal volume at time z and #,, respectively.
On the other hand, let us define
dW® = ¢,de® + 30,de’, ' (4)

-

Here, we have the equivalent stress o, defined as
172
0 = (2 8u8i) s ©

and call ¢® the plastic equivalent strain.

Comparison between Eqs. (3) and (4) indicates that
0de® = S;dep) 6)
must be true. Since Eq. (6) always holds its equivalency under whatever stress con-
dition with the equivalent stress being defined as (5), the following inference can be
drawn:

(p)
dfr's?}""?‘dee Siie )
o-l'
Therefore,
(p)?
dePdep = 2 L5, O)

[

and consequently we should have

172
deP = (—g— deg',?’de?p) . 9

The expression in Eq. (9) is entirely dependent on the definition for the equivalent
stress in Eq. (5) and the equivalency of the deviatoric part of any increment of plas-
tic energy being dissipated.

Substituting Eq. (7) into Eq. (2), we find

(P)

de .
a, 2 EEE}G', 3E52|}

Here, E{»’ = do,/de’, E®) = do,/de®® are two plastic tangent moduli along the
¢,-6® curve and ¢,-6% curve, respectively.
Since
do, = > S,do, (11)
20,

Eq. (10) can be rewritten as
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9 SiiSydox
4E{P ot 3EW

dgfl) = 5;:‘9’“1&- (12)

Assuming that the total strain increment is composed of an elastic part following
the Hooke’s law and a plastic component, we find

de;; = de + dsP

= -‘;5‘[(1 -+ L’)dﬁ';f - afjd(}'kk] -+ 4E££) —G,_gji- dG‘u -+ WSEE‘;) 6,‘}!!10'** (13)

and its inverse form
E
142

3 E S:iSu
—_— _2;2. E(p] 5 ] dﬁk;. (14)
PEP L) + BB

v — E[3ED
1—2v + E/E®

do;; = [-%- (8:48i + 6u8iz) + 80y

Egs. (13) and (14) have the same form as the dilatational plastic constitutive equa-
tions proposed by Li and Howard®™, in which, E and v are Young’s modulus and
Poisson’s ratio, respectively.

The process of derivation clearly demonstrates that Eqs. (13) and (14) are inde-
pendent of a certain plastic potential/normality rule. They are only based on an
equivalent transformation between the expressions used for the increment of plastic
energy being dissipated. Obviously, this transformation form may not be unique.
However, it has a nature of generality, since it is restricted neither by the prerequi-
sites associated with conventional plasticity nor by any requirement that the energy
dissipated during stress/strain cycling must be positivel.

According to whether materials are damaged or not, we shall mainly discuss two

cases in determination of the plastic tangent moduli E{®»’ and E),

1. Plastic Sirain Withous Damage

Usually this case refers to the small-strain condition of ductile materials. If
E® — oo, then the form of Eqs. (13) and (14) reduces to that of the Prandtl-Reuss
relation. Under such circumstances, Drucker’s postulate and its deduction, the conve-
xity and normality rule, are brought into effect. Hence, the loading surfaces are
assumed to have the shape as the von-Mises yield surface. Each loading surface
denotes a fixed value of the equivalent stress and has a one-to-one correspondence
with the plastic equivalent strain.

Following this routine, we can take the plastic tangent modulus E®’ as a single-
valued function of (. Then, a uniaxial stress-strain curve (¢-¢) can be employed
to determine this relationship. This is owing to the fact that

1 _1_ 1 (15)

where E, = do/de, ¢, ~ ¢ (the uniaxial stress), and ¢®’ = ¢® (the plastic part of
uniaxial strain).

The necessary regulations for distinguishing plastic loading from elastic unloading
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are well stated in the conventional plasticity and no recapitulation is needed.
2. Plastic Strain With Damage

When strain enlarges, ductile damage develops and makes its contribution to
plastic strain. In this case, we consider E{’ and E{ as two scalar functions of
stress state o, plastic strain state e and internal parameters K| and K, which are
in the vectorial form characterizing damage. Hence we assume

E{ = F\(0,6",K,), ER = F,(0,6”,K;). ~ (16)

Microstructural modelling and experimental studies!™***~'2! on void damage show
that strain-softening effect and plastic dilatancy are the two main {actors reflecting
damaging behaviour. Owing to the fact that some damage in shearing may not be
accompanied by any obvious change in volume, it is then preferable to treat the
deviatoric part and the volumetric part of responses separately. The crucial point
then becomes how to determine the turning from strain hardening to strain softening
in the deviatoric and the volumetric spaces. For the volumetric part, dilatation be-
fore the occurrence of strain softening is often negligible.

Based on the knowledge and criteria obtained from the studies of void damage,
the following proposals can be made:

(1) If either
O + 1'0" =0, Or 6,= 8§, (17)
is reached, the o,-e, curve turns to the strain-softening stage and E{?’ becomes
negative.

