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A variational principle is applied to the problem of magnetohydrodynamics (MHD) 
equilibrium of a self-contained elliptical plasma ball, such as elliptical ball lightning. The 
principle is appropriate for an approximate solution of partial differential equations with 
arbitrary boundary shape. The method reduces the partial differential equation to a series of 
ordinary differential equations and is especially valuable for treating boundaries with nonlinear 
deformations. The calculations conclude that the pressure distribution and the poloidal current 
are more uniform in an oblate self-confined plasma ball than that of an elongated plasma ball. 
The ellipticity of the plasma ball is obviously restricted by its internal pressure, magnetic field, 
and ambient pressure. Qualitative evidence is presented for the absence of sighting of elongated 
ball lightning. 

1. INTRODUCTION 

Ball lightning has puzzled many scientists for a long 
time. Reliable eyewitness accounts and recent photographs 
(REF) have added greatly to the supporting evidence. Ef- 
forts to produce a convincing model have met with very lim- 
ited success. One of the main problems is the mechanism 
permitting the fireball to be stably confined for such a long 
time without any auxiliary magnetic field; laboratory plas- 
ma without magnetic fields are found to have very limited 
equilibrium lifetimes. Problems associated with the sources 
of the energy to support the long life fireball and scenarios 
for formation in the atmosphere are also under investigation 
by many scientists all around the world.‘-4 Wu and Chen 
have recently studied the confinement problem and a model 
for ball lightning was proposed.‘*6 This spherical plasma 
model addresses the equilibrium and stability properties of 
ball lightning, however, some sightings of ball lightning are 
reported to have oblate spheroid boundary shapes instead of 
perfect spherical shapes. In this paper, we investigate the 
consequences of boundary alterations to the model discussed 
by Wu and Chen. A variational method is introduced to 
study the magnetohydrodynamics (MHD) equilibrium 
problem of an elliptical plasma ball. The procedure changes 
the problem of solving a partial differential equation (Grad- 
Shafranov equation) to the one of solving a series of ordinary 
differential equations. Finally, the relations between the 
boundary shapes and the internal structures are computed, 
and reasons are presented for the infrequent occurrence of 
elongated self-confined fireball. 

II. VARIATIONAL METHOD 

Let the governing equation be 

&KY) =gV,Y) (1) 
and the boundary condition 

a) Visiting Scholar at the Center for Fusion Engineering, University ofTex- 
as at Austin. 

r(X,Y) = 0: G(X,Y) = V”G(X,Y) = 0, (2) 
where I (X, Y) = 0 is a boundary shape and 2 is an elliptical 
differential operator and g( X, Y) a given function. It is well 
known that if T(X,Y) has other than a simple form, it is 
quite difficult to obtain the solution. Using a linear approxi- 
mation, the boundary shape sometimes can be represented in 
the form of F = Fa + SF ,, where S has to be a small param- 
eter.7 Here we wish to study perturbations to the spherical 
boundary that require more than a linear approximation. A 
variational method of multiple-functional procedure is 
found to provide the necessary simplification for an approxi- 
mate solution. 

Details of the variational method are discussed in Ref. 8; 
the method of multiple-functional can be divided into the 
following three steps: 

( 1) The Lagrangian A for Eq. ( 1) must be defined in 
such a way that the governing equation can be derived from 
the limitation condition of the following variational equa- 
tion: 

S AdXdY=S 
ss > 1 dY dX 

ES LdX=O. 
s 

(3) 

(2) Assume the solution of Eq. (1) can be put in the 
form of 

G(X,Y) = rk+l(x,n (4) 

which satisfies boundary condition (2); here, ei ( Y) is a giv- 
en basis function andA (X) is a trial function that remains to 
be determined by solving the Euler equation. Meanwhile, the 
definitions of differentiability and integrability for both 
ei ( Y) andJ; (X) are necessary in the designated area. 

(3) Substitution of Eq. (4) into Eq. (3) results in a 
system of ordinary differential equations: 
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(5) 

where 

i;=d,> i = 1,2 ,..., n. 

Therefore, taking n = N, one should obtain N ordinary 
differential equations 

;Zr. = FiCXtf,,f,t...,fN,j;,j”,,...,jT,), (6) 
where 

j;;_d”, i = 1,2,...,N 

in terms of Nunknownx’s, which can be obtained by solving 
Eq. (6) analytically or numerically. The convergent error is 
estimated to be about 10 - N.5 

The merits of the method are (a) the method proves to 
be more powerful when the boundary undergoes a nonlinear 
deformation; and (b) the method yields higher precision for 
equivalent effort than conventional methods, such as Ritz, 
Galerkin, etc. 

