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THE PLANE PROBLEM OF COLLINEAR RIGID LINES 
UNDER ARBITRARY LOADS 

JIANG CHI-PING 
Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080, China 

Abstract-The elastic plane problem of collinear rigid lines under arbitrary loads is dealt with. 
Applying the Riemann-Schwarz symmetry principle integrated with the analysis of the singularity 
of complex stress functions, the general formulation is presented, and the closed-form solutions 
to several problems of practical importance are given, which include some published results as the 
special cases. Lastly the stress distribution in the immediate vicinity of the rigid line end is 
examined. 

1. INTRODUCTION 

THE PRESENCE of inclusions plays an important role in the fracture behavior of engineering 
materials, especially composites. In analysing such problems, certain idealizations concerning the 
geometry and the mechanical properties of the constituent materials are usually made in order to 
be tractable mathematically. For an elastic plane problem, if the value of the elastic modulus of 
a flat inclusion is much greater than that of the matrix is, it appears reasonable to consider it as 
a rigid line. Furthermore, from the viewpoint of inhomogeneities in solids, a rigid line and a slit 
crack are the two extreme cases of a flat inhomogeneity, namely, for a rigid line E -+ co, and for 
a crack E-+0, where E is the Young’s modulus. Since Eshelby’s paper[l], some investigations on 
the rigid line inhomogeneity problem have been made, however, because of the analytic difficulties 
involved, the number of closed solutions for particular geometries and loading conditions is very 
limited. In ref. [2], the solution for an elastic plane containing a rigid line under an arbitrary 
uniform stress state at infinity can be found. Recently, the elastic plane problem of collinear 
periodical rigid lines was dealt with by Hao and M)u[3], who considered only a special loading case 
in which the tension stress at infinity is parallel to the rigid lines. 

In the following an attempt is made to find the solution for an elastic plane with collinear rigid 
lines under most general loading conditions which include both an arbitrary uniform stress state 
at infinity and a concentrated load at an arbitrary point. Applying the Riemann-Schwarz symmetry 
principle integrated with the singularity of complex stress functions[4], the general formulation is 
presented, and the closed solutions to several problems of practical importance are given. 
Especially, the closed solution for a concentrated load at an arbitrary point is obtained. In addition 
to providing solutions to such practical problems as wedge loading or rivet loading at an arbitrary 
angle, this solution can be used as Green’s function to obtain the stresses in the elastic plane with 
any given distribution of loads. 

2. GENERAL FORMULATION OF THE PROBLEM 

To formulate the problem we use the complex stress functions Q(z) and 
which the stresses (o.,, o,, and r,Ky) and displacements (u, v) are given as[2]: 

cry + g?. = 2[@(z) + Q(z)] 

- - - 
6) - it,. = Q(z) + @(z> + z@‘(z) + Y(z) 

where 

- - - 
2p(u’ + iv’) = K@(Z) - @(z) - z@‘(z) - Y(z) 

au au 
“A.-& “L-& 

299 

Y(z), in terms of 

(2.1) 

(2.2) 

(2.3) 

(2.4) 
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p is the shear modulus and K = 34~ for plane strain, K = (3 - v)/(l + v) for generalized plane 
stress, v being Poisson’s ratio. Q(z) and Y(z) are holomorphic in the whole region occupied by 
the elastic body but poles at concentrated load points. Assuming that a concentrated force X + iY 
and a moment m are applied at an arbitrary point z,,, we have[2] 

Q(z) = I+@, 
0 

N 
Y(z) = - 

z)oM + MO 
z - zo + (z _zo)2 +Yo(z) 

(2.5) 

V-6) 

where Go(z) and Y,(z) are holomorphic in the whole region which is occupied by the elastic body, 
and 

MC- x+iy Nc;~,--+~K:). M,=_g, 
2741 + K) ’ 

(2.7) 

By applying the Riemann-Schwarz symmetry principle, a new analytic function n(z) can be 
defined: 

n(z) = 3(z) + z@(z) + F(z) (2.8) 

where 6(z) = Q(Z). It is obvious that Q(z) can be expressed as: 

Q(z) = --F- - +(zo-~o)lz+Az~ 
z - 2, (z - Fo)2 + Qdz) (2.9) 

where Q,(z) is holomorphic ML the region in which n(z) is defined. Thus, (2.2) and (2.3) can be 
rewritten as 

cy - i?, = Q(z) + Q(2) + (z - Z)@‘(z) 

2p(u’ + it,‘) = d(z) - R(P) - (z i P)@‘(z). 

