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Abstract-Based on the local properties of a singular field, the displacement pattern of an 
isoparametric element is improved and a new formulated method of a quasi-compatible finite 
element is proposed in this paper. This method can be used to solve various engineering problems 
containing singular distribution, especially, the singular field existing at the tip of cracks. The 
singular quasi-compatible element (SQCE) is constructed. The characteristics of the element are 
analysed from various angles and many examples of calculations are performed. The results show 
that this method has many significant advantages, by which, the numerical analysis of brittle 
fracture problems can be solved. 

1. INTRODUCTION 

THE FINITE element method is a powerful tool for numerical analysis in fracture mechanics. 
Centred on the simulation of singular fields at crack tips, many researchers have proposed various 
simulations and treatment methods of the singularity and have constructed various types of 
singular elements since the end of Sixties. Some important research includes: (1) compatible 
singular elements constructed by means of special polynomial interpolation or moving the 
edge-center-node of isoparametric element etc.[ l-31; (2) incompatible singular elements obtained 
from directly combining the main terms of Williams expansion and the displacement field of normal 
element[4]; (3) the singular element displacement field formed by combining some terms of the 
Williams expansion with proper stiff displacement terms, and the method based singular element 
and transition element, which takes stress intensity factors as generalized node displacements[4, 51; 
(4) singular element methods based on various variational principles or sub-region mixed element 
methods[6-81. 

Each of the existing methods has its advantages and disadvantages. There are two main 
problems: one is that most of them have dense networks, resulting in expensive and difficult 
application to 3-D fracture problems. The other is that some high accuracy elements, e.g. 
hybrid/mixed elements, have very high accuracy but the stability of the result is poor and difficult 
to control, which requires further theoretical investigations. 

The isoparametric element method is most widely used in engineering owing to its many 
advantages. As an improvement on the isoparametric element method, this paper proposes a new 
and more generally formulated method of quasi-compatible elements, which can contain any 
singularity and easily meet the requirement of compatibility. This method can be widely used in 
the numerical analysis of local fields in engineering, which contain various singularities or are 
difficult to treat with ordinary the isoparametric element method. It is especially useful in the 
numerical analysis of brittle fracture problems. The establishment of displacement patterns, 
theoretical derivation, analysis on the characteristics of the element and the comparison between 
calculated results[9], show that element SQCE has the advantages of saving time, being reliable and 
highly accurate, and easily programmed. 

2. THE ESTABLISHMENT OF THE DISPLACEMENT PATTERN OF SQCE 

2.1. The general form of a displacement pattern 

Let the local displacement field of true field in some singular zone be U;, divide it into two 
parts: 

U,=U,o-+AU, (1) 
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take: 

then: 

Ujo = Nq;, (2) 

AU;, = U;. - Nq;, (3) 

where N is the shape function matrix of the isoparametric element, qj, is the local node displacement 
array formed by the value of U, at the nodes of the singular element boundary. Obviously, in 
eq. (l), Up is the part, in U,, expressable by isoparametric interpolation. And AU, is the part not 
includable in the displacement field of an isoparametric element. The general form of the 
displacement pattern of element SQCE is derived by combining AU, in eq. (3) with the displacement 
field of the isoparametric element as follows: 

U=Nq+AU,=Nq+U;,-Nq;, 

q is the actual node displacement array of the singular element. 

(4) 

2.2. The application in elastic fracture mechanics 

For elastic fracture problems, of the same type, the displacement, stress and strain fields near 
crack tips have the same distributed pattern. 

Only the strength of stress fields varies with different problems. In eq. (4), let 

u, = M(r, e)n (5) 

M(r, 0) = _L 
r 

4G $( 

(2k - 1)cos 012 - cos 3612 (2k + 3)sin 1312 + sin 3612 

% (2k + 1)sin d/2 - sin 38/2 -(2k - 3)cos Cl/;! - cos 30/2 > 
(6) 

k = 

i 

(3 - v)/(l + v), (plane stress) 
3 - 4v (plane strain) (7) 

M(r, 0) is the main term of Williams expansion, 1 is the array of stress intensity factor (SIF). 
Substituting eq. (5) into eq. (4), we have the concrete form of displacement pattern of SQCE as: 

U=Nq+(M-N@lZ=Nq+M,I (8) 

where 

fi = [M(r,, &), M(r,, &), . . . , Mtr,, ei), . . . , I’ (9) 

M(r,, 0,) is the sub-matrix formed by M(r, 0) at node i. 
To practical problems generally, only a few singular elements are needed at crack tip. The 

rest majority are normal elements. Assume that there are m singular elements, then the whole 
displacement field of the region with cracks can be expressed as: 

Nq+M,L j<m 

Nq j>m’ 
(10) 

2.3. Analysis on convergence 

The convergence criterion of the displacement method requires that the displacement pattern 
of elements meets the conditions of being perfect and compatible. The displacement pattern of 
element SQCE, eq. (8), is perfect. As to the compatible condition, from eq. (lo), we know that the 
entire region consists of two kinds of elements, namely, normal elements and singular elements. 
There are three types of element boundary: 

(a) the boundary between singular elements; 
(b) the boundary between normal elements; 
(c) the boundary between a singular element and a normal one. 

