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ABSTRACT

The effects of stochastic extension on the statistical evolution of the ideal microcrack
system are discussed. First, a general theoretical formulation and an expression for the
transition probability of extension process are presented, then the features of evolution in
stochastic model are demonstrated by several numerical results and compared with that in
deterministic model.
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I. InTrRODUCTION

One of important damage mechanisms in materials subjected to external loading
claims that numerous microcracks, owing to nucleation, extension and coalescence,
can eventually lead to fracture of materials. So far the understanding of the evolu-
tion of microdamages and their effects on macroscopic mechanical properties remains
still quite superficial. Nevertheless, the interest in this subject is increasing.

The evolution of the ideal microcrack system was discussed in [1] by the sta-
tistical description based on the deterministic extension model. The deterministic
extension model means that the extension rate of a microcrack with length scale ¢

may be expressed as

de _ 4, | (1

where A is a deterministic function depending on material properties, loading stress,
and length scale of microcrack ¢,

In this paper we intend to explore.the effects of possible stochastic fluctuations
in extension rate of microcracks on the evolution of the ideal microcrack system.
For this purpose, a generalized model, the stochastic extension model, is proposed.
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Instead of Eq. (1), the meso-dynamic equation should be

de
— =4 (2
de )

where @ is a stochastic variable. As in Ref. [1], a cutoff length scale ¢, is assumed,
i.e. a=0 for c < ¢,

Obviously, the stochastic fluctuation of extension rate is closely related to the
stochastic deviations of local conditions from the macroscopic average ones. The
stochastic fluctuations of local conditions may result from the following factors: (i)
the small-scale inhomogeneities in material and stress, (ii) the interaction, or cou-
pling, between microcracks distributed stochastically, and (iii) the stochastic orienta-
tions of microcracks. The stochastic fluctuations can appear not only because of the
microcracks on the same scale in the microcracks system, but also in the extension
process of a special microcrack due to the stochastic fluctuation of local conditions
at the tip of microcracks. In this sense, the deterministic extension model in [1] 1s
a simplified one in the limit without fluctuations. The aim of this paper is to dem-
onstrate the effects of the local stochastic fluctuations on the evolution of the micro-
crack system.

In the deterministic extension model™, an individual microcrack was depicted by
its length scale ¢, and the statistical description was made in 1-dimensional phase
space {c} using the number density n(c,z), In the stochastic extension model, however,
an individual microcrack should be specified by two independent variables, the length
scale ¢ and the extension rate @, Hence the phase space must be generalized to 2-
dimensional (¢, @), and the statistical description should be given by distribution
function f(c, a, 1),

The evolution equation of the microcrack system in deterministic extension
model was a partial differential equation™

(")‘n 5]
[ An p— . 3
ot Oc L ! ¢ ( )

where s is the rate of nucleation density in phase space {c}, depending on ma-
terial properties, loading stress, and length scale of microcrack ¢, In this paper,
nucleation rate s is still adopted to describe the nucleation process. But the governing
equation of 7 will not maintain the previous form of Eq. (3) due to the stochastic
extension rate. Therefore, we have to deduce another evolution equation, with which

we could further discuss the feature of evolution analytically and numerically, and
compare it with that of the deterministic extension model.

II. Errects oF Stocuastic EXTENSION OF MICROCRACKS

Now we start from the distribution function f(¢, a, #) in phase space (¢, a),
which can be limited to the region ¢; << ¢ and 0 <C a because of the cutoff length
scale ¢, and the negligible probability of the contraction process (i.e a < 0),

The lowest order moment of f(¢, @, z) is the average number density in sub-phase
space {c}, relevant to n(c¢, ¢) in the deterministic model, i. e.
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n(c, t) = J: f(c, a, t)da, _ (4

n is closely related to the macroscopic properties of materials, we have to deduce
the evolution equation of #,

The average extension rate of microcracks, relevant to A4 in the deterministic
model, may be calculated from the first-order moment of f(c¢, a, ¢)

()= dCe, y = =2 {"aiCc, 0, 1)da, (5)
”(Cg ;) 0
Now we shall split the extension rate 4 into two parts
4 — A+, (6)
dz

~

where A4 is the average part, and the fluctuation part g is a stochastic variable,
(@) =0, Generally speaking, A is a slow variable, and & is a fast variable, both
belonging to different time scales. Let 7z, be the characteristic time of @ and 7 be
the scale of the fluctuations under local conditions, ¢, may be estimated as

