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Abstract. In this paper, new formulae of a class of stress intensity factors for an infinite plane with two collinear 
semi-infinite cracks are presented. The formulae differ from those gathered in several handbooks used all over the 
world. Some experiments and finite element calculations have been developed to verify the new formulae and the 
results have shown its reliability. Finally, the new formulae and the old are listed to show the differences between 
them. 

I. Introduction 

In application of  the theory of  linear fracture mechanics to solve a practical problem, the 
most  impor tan t  thing is to determine the stress intensity factors at the tips of  a crack, so 
several handbooks  which contain the research results of  many scholars were published in the 
1970s and 1980s for the convenience o f  engineers and scientific researchers. In this paper  the 
formulae,  which are listed in several handbooks ,  of  a class of  stress intensity factors for  an 
infinite plane with two collinear semi-infinite cracks are reexamined. It has been found that 
some of  the formulae are not  correct  because of  the failure to consider the resultant vector 
and moment  o f  internal forces acting along the finite bonded line of  two half-planes. In this 
paper, the mistakes have been corrected by solving the problems by means of  the complex 
function method.  

The main idea in this paper  is that the two half-planes, which are cut out  f rom a whole 
plane by two collinear semi-infinite cracks, are separated at infinity, so a relative rota t ion at 
infinity between them may exist. F rom the mathematical  point  of  view, the difference Ci 
between the two imaginary constants in complex stress functions q~l (z) and ~b2(z ) of  the two 
half-planes is related to the relative rotation. As we will see, the Ci affects the field of  stresses 
and can be determined by an additional condit ion uniquely, which is, to our  knowledge, 
proposed for the first time. 

The reliability of  the new formulae has been verified by experiments and finite element 
calculations. 

2. Statement of the problem 

It is assumed that the two infinite half-planes are bonded together along a small central part  
and the two semi-infinite cracks are free f rom tractions (Fig. 1). Two pairs of  concentrated 
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forces (P, Q) are acting at the 
points (x0, Y0) and (x0, -Y0) 
symmetrically with respect to the 
X-axis. 

The upper and lower half-planes 
S- ,  S are occupied by homo- 
geneous and isotropic materials 1 
and II respectively. The bonded 
segment of the two half-planes 
along the X-axis is denoted by 
L and the other two segments 
by L'. If o-,, a,,, r,: r and u, v rep- 
resent the stress and displacement 
components in a right hand co- 
ordinate system, the boundary 

and continuous conditions of the two half-planes along the X-axis are as follows: 
(1) The stresses are equal to each other along the X-axis and the surfaces of the cracks are 

free from tractions. 

[ o - , -  iT,.,] + = [0% - i T , , ]  o n  L + L',  (2 .1)  

[ a , -  iT,,.] + = [ ~ , . -  ir,,.] = 0 o n  L'. (2 .2)  

For the convenience of analysis, the above two expressions are written in a complex form, 
where the superscripts denote the limit values of  the stresses as the arguments approach the 
X-axis from S + and S - ,  respectively. 

(II) The displacements are equal to each other along the bonded segment of the two 
half-planes. 

[u + iv]" = [u + iv] onL .  (2.3) 

Also, the resultant vector and the moment of the internal forces, with which the lower 
half-plane acts as the upper one along the bonded segment, have to be prescribed. So the 
following two additional conditions are obtained: 

t , + 
"a [61,_ 1T,,,] dx = P* - iQ*, (2.4) 

i'" xai+ dx = M*, (2 .5)  

where a is the half length of the bonded segment of the two half-planes. The method 
for determining the resultant vectors P*, Q* and moment M* will be described in Sec- 
tion 4. 
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3. Riemann-Hilbert problem 

Referring to [6] and [7], the solution of  a plane problem in elasticity can be expressed in terms 
of  two analytical functions as follows: 

a~ + a v = 2[q~(z) + ~b(z)], (3.1) 

a v - i%, : 4 ( z )  + gp(z) + z4)'(z) + V(z ) ,  (3.2) 

2#(u' + iv') = ~b(z) - ~b(z) - zd / ( z )  - ~ ( z ) ,  (3.3) 

where 

Ou 6~v 
u' - v' - (3.4) 