For boundaries (a) and (b), the compatible condition is strictly fulfilled. As for (c), the 
condition is met only at the nodes, for the boundary between nodes, the condition is fulfilled in 
the following two senses: 



Quasi-compatible finite element I197 

(i) when the element dimension h tends to zero, the second term in the displacement pattern 
(8) disappears and the compatible condition is guaranteed; (ii) with the boundary nodes of singular 
element increase, the second term, (eq. 8), AU, tends to zero. So the compatible condition is 
approximately fulfilled and the boundary between the two kinds of elements is quasi-compatible. 
The convergence of element SQCE is therefore guaranteed[lO-121. 

In fact, element SQCE is suggested to be based on the property of singular fields. In other 
words, the singularity always distributes in a local area. To a certain distance from the singular 
point, the difference between the displacement patterns of two kinds of elements becomes small. 
The interface of the two kinds of element is entirely outside of singular zone. So, even the singular 
element size is large, the compatible condition can be easily fulfilled simply by properly increasing 
the number of boundary nodes, which is proved from the results given in the following. 

3. FINITE ELEMENT FORMULAE 

3.1. Strain field 

Differentiate eq. (lo), and we have the strain field of element SQCE: 

where B is the strain matrix of isoparametric element, B, is the differential of M,. 

3.2. Stress field 

From eq. (11) and the relations between linear elastic stress and strain: 

’ = 
DBq+DB,A j<m 
DBq j>m 

where D is the elastic matrix. 

3.3. Global stiflmatrix and the calculation of stress intensity factors 

Substituting eqs (11) and (12) into the discrete minimum potential energy principle: 

= f {qTKR,A +;ATK:l -ATF;}+ i {fqTK’q -qTF’} 

(11) 

(12) 

(13) 
j= I j=I 

using global matrix symbols to express: 

rr =~QrKQ+Q~K,,,s~+~K,~TA -QTF-A=F;,. (13)’ 

To group-crack problems, many cracks exist in the region, the general form of the above eq. is: 

i=I i= I ,=I 
(14) 

where Ai is the column matrix of stress intensity factors at the ith crack tip and R is the total crack 
tip number in the region studied. 

Using the independence between Q and &, and by varying eq. (14) w.r.t. to Q and Ai 
respectively, we have: 

KQ + 2 K,,&= F (15) 
i= I 

KcsiQ + K,i;li = Fi (16) 



1198 WANG ZHICHAO et al. 

From eq. (16), the array of SIF is derived: 

Ai = - K, ’ (K;t,, Qsi - F;.i). (17) 

When volume force is not considered and there is no surface force on the crack surface, we have: 

A, = -K,‘K;C,,Qs,. (17)’ 

Substituting it into eq. (15), we have: 

K’Q = F (18) 

where 

which is the global stiff matrix considered singularity. 

4. ANALYSIS ON ELEMENT CHARACTERISTICS 

Reference [9] took a 2-D type I crack specimen as an example and analysed the characteristics 
of element SQCE from various angles such as the node number of element boundary (NNEB), the 
number of singular elements (NSE), the number of Gauss’ integration points (NGIP) and the size 
of singular elements (SSE) etc. Some main results are listed below. 

4.1. The influence of NNEB on solution 

Standard value: K, = 3.058. 
4.1.1. The results of calculation (see Table 1). 
4.1.2. Conclusion. Element SQCE can be combined with isoparametric elements of any type 

and any number of nodes. To plane problems, all the calculated examples show that satisfactory 
accuracy can be obtained by combining with isoparametric elements with 8 nodes. 

Table 1. Results of calculation 

NSE NNEB SSE 

K: 
computed Percentage 

value difference 

2 8 0.8 x 0.8 3.073 0.49% 
2 12 0.8 x 0.8 3.069 0.36% 

4.2. The influence of NSE on solution 
4.2.1. The results of calculation (see Table 2). 
4.2.2. Conclusion. The size of element SQCE can be larger because the singular zone at crack 

tip is very small. A certain distance from the tip, there is no singularity. It is unnecessary to use 
many singular elements. To plane problems, only two are needed when there is one axis of 
symmetry and four for no symmetric axes. 

Table 2. Results of calculation 

NSE NNEB SSE K: PDt 

2 8 0.8 x 0.8 3.0735 0.5% 
6 8 0.8 x 0.8 3.071 0.425% 

tPD = The percentage differences of results. 