Now consider our problem. 

(2.10) 

(2.11) 

In an infinite elastic plane, a series of collinear rigid lines are placed along a part, L, of the 
real axis where L is a union of straight-line segments Lj with the end points uj and bj(j = 1, . . . , n) 
(Fig. 1). A concentrated force X + iY and a moment m are applied at an arbitrary point zo. 6, and 
c2 are the principal stresses at infinity and a is the angle between cr, and Ox axis. Then the boundary 
conditions for the problem may be expressed as follows; 

i 

uI + i[tl, + c,(x - xl)] on L, 
(u+iu)+=(u+iu)-= . . . . . . (2.12) 

U, + i[v, + cn(x - x,)] on L, 

where U, and v, are displacements of the midpoint (x,, 0) of the rigid line L, and C, the 
counterclockwise rotation of L,(j = 1, . . . , n), superscripts + and - refer to the value of the 

Fig. 1. Infinite plane with collinear rigid lines under a concentrated load at an arbitrary point and a 
uniform stress state at infinity. 
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functions on the real axis as approached from the upper half-plane and the lower half-plane, 
respectively. Taking the derivative of (2.12) with respect x, we obtain 

(u’+iv’)+=(u’+iu’)-=H(E,,...,c,) on L (2.13) 

. (2.14) 

In addition, to determine solely the solution of the problem, the equilibrium conditions of rigid 
lines must be considered. Assuming that rigid lines are traction-free, we have 

s 
‘(a,-iir,,)+dx- ‘(a,-it,))dx=O 

;” s 

s 
j=l,...,n (2.15) 

3 9 

b, b, 
xa; dx - xa, dx = 0 j=l,...,n. (2.16) 

3 a, 

Substituting (2.11) into (2.13), we obtain 

WD ‘(t) - n-(t) = 2pH on L (2.17) 

K@ -(t) - n+(t) = 2pH on L (2.18) 

where t denotes the point on the real axis. 
The addition and subtraction of (2.17) and (2.18) yield 

[x@(t) -Qt)]+ + [KC@(~) -Q(t)]- = 4yH on L (2.19) 

[rc@(f) + Q(t)]+ - [I@ + Q(t)]- = 0 on L. (2.20) 

Referring to (2.5) and (2.9) Q(z) and Q(z) in the present problem can be written as 

Q(z) = &+r +@o(z) 
0 

O(z) =N+ Az(zo - Yo) + iv0 
z -4 (z - fo)2 

+r+r’+n,(z) 

(2.21) 

(2.22) 

where Qo(z) and Q,(z) are holomorphic functions in the whole plane cut along L and they vanish 
at infinity, and 

ReT = a (a, + 02), r’ = -i(c, - c2)em2”. (2.23) 

Substituting (2.21) and (2.22) into (2.20) we obtain 

[UDo(t) + n,(t)]+ - [it@,(t) + O(t)]- = 0 on L. (2.24) 

According to Liouville’s theorem, we have on the whole plane 

K@)(Z) + n,(z) = 0. (2.25) 

Substituting (2.21) and (2.22) into (2.19) and using (2.25), we obtain 

@z(t) + @o(t) =f(t) on L (2.26) 

where 

(2.27) 
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The general solution of eq. (2.26) can be expressed as[2] 

where 

X,(z) = fi (z - a,)-“*(2 - bj)-“* 
,=I 

which is a single-valued branch in the plane cut along L and for which 

lim z”X,(z) = 1. 
121-m 

P(z) is an arbitrary polynomial consistent with the behavior of QO(z) at infinity: 

(2.28) 

(2.29) 

(2.30) 

P(z)=c,z”~‘+c,z”~*+..~+c,. (2.31) 

The integration constants C, , . . . , C, and the rigid line rotations E,, . . . , t, are determined 
from the equilibrium conditions, (2.15) and (2.16) of rigid lines. 