~?x' c~x' 

and the upper bar denotes the conjugate of  a relevant complex function, /~ is the shear 
modulus, v is the Poisson ratio, x = 3-4v for plane strain problem and ~c = (3 - v)/(1 + v) 

for a generalized plane stress problem. If  ~b(z) and ~(z) are defined in the upper half plane 
S + we can extend 4~(z) into the lower half-plane S -  through the traction-free segments of  
the real axis: 

4 ) ( z )  : - - e e ( z )  z e s , (3.5) 

where ~(z) = q5(5). Thus Ud(z), which is defined in S + , can be expressed by the extended qS(z) 

Ud(z) : -~p ( z )  - ~ ( z )  - z(o'(z) z ~ S +. (3.6) 

So (3.2) and (3.3) can be written in the following form: 

a ~ -  i%v : ~b(z) + q~(5) + (z - 5)~b'(z) z e S  +, (3.7) 

2~t(u' + iv') = ~cqS(z) + q5(5) - (z - 5)~b'(z) z ~ S - .  (3.8) 

It is apparent that  we can exchange the positions of  S + and S in the above formulae. 
Let subscripts 1 and 2 refer to the materials I and II respectively. As the concentrated 

forces P and Q are applied at the point z 0 = x0 + iy0 in the upper half-plane, the principal 
part of  singularity of  the stress function ~bl(z), which is defined in S +, is M~/( z  - z0); and 
that of  ~1 (z), which is also defined in S + , is 

N1 2oMl - - +  
Z- o (Z-Zo) 
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where 

J i a n g  C h i - p i n g  e t  a l .  

Q + iP ~c(Q - iP)  
M I - N I - 

2~(1 + ~c)' 27r(1 + •) 

Then, according to (3.5), the extended ~b 1 (z) can be expressed as follows: 

M, Nl ]~l (20 -- Zo) 
(/)1(2) - -  z - z, ,  z - Zo- + ( z  - 20) 2 + ~bl0(z), (3.9) 

where q~0(z) is holomorphic in the whole plane cut along L (bonded segment). It can be 
assumed that the rotation of  the upper plane at infinity is zero, then: 

q~,0(~) = ~b~(~) = 0. (3.10) 

Similarly, ( o 2 ( z ) ,  which is defined in S , can be extended and expressed as 

M, fi/I /141 (Zo -- 20) 
4 ) 2 ( z )  - z -  ; + "o z - z o ( z  - Zo)  2 + q~z0(Z), (3.11) 

where dpzo(Z  ) is also holomorphic in the whole complex plane cut along L. As the two 
half-planes are not connected at infinity, the rotation of  the lower half-plane can no longer 
be set to zero. So 

q~2o(,C) = ~b2(~) = Ci, (3.12) 

where C is a real constant. It will be seen that for one half-plane problem an arbitrary 
imaginary constant included in ~b(z) does not affect the field of  stresses; for the problem of  
two half-planes bonded together along a small segment, however, the difference between the 
two constants will surely be related to the field. 

Let t be a point on the real axis, from (2.1) and (3.7) we obtain 

0~(t)  - ~ i ( t )  = ~: (t) - q~(t)  o n L  + U. (3.13) 

Substituting (3.9) and (3.1 l) into (3.13), we arrive at the following expression: 

[~b,,,(t) + ~b20(t)] + - [q~,0(t) + q~20(t)] = 0 on L + L'. (3.14) 

According to the Liouville's theorem: 

0,0(z) + 4~20(z) = ci ,  (3.15) 

taking the derivatives of  both sides of  (2.3) with respect to x and making use of  (3.8), we 
obtain 

~c~b,+(t) + (h((t) = K~b: (t) + ~b+(t) on L. (3.16) 
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Considering (3.9), (3.11), (3.15), after some rearrangement, we obtain 

~b~(t) + qSlo(t ) = f(t) on L, (3.17) 

where 

f(t) Q + i P (  1 1 ) Q - i P  
- - -  + - -  + ( z  - 50) 

2n t - Zo t - Zo 2n(1 + K) 

[ 1  , ] 
× (t - z0) 2 (t - %)2 + Ci. (3.18) 