4.3. The influence of NGZP on solution 
4.3.1. The results of calculation with various Gauss’ point numbers (see Table 3). 
4.3.2. The curve of the results vs Gauss’ point numbers (Fig. 1). 
4.3.3. Conclusion. At the internal part of singular elements, the gradient of stress and strain 

is great, and Gauss’ integration points should be properly increased. From the results above and 
Fig. 1, we know that taking the mean value of 4 x 4, 5 x 5 or 4 x 4, 5 x 5, 6 x 6 points the 
computed results can be more ideal. 
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Table 3. Calculations with various Gauss’ point numbers 

NSE NNEB NGIPt K: PD 

2 8 3x3 3.47526 13.64% 
2 8 4x4 3.1384 2.63% 
2 8 5x5 3.0058 - 1.70% 
2 8 6x6 2.9497 -3.54% 

tNGIP = The number of Gauss’ integration points. 

3.058 +--A~ ___, y __i __ ., 
K: 

K, 

0 
3x3 4x4 5x5 6x6 

Gauss’ points 

Fig. 1. Results vs Gauss’ point numbers. 

4.4. The influence of SSE on solution 
4.4.1. The computed results for direrent sizes (see Table 4). 
4.2.2. The curve of computed results us singular element sizes (h, x h,,) (Fig. 2). 
4.3.3. Conclusion. Owing to the displacement pattern (8) entirely including the singularity 

at crack tips, the influence of element size on results is weak. Properly to increase the size of 
singular elements, the accuracy can be even higher, which agrees with the analysed result on this 
pattern[9]. This characteristic makes the network dividing of element SQCE, in practical appli- 
cation, need only to fulfill the requirements of the convergence for the isoparametric element itself 
and the gradient of normal stress, strain fields. This feature is rare compared to other existing 
singular elements. 

Table 4. Computed results for different sizes of singular elements 

NTEt NSE SSE NGIP Kf 
Average 

value PD 

24 2 0.3 0.3 4x4 3.138 x 5x5 3.0058 3.072 0.46% 

24 2 0.5 4x4 3.1442 x 0.5 5x5 3.0034 3.07362 0.51% 

24 2 0.55 4x4 3.1451 x 0.55 5x5 3.00247 3.07375 0.52% 

4x4 3.16994 
15 2 1.0 x 1.0 5x5 3.0177 

6x6 2.94268 
4x4 3.2102 

4 2 2.0 x 2.0 5x5 3.0371 
6x6 2.9526 
4x4 3.34 

4 2 3.0 x 2.0 5x5 3.0715 
6x6 2.9453 
4x4 2.97658 

2 2 3.0 x 5.0 5x5 2.85537 
6x6 2.80885 

tNTE = Total number of elements (singular and normal). 

3.04344 -0.47% 

3.0729 0.487% 

3.067 0.28% 

2.8802 -5.8% 
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Fig. 2. Computed results vs singular element sizes. 

5. VARIOUS CALCULATING EXAMPLES AND COMPUTED RESULTS 

Reference [9] calculated and compared about 20 examples. Some typical ones are given in 
Table 5. 

Table 5. Examples of calculated results 

Specimens NTE NSE TNNt 

Central crack 15 2 62 
Single edge crack 15 2 62 
Double edge cracks 12 2 51 
3-point bending 16 2 65 
Internal double cracks 12 4 51 

Edge crack 24 2 93 
4-point bending 16 2 65 
CCPFS 15 2 62 
ECET§ 12 2 51 
ECPFll 24 4 97 
MMTTl 26 4 93 

Standard Computed Percentage 
value value difference 

3.058 3.04344 - 0.476% 
5.289 5.225 -0.63% 
3.587 3.5889 0.05% 
4.7494 4.7094 0.84% 
1.9496 1.9202 0.332% 
1.9267 1.93306 1.50% 
4.5168 4.507 -0.33% 
4.2749 4.29407 0.37% 
0.57049 0.569207 0.22% 
7.67884 7.7409 0.8% 
2.48 2.4805 0.022% 
2.28684 2.30788 0.92% 
1.13221 1.141267 0.8% 

TTNN = Total number of nodes. SCCPF = Type I central cracks with point force on crack surface. §ECET = Type I 
edge crack with eccentric traction. IIECPF = Type II edge crack with point force. TMMT = mixed model of Types I and II 
subjected to tension. 

6. CONCLUSIONS 

From the establishment of the element displacement pattern, theoretical derivation, analysis 
on the element characteristics and all the calculated results, it is obvious that element SQCE has 
the following features: 

(1) It can solve any type of 2-D brittle fracture problems and directly output stress intensity 
factors. 

(2) With the different selection of singular element size, Gauss’ point number etc., the 
computing results are stable, reliable and highly accurate. 

(3) The singular element size is large, its number is small, saving computing time and giving 
high efficiency. 

(4) There are not any new requirements from the singularity introduced into the isoparametric 
element. The dividing of the singular element network needs only to meet the requirements of the 
convergence for the isoparametric element itself. Data input and management are almost the same 
as that for isoparametric elements, and can be easily programmed. It can be added into large scale 
finite element software without any difficulty, which makes it easy to be applied in engineering. 

(5) Can be combined with any other isoparametric element and easily to be extended to 
three-dimension fracture problems. 
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