Ill. MAGNETOHYDRODYNAMIC EQUILIBRIUM 
Consider a plasma ball in a neutral atmosphere carrying 

a toroidal current density J4 and a poloidal one Jp. Assume 
that the ball is imbedded in an atmosphere with a constant 
pressure P, and a boundary shape has the elliptical shape 

r=Ph*+zwP- i 
expressed in cylindrical coordinates (R&Z). The gravita- 
tional force can be negligible since it is much less than the 
Lorentz force. The MHD equilibrium state can be described 
by the following equations: 

VP= JxB, VxB =pJ, V-B = 0 (7) 
and on r, 

PIr =Po, B/r =O, (8) 
wherep, P, J, and B are the magnetic permeability, pressure, 
plasma current density, and magnetic induction, respective- 
ly. 

Using the definition of the magnetic flux function 

*=*s 
and assuming the equilibrium state to be axially symmetric, 
i.e., a/a# = 0, one can translate Eq. (7) into the Grad- 
Shafranov equation in the form of cylindrical coordinates as 
follows: 

x-f&+ 
dR * -&+W 

where 
= - 2quRJ+, (9) 

J* =2nRE+--. ,u dI= 
d$ 47rR dt,h 

Both pressure P and poloidal current I are functionals of $ 
only. 

The corresponding boundary condition can be rewritten 
as 

@lr =o> Wlr =a (10) 
which implies that the ambient pressure PO is a constant and 
the magnetic field B vanishes on the surface of the fireball. 

Assume the pressure and the poloidal current have the 
forms of 

P($) = %$ + PO, I($) = co& (11) 
where a, and co are constants. The toroidal current density 
then becomes 

J+ = 2rra& + (,uc$/2?rR ) @. 
Therefore, Eq. (9) can be expressed as 

@= -aR2--p2$, (12) 
where a =4n-$a, and &pco. 

To solve Eq. ( 12) conveniently, the following transfor- 
mation is adopted, i.e., 

.4(R,Z) = $(R,Z)/R. (13) 
Substitution of Eq. ( 13) into Eq. ( 12) results in 

a2 1 a a* -- aRzf R JR +s > A(RFZ) 

(14) 

and the boundary conditions 

A(R,Z)I, = 0, VA(R,Z)I, = 0. (15) 
The Lagrangian appropriate for Eq. ( 14 ) is found to be 

A= (R,‘2)[& +A;+ (l/R*-fi*)A*-22crRA], 
(16) 

where 

/g,=dA A =.E 
aR ’ z az’ 

The solution of Eq. ( 14) can be assumed to be the form of 
Eq. (4). Let the basis function ej (Z) be 

ei(Z) = Zzi-* 

and consider i = 1 and 2 two terms, then, 

A(R,Z) = r*V;W) +f,(R)Z21, (17) 

where 

r=R2/a2+Z2/b2- 1. 
Substitution of Eq. (17) into Eq. (16) yields for the 

variational of the Lagrangian functional for Eq. ( 14) : 

S 
ss 

AdZdR=S LdR =O, 
s 

where 

(181 

-I- %)D2b3f; $ bD2jp; + 
36 ‘0 “fi 

143 

i- +b3D3&je, - ERD2j;f, + bD* 
a2 
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x( -$-B2)(f: +&b4Dif: ++b2DYX) 
- abR 21f, + -+ b 2Dfz) - $ bRD% i] 

and 

dfl(R) D=l+, j;=dR. 
Bothf, (R) and f,( R) are determined by the following 

second ordinary differential equation (i.e., Euler equation): 
A,$+ A,jP+ A,F= G, (19) 

where 

RD2 
A,= 

CR 
b2RD3/ll 

D2 > 3b 2RD3/13 ’ 
A b2D2(1 - 12R2/a2)11 

2 3b2D2(l - 14R2/a2)/13 > ’ 

A3=c::: ;;:I), 

A 3,, =$ (39R2 - 18a2) -y +(B2-+)RD2, 

A 312 = 

A 32,=~(~-2)+RD’(B’-~), 

i=-$(;$;), G=( I:;:;;;;;). 

Taking the radius of the fireball in the R direction a as a 
dimensional factor, one can make Eq. ( 19) dimensionless: 

C,y+ C,k+ C,Y= H, (20) 
where 
r= R/a, Y,(r) =f,(W, Y2(r) =f,(ar), 
y = a/b, a, = a”a, & = apt 

( 
3D2 

‘I= 1.202 

?D3/1 l? 
> 312D3/13y2 ’ 

” = 
rD( 1 - 103) rD2( 1 - 12?)/11? 
rD( 1 - 12?) 3rD2( 1 - 14?)/13? > ’ 

c, = ( 2:: z::), H=( I;$;;;), 
C,,, = (?/2)(39? - 18) - 3?yD+ D2(p;? - I), 

C3,2 = (?/2f)D(5? - 2) + (D3/11y) CPz? - 11, 
C,,,=(ll?/2)(5?-2)+D2(&?--I), 
C,,, = (3?0/2f)( 17? - 2) - 3?D2 

+ (3D3/13y2)(P:? - 1). 

