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Abstract-The invariant representation of the spin tensor defined as the rotation rate of a principal 
triad for a symmetric and non-degenerate tensor is derived on the basis of the general solution of 
a linear lensorial quation. The result can be naturally specified to study the,spin of the stretch 
tensors and to investigate the relations between various rotation rate tensorsencountered frequently 
in modern continuum mechanics. A remarkable formula which relates the generalized stress con- 
jugate to the generalized strain in Hill’s sense. lo Cauchy stress. is obtained in invariant form 
through the work conjugate principle. Particularly. a detailed discussion on the lime rate of 
logarithmic strain and its conjugate sIress is made as the principal axes of strain arc not fined during 

deformation. 

I. INTRODCJCTION 

The method of principal axes dcvclopcd by Hill (1970. 1978) is w&known and proved to 

bc very influential and prominent in modern continuum mechanics. The esscncc of Hill’s 

method is to seek a representation of tensors with rcspcct to the tract axes of deformation. 

tlill holds that this method is a sure way to avoid the labyrinthinc complexity encountered 

in tensor algebra. He also provided a reprcscntation of a spin tensor, which is given in a 

component form with respect to a fixed background triad. Furthermore, this principal axis 

method has found its many important applications in studying and formulating constitutive 

relations, one of which could be connected with the generalized strain measure and the 

corresponding work conjugate stress. Specifically. an interesting example in these appli- 

cations could be referred to the logarithmic strain and its conjugate stress. Since Hencky 

first introduced the logarithmic strains referred to as “natural” or “true” ones, they have 

been favoured in metallurgical and material science literature. However, since then this 

strain measure has not yet fOund its uses in the case when the principal axes of strain are 

not fixed. Truesdell and Toupin (1960) have taken note of this situation and Hill (1970) 

also argued the inherent advantages of using the logarithmic strain measure in certain 

constitutive inequalities. This problem has been discussed by Hutchinson and Neale (1980). 

St&en and Rice (1975) and others. They all confirmed that the logarithmic strain is useful 

in formulating the finite theory of plasticity. However, as pointed out by St&en and Rice, 

the strain In U is essentially intractable as strain measure, where U is the right stretch 

tensor. After discussing the tensorial Hencky measure of strain and strain rate for finite 

deformation. Fitzgerald (1980) subjcctivcly concluded that the USC of the logarithmic strain 

is only limited to the problems with fixed principal strain axes. On the other hand, using 

the logarithmic strain measure, Gurtin and Spear (1983) obtained a relationship between 

the logarithmic strain rate and the stretching. Recently. Hoger (1986, 1987) derived an 

expression for the time rate of In U. based on which a properly invariant representation for 

the corresponding stress conjugate to the logarithmic strain has been derived. From what 

is mentioned here, there is still a need to make things more clear in dealing with the 

logarithmic strain, its time rate and the associated conjugate stress when the principal axes 

of strain are not fixed. 
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It should be pointed out that the representation of a spin given in component form by 

Hill in his early study might not be convenient for the purpose of theoretical study and it 

does not reflect the harmony with tensor analysis as well. Considering this fact. it is necesssr) 

to seek the invariant representation of spin tensors and this is our main aim in the present 

paper. As shown in the following section. the approach developed will differ from that 

otTered by Mehrabadi and Nemat-Nasser (1987). In our approach, we first establish a 

general tensorial equation to determine the spin of a symmetric tensor, and then solve the 

equation by an expansion technique in terms of a group of complete and irreducible 

generators. The rate of a symmetric tensor is supposed to be divided into two parts, one 

represents the contribution due to the rotation of the principal axes. the other called the 

rate of a tensor with its principal axes fixed is objective. In this way. the influence of the 

rotation of the principal axes on the rate of the tensor can be eliminated. In the third section, 

we shall focus on the detailed discussion of the stretch tensor and its spin. using the general 

results obtained in the second section. In the fourth section. the general relationship between 

the rates of generalized strains and stretch tensor, its time rate as well as the spin. is 

established. Particularly. the relation between the logarithmic strain rate and the right 

stretch tensor and its spin is given in a compact form. In the fifth section, the problem 

regarding work conjugate and conjugate stress is discussed in detail and the general relations 

between Cauchy stress and the stress conjugate to the generalized strain are derived in 

closed forms. 