Substituting (2.10) into (2.15), we can obtain 

s 
*’ [Q(r) -Q(t)]+ dt - 

s 
*’ [Q(t)-Q(t)]-dt=O j=l,...,n (2.32) 

“I 01 

which can be reduced to integrals along closed contours: 

[Q(z)-Q(z)]dz=O j=l,...,n (2.33) 

where A, are clockwise closed contours encircling the rigid lines Lj with poles (z,, Z,,) out. 
Similarly, the substitution of (2.10) into (2.16) yields 

Re 6 z[@(z) - Q(z)]dz = 0 j = 1,. . . , n. (2.34) 
JA, 

The set of 2n linear algebraic equations given by eqs (2.33) and (2.34) determine the remaining 
complex constants C,, . . . , C, and real constants t, , . . . , t,. On the other hand, for large value of 
Jz] we have[2] 

@(z)=r+;+o ; 0 . (2.35) 

From (2.21), (2.28) and (2.35) it is seen that 

c, = 0. (2.36) 

Obviously, (2.36) may be used instead of one of eqs (2.33). 
The above method is also efficient to solve the problem of collinear periodical rigid lines if 

we make use of the following conformal transformation of the z-plane onto the i-plane: 

z = g arctg [. 
ll 

(2.37) 

3. SEVERAL CLOSED SOLUTIONS 

In the following we consider the application of the solution given by eq. (2.28) to various 
geometries and loading conditions which may have some practical importance. 

Example 1 

Consider a rigid line under a concentrated force X + iY and a moment m at an arbitrary point 
zO, and an arbitrary uniform stress state at infinity (Fig. 2). 
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Fig. 2. Infinite plane with a rigid line. 

Noting (2.36), in this case, (2.28) becomes 

where 

@o(z) = ~(zbKl(z) (3.1) 

(3.2) 

The value f(t) refers to (2.27) in which H = ci, and 

X,(z) = (22 - a*)-“* (3.3) 

which is a single-valued branch in the plane cut along L( - a, a) and for which 

Noting that 

lim z&(z) = 1. (3.4) 
Izl-rn 

X,‘(t) = -X;(t) on L. (3.5) 

Equation (3.2) can be reduced to an integral along a clockwise closed contour A, which encircles 
L (see Fig. 2) 

1 1 
Z(z) =- 

[ s 

u f(t) dt 1 

s 

u f(t) dt 
---, ---- 

2 2x1 _,X,+(t)t -z 2ni -,x,(f) 1 
zo, .& are out of A. (3.6) 

Integrating, we obtain 

+(zo-~o)ii7-hzo 20 r F 2pEi 

4z -4) 0 
m I( +; r-----y z 

K K > 

+; M-E. ( > K 
(3.7) 
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From (2.21), (2.22), (2.25) (3.1) and (3.7), it is seen that 

+(ZO-&)R+liio K(Z - zoy 1 
+y&) M -~__- 2~ocdz -to + (2, -%J)M+ li;i 

K(Z - 2,)2 

+ (z. - ~o)m -I- AZ0 20 

tc(z - 20) 
w I( +; 

T T' 2pci 
r-;-;-T zXo(z) 

> 

+; ( I M -; X,(z) (3.8) 

- - 

a(z)=; 
[ 
J&-+N+(zo7p)MSMo+Kr +F+p_2p& 

0 z -50 ZO 1 
1 X,(z) UM +I X,(z) w ---- ~- 
2~o(zo)z -zo 2 X&T,) [ z - 50 

+(zo-~o)lij+f% 
(z - zoo)* 

+ (z, - &Jli;i + ATo 2, 

2 - zo ;2 &@-a 1 +;+4- +r+r'+ 2@)zX,(z) 

+ ;(-KM + lv)X,(z). 

Substituting (3.8) and (3.9) into (2.34) then using the residue theorem, we obtain 

(3.9) 

L =-J-&z” 
i 
KM(zo-~~-~(~o-~~-[(zo-~~)a+~o] ( &&)I I - 

+&z&r --F-T’). (3.10) 

For the special case of an arbitrary uniform stress state at infinity, we have 

X+iY =O, m =O. (3.11) 

Equations (3.8) and (3.9) become 

(3.12) 

(3.13) 

which are in agreement with the solution in ref. [2]. 
Furthermore, for the special case of a uniaxial tension at infinity (a, = 6, e2 = 0), we have 

r=r=% r’= _!.ee-2ia, (3.14) 

Equations (3.12) and (3.13) become 

@(z)=$l+~ o--E.go+!!f+ ( > .[( > $ 1-i a+z.g-~ .I JA (3.15) 

n(z)=; l+K)a-~a-pci+ e-2i* - 4 + ,ud 1 (3.16) 
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fr sin 2a 

E=F 
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(3.17) 

which is in agreement with the result in ref. [2]. 

Example 2 

A series of collinear periodical rigid lines are placed at -a + 2nb < x < a + 2nb on the real 
axis. The stress state at y = + co(z = x + iy) is given by 0,) c2 and a(Fig. 3). 