- ctr d‘.' = -
e L A(c") /4 ™

i. e. 7, is the average extension time of microcracks from ¢ to (¢ +r), and the

barred quantity in Eq. (7) is a mean value in the region (c,c + r),

Define autocorrelation function of 2 as

G(t15 1) = (a(2)a(1,)), (8)

In view of the characteristic time z, of @, the approximate form of G may be
written as

G (1, 1) = (@0 (‘3;‘~) (9

where 6(y) is a function .with a half width 1/2 centered at y = 0, and Sw 6(y)dy =1,

On average, the stochastic behavior of @ appears only in the period Az> .,
The intensity of fluctuations can be described by (&@*), which is a slow variable
with a time scale longer than z,, Then the relative intensity of the fluctuations is
characterized by -

g=+/ (@A, - o)
In general, § <1 or # K 1, determined by the real conditions of materials.

Usually f(c, a,¢) is a2 complex function of @, which is determined by a large
amount of data. But roughly speaking, f is a function centered at a=A4 with a relative
deviation B, It might become a wide distribution if §1is not small enough, which will
not be discussed in this paper. Now a new stochastic variable with simpler probab-
ility distribution will be derived from the original stochastic variable a, The
distribution function of the new stochastic variable could be determined by only a
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few parameters or functions.

Define the increment of the length scale in duration (2,7 + Az):

1+ AL
Ac = j a(¢)dr, (11)

t

where At satisfies the condition
IND I (12)

Ac is a stochastic variable related to the mean value of ¢ in the duration Az, The
condition (12) means that Ac is the stochastic accumulation of ¢ during Az, We
will determine the prebability distribution W(c, t; ¢ + Ac, t + A1),

The mean value of Ac is

A +Ar
(Ac) =§ (addy’ g] Adr', (13)
which may be calculated from equation
etae) g
A’=§ dc' E(Aﬁ, (14)
¢ A(c") A

if the function 4 = A(c¢) is given. In Eq. (14), 4 is a mean value of A in region
(¢, c +{Ac)),

The variance of Ac is given by

(o= <oy = | an [ 6 1), (1)

Substituting Eq. (9) into (15), we have
((Ac — (Ac))*) = B*d™.At, (16)

again the barred quantities are the mean values in region (¢, ¢ + (Ac)), By using
the variance of Ac, the diffusion coefficient can be defined as

1 2 1 7, 72
D= -—((Ac Ac = — R%.A*, 17
A « (Aac))?) ) (17)
Introduce parameter
=25t 18
g =28 . (18)

D may be rewritten as

_ ac))
D YV (19)

From the condition (12), g < 1, As a matter of fact, we have neglected in Eq. (13)
the contribution of diffusion to the mean increment {Ac), whch is related to 9D/

8 C and the relative magnitude is about ;— g (Ac) <1,
c

The probability distribution function W has a form centered at Ac = {Ac¢) with
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a relative deviation \/m e EJf— , which is much narrower than that of f(¢,
t

a, 1), Essentially, this result comes from the central limit theorem.

Let us introduce the characteristic function' defined by
B(k) = () = | a(acyweits, (20)
where W is the Fourier transform of ¢:
W(est;¢ + Acy, t + Ac) = ‘Zl_z j dke % p( k), (2D)
Now, we write ¢(%k) in term of a cumulant expansion
o) = e[ 3 D7 (a0)], (22)
m=1 !

where #,(Ac) is the m-th cumulant. Comparing Egs. (20) with (21), we obtain
the expressions of the first three cumulants '

u = (Ac), (23)

4, = 2DAI — 5'”’4:1 5'*°’dx,<z(:,)s(:z)>, (24)
t+Ar +Ar 1AL

g = g d;,L i, 5 433030, (25)

If the fluctuations are not very strong and the autocorrelation time is not very long,
the higher-order cumulant may be neglected, and a good approximation to @(%) can
be obtained by retaining only the first few cumulants. Notice that the first cumulant
u(Ac) is just the mean value of Ac¢ and the second cumulant #,(Ac¢) is the var-
iance.