After the analysis at the singularity r = 1, the analytical 
solution of the Eq. (20) can be obtained, in principle, in the 
form of a power series near the singularity r = 1 

Y,(r)=b,,+b,,(1-r)+b,,(l-r)2+~~~ 

=TbIi(l -r)j (214 

Y2(r)=b2,+b2,(l-r)+b22(1-r)2+... 

= Tb2i( 1 - r)‘. 

By means of tedious calculations, comparison of coefficients, 
the first coefficients are found, such as 

b,, = - O.l25a,, b,, = 0.023 054a,f, 

b,, = - a”(0.125 + 0.028 7431/2), 

b,, = (a&/7)(0.121 68 +0.468 57y’ 

+ 0.076 014y4 + 0.175 73/3;), 

b,, = - 0.022 09a,(5.760 96 + 0.5614fii 

+ 2.1522y’ + 0.206 431p), 

b22 = - (“J/57.705) (O,o + 6, + G,, + &o 

+ c5b2, - 1.912 08a,), 

where 

E, = - 16.9484 + 14.4408? - 26.4408p;, 

e2 = 24.7438 - 18.051? + 8.8136/7;, 

e3 = 69.3412 + 7.2204?, 

e4 = (4572.19 + 24fi;)/13? + 36, 

es = 7955.3/263/2 - 12. 

It seems too difficult to continue the calculation for all 
other coefficients in such a way, but these first coefficients 
are enough to provide detailed information on the boundary. 
In other words, the boundary condition at r = 1 can be ob- 
tained from these coefficients, i.e., 

Y,(l) =b,ot Y,(l) =bm, 
&(l)= -bl,, p(l)= -b,,. 

(22a) 

Besides, the symmetric assumption requires 
Y,(O) = Y2(0) =o, (22b) 

which means B-r = 0 on Z axis. 
An existence theorem for an ordinary differential equa- 

tion with two boundary conditions requires for compatibili- 
ty that there be additional parameters in the differential 
equation. For example, only because there are three param- 
eters a,, &, and yin Eq. (20)) can the existence theorem for 
the equation associated with the boundary condition Eq. 
(22) be tenable. 

IV. NUMERICAL RESULTS 
Meaningful comparisons between different elliptical 

fireballs require that the volume V = 4m2b /3 and the total 
magnetic flux &,, of the plasma balls be the same for var- 
ious values of y( = a/b). 

Using the method of pivot element elimination and ad- 
justing the parameters &, a,,, and y, we find a series of & 
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TABLE I. W, and a,, depend on elongation y. radius r 

y= a/b 0.25 0.5 0.75 0.8 1 1.25 1.5 
PO 8.75 7.16 6.11 6.03 5.72 5.46 5.16 
a, 13.4 5.4 1.9 1.8 1 0.77 0.45 

and a, corresponding to different y. The numerical results 
are shown in Table I as well as in Figs. 1 and 2. 

The error estimation of,!& is made by means of compari- 
son between the approximate rlj0,a,, of Table I and the exact 
P O,eX in the references. 5 The corresponding error, when 
y = I, is about 

[(PO., -&,,m .&lo-3~ 

From Fig. 1 and Table I, one finds that the &, grows 
rapidly when the ellipticity (y = a/b) becomes smaller, i.e., 
when the boundary shape approaches an elongate one, the 
absolute value of the current 11(t)) t increases greatly. 
Whereas, the current distribution inside the oblate plasma 
ball would have a flatter profile than that in the elongated 
one. It is also seen that the spatial pressure distribution in- 
side the oblate plasma ball has a flatter configuration than 
that inside the elongated one because a0 gets smaller when y 
becomes greater. 

2 I 0 -- -- 
0.25 0.5 0.75 1 1.25 1.5 

Y 

FIG. 1. Current and pressure distribution versus elongation y. 

p.s-- P 
r .0.5 
e 
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e .2.5 
P 

.3- 

FIG. 2. Pressure distribution versus radius r for different elongations. 

In the Fig. 2, it is demonstrated that the more elongated 
the plasma ball shape becomes the lower pressure there will 
be inside the ball. The gradient of the pressure gets larger 
when the plasma ball shape becomes elongated. However, 
from kinetic theory, a negative pressure would be impossi- 
ble. Therefore, one can conclude that the ellipticity of an 
elongated self-confined plasma ball must be restricted by 
some physics parameters, such as the ambient pressure PO 
and the magnetic field B inside the ball. For example, consid- 
er a self-confined plasma ball in which a, = lo’, t,&,,, = 100 
G, and PO = 10 N/cm’, then the ellipticity y = a/b would 
never be less than 0.8. From this example, one may get some 
knowledge about the existence of self-confined plasma ball. 
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