After a series of  manipulations, the solution of  (3.17) can be obtained: 

l )  Q_i  E ' - + -  + (Zo - 50) 
4n z - Zo z - Zo 4n(1 + ~c) (z - Zo) 2 (z - 50) 2 

+ ci Q + iP [ x / z Z -  a: x/~- a21 
2 4 n ~ L  7 --- z~ + - Z - -  Z 0 

(Q - iP)(z0 - 20) 

4n(1 + •)x/z 2 -- a 2 

L(TL70)7 (z ~o)~ + . . . . .  - z -  z0 v ~ 0  ~ - a 2 z - ~ 0  , / ~ - - a 2  / 

Ciz C* 
2 ~ 7 - - 7 -  ~ + x/7_z___a5, (3.19) 

where 

Q + i P  
c *  = c1 2n (3.20) 

4 .  D e t e r m i n a t i o n  o f  t h e  c o n s t a n t s  

The real and complex constants C and C* in the expression (3.19) can be determined from 
the conditions (2.4) and (2.5) uniquely. So from the mathematical point of  view, one could 
not  solve the problem in hand uniquely without the consideration of  those two additional 
conditions. 

N o w  we analyze the coefficient of  1/z in the expanded expression of  function qSl(z ) at 
infinity instead of  the condition (2.4) itself. 

Let us consider the upper half-plane only. It is self-apparent that the resultant vector of  
the external forces acting within a finite area in the upper half-plane is equal to O + iP  - 
(Q* + iP*).  
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According to [6], for jz] is large enough, the following asymptotic expansion is valid: 

2re + 2re - + O . (4.1) 

Substituting (3.19) into (3.9) and expanding it at infinity, then comparing the coefficient 
of 1/z with the one in expression (4.1), we obtain 

Q + i P  Q*  + iP* 
c~* - 27r + 27r (4.2) 

Now we consider the condition (2.5). Apparently it can be written as 

Re J ,, x ( < -  i t , , )  + dx = M*, (4.3) 

where Re denotes the real part of a complex function. Using (3.7) and noting z = x on the 
real axis, (4.3) becomes 

Re f '  z[qS~(z) - 4((z)]  dz = M * ,  (4.4) 

where the integral on the left side of (4.4) can be reduced to a contour integration in a 
complex plane. In terms of the residue theorem we can determine the constant C 

P _ 2 ~ a2 
C - ~(zo + z o -  x / z ;  - - 

r c a -  
X / - o  - -  a 2 )  

+ ~ i  -+- ~-~aa 2 , ~ . 2 - _ a 2  -~ \ ~' "o X / ~  rra2 
(4.5) 

In the case, in which a concentrated force and a moment  are applied at one surface of a 
crack simultaneously (problem 14 in the Appendix), the extended function 0~ (z) can be 
written as 

Q + i P  1 Mi  1 
O~(z) 2rr z - b 2~ (z - b) 2 + qbl°(z)' (4.6) 

where O~o(z) is holomorphic in the whole plane cut along L. In the same way we obtain 

Q + iP  1 iM 1 Q + iP x / ~ -  a ~ 

(~l(Z) - -  47r z ~  -- 4rr (z - b) 2 4~ ~ -  aZ(z - b) 

i M  x / ~ -  - a 2 l i M  b 1 

/ ~  ~ a2(z  - b)  4rr \ /  z -  - a 2 ( z  - h) 2 4re ~ -  a2 w,,~ - 
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+ 2rta--5 

( z ) ( Q+i  ,  47, 
x 1 ~ + 4rr + 27z ,~-~:  a 2 

Because the problems dealt with in this paper are all linear elastic, for other loading cases 
the solutions can be constructed by taking the particular forms of the above stress functions 
or their superpositions. 

In the last part of this section two examples are given to demonstrate how to determine 
P*, Q* and M* in a practical engineering problem. As is well known, an actual structural 
component cannot be infinite in size in a mathematical sense, if a plate is large enough, 
however, as a mathematical abstraction, an infinite plane will be a good model for solving 
the problem. Let us consider a plate with two collinear cracks (Fig. 2). The applied forces 
near the tip of  the crack or far away from it are denoted by solid arrowed lines and the 
resultant vector and moment with respect to the origin of the internal forces, with which the 
lower half plane act at the upper one, are denoted by dotted lines. 