2. INVARIANT REPRESENTATION 01: A SPIN 

Suppnsc thcrc is ;I configur:ttion R in three-dinicnsion;II space of which a point is 

dcnotcrl by S. Let U be ;I symmetric and non-dcgonoratc tensor attached to this point S at 

time I, that is, dct (I # 0. at any tirnc 1. The spectral decomposition of U can be written in 

I hc form 

U = i i.,N, @ N,, (1) 
1-I 

where {I.,:,_ ,.?,, arc assumed to be the three distinct eigenvalues of U, (N,},, ,.?., are the 

corresponding eigcnvcctors. which form a local orthonormal triad called the principal triad 

of U. This triad rotates against a fixed background one and its spin 0” is delined by 

f2’ = f: &, @I N, or equivalently 64, = R’*N,, (2 
r-l 

where 64, denotes the time derivative of N, at X fixed. Because of the orthonormality of the 

principal triad, 0’ is a skew tensor 

fP = _($-p)‘, (3) 

where ( )’ means the transpose of the tensor in the parentheses. 

Hill (1978) found a representation for 0’ which is given in component form 

f-l’* = o$N, e, N, 

an d 

uJf. . 
,’ 
‘1) 

” - j-,-i, * 
(no sum over i. jand 2, # I.,) (4b) 

where A,, represents the components of the tensor ir based on the Lagrangian triad, 
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ir = &N, @ 8,. 
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Obviously eqn (4a) is not an absolute representation of RL. The purpose of the present 

paper is mainly to seek various invariant representations of fiL and their applications. 

First. let us consider the skew tensor (irLJ_ ’ - I_- ‘ii). From eqns ( I ) and (2). we derive 

This equation can be considered as a linear tensorial equation for RL if U and ir are known. 

Since RL is the spin of the principal triad of U. all isotropic tensor functions f(U) should 

share the common principal triad. Therefore. replacing U by f(U) in (5) we have 

2nL-f(U)QLf_l(u)-f_‘(U)sPf(U) = i(U)f_l(U)-f-‘(U)i(U). (6) 

Obviously. we can see that (6) has the same form as (5). therefore. the solution of (6) must 

be the same as that of (5). For instance. if we select either f(U) = C = U’ or the deviatoric 

tensor U’ of U. that is. f(U) = U’ = U- l/3(tr U)I. eqn (6) directly becomes 

‘-p-cflq-‘_c-‘$pc= tc-‘_c-‘c* 

2$-p _ U’fi” U’ - ’ __J’-‘fpu = (JqJ-I _u,m’(j*. 

(73) 

Vb) 

An elegant technique to solve a family of linear tonsorial equation which arc more 

gcncral than (5) has been recently prescntcd by Wang and Duan (1989). The key of this 

tcchniquc is to expand the solution in terms of a group of complctc and irrcducihle 

gcncrators associated with this tcnsorial equation. Ijascd on this method and considering 

the fact that $1’. is an isotropic skew tensor function of U and u, WC can easily find the 

f’ollowing three linearly indcpondcnt generators of 0’. 

when U has three distinct rigcnvalucs. Further. the solution of (5) can bc expressed in terms 

of these generators. 

0’. = c w,R”) with w, = w,(l, II, III), (9) 
I- I 

where I. II and III are, respectively, the invariants of U, and the scalars w, (i = - 1.0, I) 

are their functions, which need to be determined. In fact, by substituting (9) into (5) and 

making use of the Cayley-Hamilton theorem, we can transform (5) into the following form 

[311Iw, +(I? -II)~~,,+Iw_l]~“‘+[-IIIIwl+(3III-III)o,-IIw_l]~‘o’ 

+[I1 IIIW, +(II? -IIII)o,+31IIo_,]R’-” = IIIfi’-“. (10) 

Since the three gcncrators R”’ arc linearly indcpcndcnt. WC can easily find from (10) the 

solutions for wi 

<‘J, = ;(II-31111). w. =:(311-I’). 
III 

W-l = --&I’-41 11+9111) (11) 

with 
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A = 41’ III-I’ II’ - 181 II III+411J+27111~. (1’) 

It can be also expressed in a compact form 

where II,,. and Illc. are. respectively. the invarlants of the deviatoric tensor U’. Finally, 
from (5). (9) and (I I) we find 

This formula is valid when A # 0. The condition A = 0 holds if, and only if, U owns 
multiple eigenvafues. The proof is as foftows. 

Obviously we have 

Through 50mc atpebraic operation we obtain 

Wficn U futs two niuftiplcci~envaluos. Q”’ (i = - I, 0. I) are not of linear independence. 
In the case I = ilk = ;t2 # i3, using the minimal ~~lynor~lial of U 

one can show th;tt thcrc is only one indcpendcnt generator of the spin R’.. say K#’ I’, then 
from (5) ;mcl (17) we obtain 

equivalently. 

QL can be also obtained from (14) through a limit process as A tends to Z~TO. The limit 
result depends on the process and might differ from (18) by a term a(N, @ N2 - N2 @ N ,). 
However. this term is not essential to RI-. 