(2) If
G, + 2,0, =0,, (18)

is met, then the ¢,-6, curve turns downwards with negative E&,

(3) The condition
g, + Ae, =g, (19)
is taken as the failure criterion. It means that after undergoing a certain extent of

strain softening the material is so severely damaged that it can no longer withstand
any stress. '

In Eqs. (17)—(19), 2,5 G¢ys 6ccy Ay Tems 45 6. are the material constants to be deter-
mined together with the values of E{®’ and E{% in the strain-softening stage. They
constitute all the parameters needed to characterize ductile damage and failure in
material and provide a full description for the symbolical representation in Eq. (16).
The three parameters 4,,4, and 4 play the role of balancing the influence between
deviatoric and volumetric stresses or strains. Since the difference between the total
strain and the plastic strain is negligible under the large-strain condition, here and
hereafter we delete the index (p) that denotes plasticity.

A full exemplification for determining the parameters listed above has been
given in Ref. [12], using the computer-simulation technique together with both
macroscopic and microstructural data of tests. As stated previously in the text, micro-
structural studies do help us understand the damage mechanism in setting up a frame
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line and selecting the most necessary parameters for constitutive description of mate-
rials. But, the internal mechanism.is so complex™ that no solid ground for quanti-
tative estimation of material damage can be provided without making use of the data
obtained from tests. That is why we lay emphasis on both the computer simulation

and its incorporation with experimental informations"?.

III. Prastic LoapiNG Patus AT Birurcaiion

As is well known, the bifurcation condition will be reached when the second
variation, called Q, of functional = approaches zero, i. e. .

8 = Q = 0. | (20)

Although the details of Eq. (20) may differ with the choice _of referential coordi-

nates, essentially, an incremental formulation within body volume » can always be

expressed as

0 = |, 16Cdo)sCden) + F(a,aV)av, (1)

Actual examples of Q with regard to Lagrangian and up-dated Lagrangian formula-
tion can be seen in Refs. [13,14]. The first term in the integral of Eq. (21) is a
contraction multiplication of the first variations of stress and strain increments,
while the second term is a scalar function F of stress o and the pattern of velocity
variation 8V. The actual forms of the stress and strain increments and the function
F depend upon the referential coordinates chosen for analysis. However the following
procedure will show that the results of proof are irrelevant of this difference.

Let a solid be subjected to any kinematically possible disturbance §V. At the
bifurcation point there are several loading paths to be discussed.

(a) Elastic unloading occurs at bifurcation within part of the plastic region de-
veloped by pre-bifurcation loading.

(b) All the plastic region remains plastic.
(¢) Strain softening appears in the plastic region.

(d) Not only strain softening but also plastic dilatation takes place in the plastic

rezion.

Comparison between paths (a) and (b) has been discussed®™ when the strain is
small and no damage occurs, as these are the only two possibilities allowed by the
material condition then. However, when damage is developed as strain enlarges,
paths (¢) and (d) might happen. An example for this statement can be seen in
Ref. [1], where shear band is shown to be composed of tiny voids linking up into a
line. If we use a mechanically equivalent continuum to substitute this band region,
it may then have not only strain-softening effect but also plastic dilatancy.

Employing Eq. (14), we can express the variation of stress increment in the Eq.
(21) at bifurcation as

8(da;j) = L¥iuo(dey) (22a)

and
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Pkl = — (; Jj +6.6 +3,6
ikl 1 +» _2( 211 Jik) f“l—Zv+E;’ETm
3 E $,iS '
27 Br =4 ]. (22b)

.§(1-+v)4-E/Et.

In order to distinguish the tangent moduli at bifurcation from those of the pre-
bifurcation, an asterisk * is added to the corresponding symbol. °

Substituting Egs. (22a) and (22b) into Eq. (21) we obtain Q,, Ob, Q. and Qs.
corresponding to the four possible loading paths. Then we can prove

Q.= 0 =2 Qc = Qa. (23)

Firstly, let the total body be subdivided into two parts of volume, "
v=1v, + v, (24)

in which, #, is the common elastic/plastic region in comparison, while », denotes
the part of volume subjected to different loading paths. Then we can write

Ql = QI -+ AQ:’ Qb = Ql + AQb’

(25)
Qc=0Q,+ AQ., Qa=Q,+ AQq,

where

Q‘ b E’ L,‘jt;a(ds“j) S(dsu)dv, -+ I’F(U,(?V)d&’. (26)

Since the loading path is defined to be common in the region #,, there is then
neither softening nor dramatic change of volume. Therefore, the stiffness tensor
L;js does not need to have the asterisk *, It is also regulated that the comparison
should be made on the same (although arbitrarily kinematically possible) basis of
velocity variation 8V and the same stress state o until bifurcation occurs. The in-
tegration of function F 1is not affected by the difference in loading cases at bifurca-
tion, and therefore it is irrelevant of the comparison made within the whole volume
v concerned. Consequently, Q, becomes a common part that can be removed from

the comparison and we only need to focus our attention on AQ,, AQy, AQ. and
AQg4 expressed as

AQ, = [ L¥36(de;i)s(dey)dv,, (27a)
AQ, = j LEB6(de;)5(de ) dv., (27b)
AQ, = [ LEQo(de)o(deg)do, @7¢)
AQ, = [ LED5(de;;)5(de)dv.. (27d)