Making use of the conformal transformation of the z-plane onto the c-plane which is given 
by eq. (2.37) (Fig. 4), eqs (2.19) and (2.20) are transformed into 

[w~)--(~)3++w(t)-~(w=4Pi 151<rg;, q=o (3.18) 

[K~(5)+n(5)1+-[K~(4:)+n(5)]-=0 1wtgg, q=o. (3.19) 

The solution of eqs (3.18) and (3.19) can be written as 

In the z-plane, we have 

712 

tg% 

712 

Q(z)=$!-p6i-C, 
%il 

L 

For a large value of (~1, we have 

J tg 
2 Itz 2”a 

5 - t&T Tj$ 

cih cch 

Fig. 3. Infinite plane with collinear periodical rigid lines Fig. 4. Conformal map. 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

EFM 39,2--H 
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From eqs (3.22)-(3.24), it is seen that 

which give 

(3.25) 

(3.26) 

(3.27) 

(3.28) 

Thus G(z) and n(z) take the forms 

(3.29) 

na 7c.z 

tA(z)=i(Kr +F+r’-2pi)-i(rcT -F-P’-2pci) 
set s Qz b 

!r--- 

-. 

t&T 
2 =z 2 lra 

Tjjj - 67 26 

For the special case in which CJ, = olo, rr2 = 0, tl = 0, we have 

r=Qf, p= _F$, t=o. 

Equations (3.29) and (3.30) become 

i2(Z)==?(K - I)-?& + 1) 
set b tg b 

1 . 7cz _ na 

’ which are in agreement with the results in ref. [3]. 
For the other special case in which g, = 0, cr2 = 6,) c1 = 0, we have 

Equations (3.29) and (3.30) become 

n(Z) = 2 (K + 3) - 2 (K - 3) 
set 2 tg z 

(3.30) 

(3.31) 

(3.32) 

(3.33) 

(3.34) 

(3.35) 

(3.36) 
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Example 3 

Consider a rigid line L( - a, a) on which tractions are applied. 
Since the remaining part of the plane is traction-free, the solution (2.28) becomes 

where 

Hence 

X0(z) 
@o(z) =x s y$& + Cxo(z) (3.37) 

f(t) = 2pciItc. (3.38) 

Q(z) = @o(z) =$+(-zz+c)Jz*l_a* (3.39) 

Q(z) = -K@(Z). (3.40) 

Let P + iQ be the resultant force of the tractions which are applied on the rigid line, and m, 
the sum of counterclockwise moments about the origin, of the tractions, the equilibrium conditions 
of the rigid line (2.33) and (2.34) are changed into 

[Q(z)-R(z)]dz= -P=iQ (3.41) 

P z[@(z) - Q(z) dz = -m, 
A 

(3.42) 

where A is a clockwise closed contour encircling the rigid line. 
The substitution of eqs (3.39) and (3.40) into eqs (3.41) and (3.42) yields 

c=_ P+iQ 
271(1 + K) 

c= 
Km0 

n(l+ K)/4La2' 

4. STRESS DISTRIBUTION AT THE 

(3.43) 

(3.44) 

RIGID LINE END 

It is of interest to examine the stress distribution in the immediate vicinity of the rigid line 
end. It is shown that the singular behavior of the stresses remains proportional to the inverse square 
root of r (i.e. r-‘12) as in the case of the immediate vicinity of a crack tip, where r is the distance 
from the rigid line end. As an example, we discuss the case of a rigid line subjected a uniaxial tension 
at infinity (a, = cr, c2 = 0). Introducing the polar coordinates (r, 0) at the rigid line end + a (Fig. 5), 
from eqs (2.1), (2.10) (3.15) and (3.16) we obtain 

fsX=---$Jcos~[(4+n +z)-2(1 +J-)sinisinz0] 

for c1 = 0”, r 4 a (4.1) 
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Fig. 5. Polar coordinates near a rigid line end. 

REFERENCES 

[1] J. D. Eshelby, The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Sot. 
Lond. A241, 376396 (1957). 

[2] N. I. Muskhelishvili, Some Basic Problems of Mathematical Theory of Elasticity. Noordhoff, Leyden (1975). 
[3] T. H. Hao and Y. C. Wu, Elastic plane problem of collinear periodical rigid lines. Engng Fracture Mech. 33, 979-981 

(1989). 
[4] C. P. Jiang, Z. Z. Zou, D. Wang and Y. W. Liu, A discussion about a class of stress intensity factors and its verification. 

Inr. J. Fracture (to be published in 1991). 

(Received 13 March 1990) 