Retaining the first.two cumulants, we have the characteristic function
(k) = exp(ik{Ac) — K’DA), (26)

From Eqs. (21), (26), and the assumption of the zero probability of the
contraction process of microcracks (i.e. Ac < 0), an approximate expression of W
1s obtained

1 exp[ —(Ac — {Ac))*/4DA1], for Ac =0,
W(cst; ¢+ Acy t + At) = {4/ 4z DA
03 ' fof Ac < 0,

(27)
where 7 is the normalization factor that is close to 1 as g &K 1, We can see that

W given by Eq. (27) is 2 Gaussian function centered at Ac = (Ac) with a cutoff

for Ac<<0, and its relative deviation can be estimated by «/g/Z, W is determined by
the average extension rate A(C) and the fluctuation parameter g, which are
related to the real conditions of materials.

For the microcrack system, the length scale ¢ is also a stochastic variable, and
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its probability distribution density is proportional to n(c¢, 2)

o(cs 2) = n(cy 1) / r' n(c', )de'. (28)

Whereas, W(c, t; ¢ + Ac, t-+Atz) is the conditional probability, i.e. the probability
density of length scale ¢ + Ac at time 7z + Az if the scale is ¢ at time z, Because Az
is taken to be much longer than the autocorrelation time 7., the conditional proba-
bility is only determined by the value of ¢ at time z, and is independent of the
earlier information. Therefore, the extension process, described in this way, appears
to be Markovian. Therefore, given the number density of microcrack system #(c, ¢)
at time ¢, the extension-induced evolution can be calculated according to W(c, t;
¢+ Ac,t+ At), So W is also called the transition probability.

III. Evorurionary FeaTures oF Microcrack SysTem N Stocuastic ExrtensioNn Mober

In the ideal microcrack system, the evolution of number density #n(c, t) is
mainly controlled by the nucleation and extension process of microcracks, which
are independent of each other statistically. The evolution equation may be expressed
as

n(c,t 4+ At) = An,(c, t) -}-S de'n(e’s W5 15 ¢, ¢t + A1), (29
where the first term on the right-hand side indicates the contribution of nucleation
in the duration from ¢ to ¢ + A¢, and the second comes from the extension process.

The nucleation term can be calculated from the rate of nucleation density S,
An(c, 1) = 8(c, t)Ar, (30)

where the extension effect in the duration from z to z + Atz for the cracks created
just during this period is neglected. In order to include this effect, we wutilize the
solution of Eq. (3) given in Ref. [1] to obtain a modified expression of nucleation

term as
1 [‘ ’ ’
. An, = S(c)de (31)
CT A e dde’,
where, ¢y = ¢, for r d{": << Az, otherwise ¢, is defined by r dc: = Az,
1 A(C ) o A(C)

Expression (31) includes the average effect of extension, and the higher-order modi-
fications induced by fluctuations are neglected.

In the limit case without fluctuations (i.e. D —>0), the transition probability
W becomes the &-function, and the evolution equation (29) reduces to Eg. (3),
i. e. the evolution equation in the deterministic model. Because the evolution of #
is related to an integral of W, the behavior of # is not very sensitive to the details
of W, Hence, the features of the behavior of n(c, #) in deterministic and stochastic
model might be more or less alike. Some important differences, however, do exist
between these two models.

A remarkable feature of the deterministic model is the saturation in the behavior
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of n(c, 1)™, The saturation time for length scale ¢ is given by

¢ dc’
o) = | L, G2)

which is just the extension time from cutoff scale ¢, to ¢, The appearance of satu-
ration means that the effect of the initial state vanishes, and the effects of nuclea-
tion and extension balance each other.

In stochastic extension model, the extension time from ¢; to ¢
¢ Y ¢ ’
T(c)=[ i‘_,=g —de.
€1 A(C ) + a
is a stochastic variable, and its probability distribution is a function centered at
T ={(T) ~ 1,(c) with characteristic width z,(¢) E\/ 1)t = t“\/ gAt/2t,., The
effect of the initial state vanishes only when z-—> o0 due to finite probability for

any value of T, Then the saturation becomes an asymptotic process in the stochastic
model. The effective saturation time may be estimated by

£4(0) ~ 1)1 + 7/ gar/21() 1, (34)

where 7 is a numerical factor, typically v ~ 3—4. (The probability for T >z is
estimated by ™7/, and for 7 = 3.7 we have ™"/ ~ 107°, which measures the dif-
ference from the saturation value of 7),

(33)

€y

In the stochastic model, the boundary between saturation and non-saturation
region becomes a transitional layer, and the effective boundary may be estimated by

X)) ~ cu([1 — 7 4/ g1/ 28:(e) 1, (35)
where ¢,(¢) is the boundary of saturation region in the deterministic model.