According to the four possible loading paths originated from Eq. (22b), we
find

o E 1
(a) L% = [*2— (8:48i1 + 8:dix) + I

Y 6ﬁau]; (28a)
1+ — 2»
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Gy La =i — S —— S , E> E,. > 0 (28b)
=1+§(1+»)Et./E '
© L3P =130 —55 — , —E<E%.<0;  (280)
20: 4 +% (1 + »)E./E
(d) L¥? = L¥u (in Eq. (22b)), and E%fn has a finite value. (284d)

By substituting (28a) and (28b) into (27a) and (27b) respectively, it is easy to
see that

S;iSud(de;;)8(dey) = [S:i8(de;;)1* > 0
and

1 +--(1 + »)E,./E > 0,

such that
LHo(de;i)o(dey) = L%6(de;i)8(dey) — (positive quantity)
< L%78(de;;)8(dey). (29)
Only when E,,—> 00, it means that there is no plastic strain, do both sides
of Eq. (29) become identical. Hence, after integration in volume v.,, we come to
the conclusion

AQ, = AQs. (30)

In the same manner, the comparison between (28b) and (28¢c) shows

1+ -32— (1 +»)E/E =1 +-';’—(1 + »)E%,/E,

Then, we find

L35576(de;i)8(dey) < L}%{76(de;i)d(dey). 1)
They are equal when EY, = E,. = 0, Therefore,
AQh .-2 AQI:. (32)

The difference between paths (d) and (c) is caused by the plastic dilatation
formed at bifurcation, and then E%, becomes a finite quantity. Generally speaking,
if the condition |E/E*.| > 1 is true, then

—_— *
LA E/3E,Lh__’__l (33)

1 — 2v 1—2v+ E/E%. 3
The identity holds only when there is no plastic dilatation, that is E¥, — ¢, Since
5£i3g13(d5ii)5(dsu) = [5;;8(de;;)1* >0,

and E¥, is the same, we find

L¥576(de;i)8(dey) < L¥5(de;;)8(dey). (34)
Thus,
AQ. = AQ., (35)

with condition (33) being its prerequisite. This requirement is actually not a restric-
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tion, since a very small negative value of E/E¥, is usually meaningless.

Now we shall prove the comparison relation in Eq. (23). Let us first take Q,
and Q, as an example, then we can find the lowest critical value in bifurcation
within the scope of Oy associated with loading path (b). This is because there is
no possibility of allowing any pattern of velocity variation to yield a situation such
that Q, first turns from a positive of stable state to zero at bifurcation, in a station-
ary manner associated with a smaller critical value, while Qp is still in a positive
" state larger than zero. If that could be true, it would violate the sequence regulated
in Eq. (23). Similarly, if path (c) becomes realistic, we can discard Q, and con-
centrate our attention on Q. to find the lowest critical value. When path (d)
occurs, the priority should be given to Qg instead of Q..

The “elastic comparison model® or “consistent loading” concept™ is virtually
based on the comparison between Q, and Q4 and finds its use in treating plastic
buckling problem. Although buckling induces large rotations, the strain in materials
is still too small to cause any internal damage. Hence, paths (c) and (d) are not
likely to occur and there is no need to consider these two cases in the buckling

analysis.

On the other hand, recent studies indicate that strain-softening conditions, as:
prescribed in Eqs. (17) and (18), do occur in materials undergoing large-strain
deformations so that geometrical disturbance and dramatic change of material can
simultaneously occur. Nowadays, the terminology “material instability” appears
frequently in references, but the concept of its loading path should be deemed as
different from that of the structural buckling/instability.

Employing the loading-path concept, we are able to explain why the therotical
critical strains™ are far larger than the experimental ones”. Furthermore, distribu-
tions of velocity variation are shown to be corresponding and related to the sudden
change of material behaviour™, and the occurrence of curve shear bands“® can be
realized in the computer simulation. The difference between curve shear band
and straight shear band lies in their material conditions at bifurcation. The material
behaviour of the curve shear band not only changes abruptly as that in the straight
shear band, but also has its tangent modulus varying continuously all along the tan-
gential direction. These examples demonstrate that, when material conditions permit
the local bifurcation of the velocity distribution occurs simultaneously with the
sudden change of material behaviour resulting in the diversion of loading paths.

IV. ConcrLusions

1. Dilatational plastic equation has been derived in a general form. This equa-
tion is not confined to the following requirements: (i) the energy dissipated within
a cycle of stress/strain must be positive, (ii) elasticity and plasticity are irrelevant
of each other, and (iii) the loading surface is in a convex shape. In the case of
small strain without damage, the equation satisfies the above requirements and takes
the simplified form of the Prandtl-Reuss relation in conventional plasticity. When
strain enlarges and material damage develops internally, the parameters involved in
the equation are to be determined by microstructural studies, material tests, and
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computer simulation.

2. The possible loading paths that may occur at bifurcations are discussed in
the light of this equation. It is proved that material without damage follows the
“consistent loading® path, and is free from elastic unloading. Once any “softer”
response of material suddenly occurs, the velocity bifurcation and abrupt change of
material behaviour become correlated with each other.
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