If U has three multiple eigenvafues, it is a spherical tensor and any orthonormaf triad 
can be taken as the prjn~~~al one, In this case, RL could be any skew tensor. This result 
can be derived from (14) by assuming a limit process L, --* A2 -+ i,) = 2. In brief, (14) can 
be applied for arbitrary distribution of eigcnvalucs of U. 

WC should mention that the selection of the three indcpcndcnt generators as given in 
(8) is by no means unique For cxamplc, instead of (8). one can choose 

as the independent generators of flL. By making use of Caylcy-Hamilton theorem, 

u-’ = ffl-‘(U”- tu+rrq. (21) 

eqn (14) can be easily changed into the form 
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RL =~[(IJ-5I~I1+6III1+4II’)(U~-ljL3+(4II1-1’-9III)(U~~-iTcI:) 

+(I’-3II)(U’irU-UtJU’)]. (‘3) 

Substituting U and I. II as well as III by U’ and its corresponding invariants IU. = 0. 

[IL.. and 1111- . the above formula (22) is completely equivalent to that obtained by 

Mehmbadi and Nemat-Nasser (1957). 

3. STRETCH TENSORS AND THEIR SPINS 

Let X denote the position of a moving material particle P at a reference (Lagrangian) 

configuration. the motion of the material particle can be described by x = x(X. I) where x 

represents the position of P at time t in Eulerian configuration. The deformation gradient 

F is defined by 

ds = F(X. I) dX. (23) 

F is not dcgcneratcd and III = det F > 0. According to the polar decomposition theorem. 

we have 

F=RU=VR, (24) 

whcrc R, U and V arc the rotation tensor, right and left stretch tensors, rospcctivcly. For 

later convcnicncc. WC intnxlucc ;I local rotation transformation as 

K: S-+s= RSR’ (25a) 

which m;lps any second rank tensor S given in the rcfcrcncc configuration into the current 

conliguration. Thcrcforc. the invcrsc transformation K ’ maps ;I tensor 1) given in the 

current conliguration into the rcfcrcncc configuration 

R ‘: D + i> = R”DR. (25b) 

So in the following study wc shall focus our attention on the problem in the rcfercncc 

configuration. the results can bc rcatlily transfcrrcd to the current configuration through 

the transformation R. 

According to Hill. a family of strain tensors is dclincd by 

E =/'(U) := c f(L,)N, Q N,. (26) 
$2 I 

where E called the gcncralized strain tensor is an isotropic tensorial function of U. and the 

corresponding scalar function / =/‘(i.) is smooth, monotonic and satisfies the following 

conditions 

/(I) = 0. /“(I) = I. (27) 

This family of strain measure includes the Seth strain 

Et”’ = z’;;[u3- I]. (28) 

As n takes the value n = I. -I. j. (28) gives. respectively. the Green strain, the Almansi 

strain and the stretch strain measures. Particularly. when N + 0, (28) corresponds to the 
logarithmic strain 
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E"' = In U, (29) 

this is sometime called the generalized Hencky strain. 
Let v = k(X, t) denote the velocity of the material point Pat time t. the velocity gradient 

tensor L is defined by 

dv=Ldx and L=I%-‘, (30a.b) 

where ( ‘) means the time derivative with respect to tat X fixed. Usually L can be additively 
decomposed into two parts 

L=D+W (31) 

with 

D = t(L+L*), w = &-17). (32) 

where the symmetric part D and the skew part W are, respectively, called the stretching 
and the material rotation rate tensor. Combining (24) and (30b) with (31)-(32) we obtain 

L=fiR+RirU 'R*, 

n= ~R#u-'+u-TJ)R'= ~iijrv, 

W=RR+~R(ljU.'-U--'O)Rr, (33) 

with 

Ii?’ = kR' and 6 = :(irU l-+-U ‘0) (34a,b) 

rcpresetItin~ the rclativc rotation rate and the stretching in the refcrcnce con~i~ur~tti~)n. If 
N, ;tnd n, (i = I, 2.3) arc the sigcnvoctors of U and V, respcctivcly. then the spins Q’, of U 
and R” of V are dclinccl by 

or Cqt~iVitlCfItly 

Based on the previous discussion, the relationship between RL, U and ir is completely the 

same as eqn (5). of which the solution is given by (14). Since V = FR”’ = RUR’. we can 
prove n, 9: RN,. thus 

From (5) and (33). it is found that 

W =fZR+R[Rk- !(UR'U-'+U"'R'.U)]R', (38a) 

then, using (37) and the above formula, we obtain 

In what follows, we would like to express ir as a function of r) and U. This can be 
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done by solving the linear tensorial equation (37b). Since U is symmetric and linear with 
respect to b. there are only six generators for U, that is 6, UbU, U%U’, U6+bU, 
U’fi+ 6lJ’ as well as U’hJ+ U&J’. As U has three distinct eigenvalues. these generators 
are obviously complete and irreducible. Therefore, by a similar procedure to that which we 
followed to deal with eqn (5) and taking U as the linear combination of the above listed 
generators. we obtain from eqn (34b) 

U = ~[‘III~+(r:+Ir)u~u+u~~u~-III(ub+bu)-I~’riu+ubu~)]. 