Now we show some numerical results about the evolution of number density

6.00r
4,00}
2
2.00}
y=1.5 [ly=50 y=10 y=15 y=20
0.00 5.00 10.00 15.00 20.00  25.00

X

Fig. 1. Transition probability W{(y,z; x5 v+ 1) & =1.5 and g = 0.1,
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n(c, t), The trial models

are adopted, where Eq. (36) is from Ref. [3],

parameter g are u

sed.

A=ar1— /e,

$(c) = 8y < exp(—c?/c2)

(%)

In calculation, the following reduced quantities are used:

(¢S

x=c[lcyy T=at]cyy #=0an]/Sc,, b= c/c,
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Several trial values of fluctuation
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Fig. 2. (a) Number density for the stochastic model, # = 1.5 and g = 0.1;
(b) Number density for the stochastic model, & = 1.5 and g =0.3;
(c) Probability distribution @, 5 = 1.5 and g = 0.1,

We take b = 1.5, g = 0.1 or 0.3, the initial condition is #(x, 0) = 0, and the time

step Ar =1, From Eq. (18), if z,/At = 0.1, g = 0.1 means a relative fluctuation
of about 0.7, which is not too weak,

Fig. 1 shows the transition probability W(y, r; x, v + 1) with &= 15 and
g = 0.1, where the curves for y = 1.5, 5, 10, 15, or 20, respectively, are given.

The evolution of number density for the stochastic extension model with g = 0.1

0.081
g=0.3
0.06 F
o

0.041
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1 1 | 1 1 \r--._ —
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Fig. 3. Curves of #-x at 7 =10,

Solid lines for stochastic model with ¥ =1.5, g =0.1 or 0.3, respectively,
and dashed line for the deterministic model with & = 1.5,
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and £=0.3 is shown in Fig. 2(a) and 2(b), respectively. We can see that the curve
is composed of an approximate saturation part in the.small-scale region, a non-satura-
tion part in the large-scale region, and between them exists a transitional region,
which moves forward to a large length scale. Fig. 2(c) shows the probability distri-
" bution p defined by Eq. (28) with &= 1.5 and g = 0.1,

In Fig. 3 we compare the curves #-x of stochastic model (g = 0.1 and
g = 0.3, respectively) with those of deterministic model at 7z =10, The result
shows that three curves are more or less alike, however, remarkable differences
exist in the vicinity of the boundary between the saturation and non-saturation
regions. Comparing the calculated data with Egs. (34) and (35), we find that
7 ~ 3.7 is reasonable.
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O.N’J;r-{,;;f:y';;:;x/z 1.00
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Fig. 4. 3-D graphics of #-x-7 in the stochastic model with 5=1.5 and g = 0.1.

Fig. 4 shows a 3-dimensional graphics for the stochastic extension model with
b= 15 and g = 0.1, in order to demonstrate the global characteristics of the evolu-
tion of microcrack distribution.

IV. ConNcrLusioN

This paper presents a statistical description of an ideal microcrack system. The
theory is based on the probability description of nucleation and the stochastic exten-
sion model. The main points of stochastic extension model are as follows: (i) the
extension rate of microcracks is a stochastic variable; (ii) the phase space {c¢, a}
and the distribution function f(¢, a, #) are introduced; (iii) the transition probability
W(csyt; ¢ + Acy ¢t 4+ At) and the evolution equation of number density n(c, 7z) are
derived.

The deterministic extension model™ is merely the limit case without fluctua-
tions.

The evolutionary features of n(c, z) are discussed in this paper. In numerical
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calculations, we adopted trial models of nucleation rate § and average extension rate
A, and trial values of fluctuation parameter g, The results show that the behaviors
of n(c, t) calculated from the stochastic and deterministic models are more or less
alike, even for the case with strong fluctuations in the stochastic model. The differ-
ences for these two models, however, do exist, especially in the vicinity of the
boundary between saturation and non-saturation regions. It is believed that the gained
information about evolutionary features of the microcrack system would help us
further investigate the microdamage in materials. §,4 and g in our theory should be
determined according to practical conditions of materials. Such a problem is beyond
the scope of this paper, the discussion will be given elsewhere.

In this paper we have discussed the ideal microcrack system, which is suitable to
the early stage of damage, when the microcracks are sparse. With the development of
the damage, however, the density of cracks increases, and the interaction and coa-
lescence between cracks, will become dominant, especially at the stage close to fracture.
These effects will be discussed elsewhere.
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