From equilibrium conditions it is easy to obtain 

P*  = P, Q* = Q, M *  = Pb, (4.8) 

for the problem in Fig. 2(a) 

P*  -- ±Pz , Q* = O, M *  = 1 M  + ½eb, (4.9) 

for the one in Fig. 2(b). 
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It is self-evident that the influence of the load far away from the tip on the field of stress 
near the tip can be expressed by the terms P*, Q* and M*. Thus for the problem in Fig. 2(a) 
(the idealization of  it is shown in the Appendix, problem (6)), from (3.9), (3.19), (4.2), (4.5) 
and (4.8), the complex stress function can be written as follows: 

49~(z) Q + i P  x / - ~ -  a 2 P i x / b S -  a 2 (  z ) 
= - -  - - "  1 2 - -  2 " 2= x/7 ~ -- a 2(z -- b) rca i ~ (4.10) 

5. Comparison o f  the stress intensity factors and some comments  on the relevant references 

The stress intensity factors at the tips of a crack can be defined in the following complex 
form: 

(K. - iKl,)+~ = 2 x / ~  lim (a - x)'/Z~b((x), (5.1) 

(K, - iKn) . = 2 x / ~  lim (a + x)l/24)l-(X ), (5.2) 
v ~  a + O  

For the problem in Fig. 2(a) (the Appendix, problem 6), by using the complex stress 
function (4.10), the stress intensity factor at the tip of the crack is 

P -  iO +~b-- 2Px/b 5 - a: 
{ / q -  - - a +  a,fi  5.3) 

The formulae of the stress intensity factors, which are obtained in the same exact way as 
the one above, are listed in the Appendix. 

The corresponding old formulae, which are gathered in several handbooks of stress 
intensity factors used all over the world, are also listed to show the differences between them. 

The main contribution of our research work is that we point out for the first time that in 
order to obtain a complete solution in the mathematical sense for the problems in hand, it 
is absolutely necessary to take the resultant vector P*, Q* and moment M* into account, 
which turns out to be the consideration of the situation of loading and constraints in the 
vicinity of the infinity. For simplicity, in the problems listed in the Appendix, we have 
assumed that if the external loads acting on a finite area near to the tips of the cracks are 
in equilibrium, no tractions are acting at the infinity (the area far away from the tips of the 
cracks), as shown in Fig. 2(a); if the loads on a finite area are not in equilibrium, half of the 
loads, which are acting at the infinity to balance the corresponding loads in the area near to 
the tips of the cracks, are applied to the upper half-plane and the other half part to the lower 
one as shown in Fig. 2(b). For example, for problem (14) in the Appendix, the following 
expressions have been used: 

p ,  = 1p,  Q ,  = ½Q, M* = ½M + ½Pb. (5.4) 

The formulae in general loading cases can be obtained by superposition with the formulae 
of problems (4) and (5) in the Appendix. 
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To show the reliability of the new formulae, 
let us examine the new and old formulae in 
the problem in Fig. 3 (from problem (10) in 
the Appendix). 

K,±, - ~ 1 - o~y-~y ° 

1 {  Z~oT-a X -- 
2 _~a 

50-T-a 
+ _+a 

z, + a  
+_a 

(5.5) 

½(1 + v) 

= 1 
½ . I  

1 - - V  

for plane stress problem, 

for plane strain problem, 

cited from [1] and [2]. 

_ P [ _ ~? ] 1 {  Z~zOo +_ a_ + 5£_c_Oo+ a_ 
K,±. x ~  1 %Y°~y o 2 + a  T a  

- ~ + a X/ 5, ~- a J  - ~ (A0 - A , ) ,  (5.6) 

where 

2 ~ - a 2 -~ ' ' 

j = 0, 1 from this paper. (5.7) 

Apparently, if Y0 ~ ~ and P(xo + Xl ) ~--- M, the above problem is reduced to problem 
(3) or problem (4) (problems (3) and (4) are the same problem essentially). 

According to the old formula, limy0~ ~ Kj = 0. It is in contradiction with the formula in 
problem (3) in the Appendix, in which K~ = 2M/(ax/-~ ). 

According to the new formula, lim~0~ ~ Kj = 2M/(a,f-~), which coincides with the 
formulae in problem (3) and problem (4). 

Now we would like to make some comments on two representative references. In the field 
of fracture mechanics, [4] is a very important treatise, which has solved the problem of the 
stress distribution in plates with collinear cuts under arbitrary loads, and has been cited by 
many scholars. The whole deduction is correct, except for a small oversight. That is, the 



150 Jiang Chi-ping et al. 

- C  

Y 

~,1 ,..Q 

- a  o a b c 

Fig. 4 

x 

author has regarded the plane problem with 
two collinear semi-infinite cracks as a limit 
case of the problem in Fig. 4 by letting 
c --* oc. It should be pointed out that this 
limiting process is not proper. A relative 
rotation of the two half-planes may exist and 
P*, Q* and M* on the finite bonded seg- 
ment have to be considered for the problem 
with two collinear semi-infinite cracks, 

whereas the relative rotation of the two half-planes in the problem shown in Fig. 4 has to 
be zero and there is no need to consider P*, Q* and M*, which are finite in magnitude. 

In [5] a problem of a nonhomogeneous elastic plane with two semi-infinite cracks was dealt 
with. The author developed an elegant method, which has been followed in this paper. The 
author pointed out that P* and Q* on the finite bonded segments have to be prescribed, but 
failed to consider M* and thus failed to consider the imaginary constant Ci. If (14) in [5] was 
changed to 

P + i Q  ( 
02(Z)  = Ci + 2xz + O , (5.8) 

for large values of Jzl and Ci was determined in terms of M* (see (4.4) in this paper), then 
the solutions (in the case of K~ = K2, p~ = /t2 would coincide with those in this paper. 

6. Experiment verification 

The reliability of the new formulae of stress intensity factors has been very well verified by 
experiments. To show the experimental basis, we examine the differences of the new formulae 
from the old ones. A simple but representative problem, which is from the Appendix, 
problem (6), has been taken as an example. The contrast of the new formulae with the old 
counterpart is shown in Table 1. 

Table 1 

C r a c k  c o n f i g u r a t i o n  

Yb 

P 
l 

I 
o a- P lb 

X 

S I F  at  t h e  c r a c k  tip a 

N e w  K ,  P ( b/~--a~a + 2  b2x/-b-F~--a 2) 
, /G   b--a a 

old  
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It can be seen that there is an additional 
term in the new formula which will become 
a main term if b > 1.5a. As the load 
moves along the surface of the crack away 
from the tip of it, K~+~ will become smaller 
and smaller and tend to P/x/-~ according 
to the old formula; whereas it will be larger 
and larger and tend to infinity according to 
the new formula in this paper (b > 1.5a). 
It is self-evident that the variations of the 
new and old formula are different com- 
pletely. According to this, a verification 
experiment has been made. 

A 2 mm thick aluminium plate is taken 
as a sample, shown in Fig. 5. Two long cuts 
with sharp tips may be regarded as the 
model of two collinear semi-infinite cracks. 
A strain foil is glued closely near to the tip 
of a cut. The load p is 1 kg. Let x denote 

the distance between the load point and the cut tip. The values of the strain e at the tip are 
read from a static resistance strain gauge for various values of x. So the variation of strain 
e may be used to express that of K~+ a approximately. 

The experimental results of e are shown in Table 2. 
The theoretical value of K~+~ in accordance with the new and old formulae are shown in 

Table 3, where a = 5mm, b = x + a. 
For further evidence, a comparison of the ratio K~x/KII o with the ratio ex/e~0 is listed in 

Table 4, where the subscript x denotes the distance between the load point and the cut tip 
and subscript 10 denotes a relevant value when x = 10. 

The experimental results give a very good verification of the new formulae. 

Table 2. Experimental results of~ 

x (mm) l0 20 30 40 50 60 70 80 160 

(10 6) 76 116 168 208 243 290 335 369 720 

Table 3. Theoretical value of K~+, 

x (ram) 5 

Kl+~ New 5.196 

o ,d  1 32 

10 20 30 40 50 60 

7.071 11.022 15.011 19.022 23.014 27.010 

1.414 1.224 1.154 1.133 1.105 1.087 

Table 4. A comparison of Kjx/Kil o vs. e~/el0 

x (mm) 10 20 30 40 50 

~.~/el0 1 1.526 2.210 2.736 3.223 

New 1 1.558 2.122 2.690 3.254 
Kt,./ Ktlo 

Old 1 0.865 0.816 0.801 0.781 
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Table 5. A compar i son  with FEM results for K,t,, (P/x~ or M/(ax/a)) 

Yl 

l 

b x 
- . k -  q 

-a  o a lp 

b new old FEM 

1.6a 2.58 1.17 2.60 

2a 2.93 0.97 2.89 

3a 3.98 0.79 3.89 

4a 5.09 0.72 4.96 

5a 6.21 0.69 6.05 

10a I 1.85 0.62 11.52 

Ylh j~P 

(xl  ,Yll ) x 
• - -  ,~ 
- a o a  

( X l F Y  t ) 

I r 

P 

x~ y, new old FEM 

a 2.89 0.88 2.77 

2a 2a 2.82 0.74 2.72 

4a 2.80 0.63 2.72 

a 5.09 0.72 4.96 

4a 2a 5.09 0.70 4.95 

4a 5.08 0.66 4.93 

2a 

4a 

~ P x 

- a o  a b 

I P  

MP~ 

I 
I 
I 

%-! 
x 

new old F E M  new old FEM 

2.87 0.49 2.81 

5.08 0.36 4.95 
1.12 1.12 1.09 

7. A comparison with some FEM results 

Some finite element calculations have been made to check the accuracy of  the proposed new 
formulae. A 20a x 20a plate, where a is the half length of  the bonded segment, is taken to 
simulate the considered infinite plate. Only a quarter of  the plate has been calculated because 
of the symmetry in geometry. At the vicinity of the crack tip, an elaborate singular element 
has been used so that the radius of  the singular element can be made larger, the extremely 
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nice mesh at the crack tip avoided and an improved accuracy of the stress intensity factors 
obtained. 

Some FEM (finite element method) results are shown in Table 5, where Poisson's ratio v 
is 0.3, 19 nodes are placed along the semi-circle of the singular element and another 87 nodes 
in the remainder of the quarter plate. For comparison the corresponding results of the 
proposed new formulae and those of the old formulae from the handbooks are also listed. 
Only mode I stress intensity factors at the crack tip + a  are shown, for mode II stress 
intensity factors of the new formulae are the same as those of the old. 

It is obvious that the FEM results are in excellent agreement with those of the proposed 
new formulae and the accuracy of the new formulae is further verified. 
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Notes to Appendices 

*l. There are 3 or 4 numbers for each problem. The first one refers to this paper, the second to [1], the number 
in parentheses to [2], and the number in the square brackets to [3]. 

*2. M* represents the resultant moment,  which is applied on the upper half-plane by the lower half-plane (refer 
to Section 4). 

*3. The formulae in this paper are the same as those in [l] only in the case in which the resultant force and moment 
acting at infinity of each half-plane are equal to zero respectively. Refer to the explanation before (5.4). 

*4. The " + "  and " - "  in the formulae in [1] and [21 do not coincide with the counterpart of the formulae in this 
paper. It may be a written error because the problem is the particular case of problem (6). 

*5. There may be a written error of signs in [1] and [3]. Let P~ = Q~ = 0 in problem (13) and M = 0 in problem 
(14), the two problems are the same, but their relevant formulae referred to [1] and [2] are not the same. 

Lastly it should be pointed out that for brevity, the loading conditions at infinity have been prescribed in the 
formulae of the Appendix. For problems (1-12), the traction at infinity is free. For problems (13) and (14), the 
traction (or restraining force) at infinity must be in equilibrium with the loads close to the crack tips. A half of 
the traction at infinity is applied in the upper half-plane and the other half in the lower one. 

For general cases of loading at infinity, the formulae can be obtained by superposition of them with the formulae 
of problems (4) and (5). 
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