(39) 

This expression presents the same result as given by Mehrabadi and Nemat-Nasser (1987) 
with the exception of a misprint there. 

Since V = RUR”. we can easily prove 

V” := V-RRV-+aVQR = RljRT, (40) 

where V” can be cnllcd the relative time derivative of V. and it is objective. Substituting 
(47) into (43). it can be shown that 

v” = lrt;lri[l Ill~+(l~+II)VDV+V~DV~ -lll(VD+VU)-I(V’DV+VDV*)J. 

(41) 

Similarly. ;I rcprcscntation for a’ in terms of U and 0 can bc directly found through (22) 
and (39). and it tokcs the form 

IZ’. =,,,(tJl-I--ihJ)+p,,(Ui,U ‘-IJ”i,U)+/,. ,(I% -‘-U ‘l-j). (42a) 

whcrc 

2 
PI = ~jf~~--*II) ---(l~III’-4ll1~IlI+6Il IIIz+I14), 

-2111 

P” = K(lirr III) 
-- --~(1’111-711111I+9111~+II’). 

, 
p__, =~~I~~~~ij(14-41~ll+61111+11~). Wb) 

From (37) and (42a.b). Q’ can bc expressed by 

RE =RX+p,(VD-DV)+p,(VDV-‘-V-‘DV)+p_,(DV-’-V-ID). (43) 

These two representations (42a.b) and (43) have not been obtained before. 
As dcscribcd by Gurtin and Spear (1983). the co-rotational derivative of U. that is, the 

time dorivativc of U with rcspcct to its principal triad fixed can be defined as 

u+ = U-RLU+UR~ = i ,I,N, B N,. (44) 
i- I 

Similarly, the co-rotational derivatives for an isotropic tensorial function/(U) is given by 

wJ)1’ =mJ)-rrLj-(u)+/(u)nL. (45) 

These co-rotational derivatives defined in (44) and (45) are objective in the sense that 
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the influences due to the rotation of the principal axis on U or onf(U) have been eliminated. 
if we rewrite (44) in the form 

ir = :(tr u)I+ t i;N* * N,+RLU-u*L, (46) 
1= I 

where ;.; = L,- I:3(i., +i.:+ iI). It is seen that ir c;Ln be additively decomposed into three 

parts. the first two parts representing. respectively. the change rate of tr U and the deviatoric 

change rate of U watched by an observor fixed on the principal triad. This decomposition 

might be useful in constructing the constitutive relations for rate-dependent and hypoelastic 
materials. 

Finally, it should be mentioned that the above discussion can remain the same for the 
symmetric left stretch tensor V given in current configuration. In fact, the spin of V is RE. 

therefore. its co-rotational derivative V* is defined as 

v* = ii-Q”V+VQE = VO-fpV+V~L, (47) 

we see from (47) that the co-rotational derivative of V is in general not the same as the 

relative time derivative of it. 

4. RATES Of‘ GENERALIZED STRAINS 

The material dcrivativc of ;I gcncralizcd strain tensor E dcfincd in (29) can bc directly 

calculatctl by 

k = i E:,_q(i,)N, @ N, +fl’.E- I@, (48) 
I- I 

whore y(i.) = d/;/d;. and !I( I) = I. Using (44) and the dclinition ofy(U), the above formula 
can bc transfcrrcd into its absolute rcprcscntation 

I? = iq(lJ,ir+&,/(U)]- ~[.~(U)(R’W-UR’~)+(I~~U-UW)~(U,]+Q~E-EQ~. 

(49) 

Thcrcforc, it lsads to 

for the rate of Seth strain. For )I = 0, by carrying out a limit process on (SO), or from (49), 
it is easy to obtain 

k(U) = b+gun”lJ ’ -I_- ‘RLU)+R’. In U-In UR’. (51) 

It would bc sometimes convenient to express the quantity I/2(UfW - ’ - U - ‘WU) in 
terms of Ij and U through the fundamental solution (23). To do this we fnd 

+!qo(UbU-‘+U-‘~U)+~q,(U6+6U)+qJ&J], (52) 

where 
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do = -(I’III-7II~III+9III~+II’). q-2 = III’(3II-I?). 

q_, = (1: II-3 I III-ZI12)III. q. = III(9 III-I II). 

q, = I II’-2 1’111-3 II III. q2 = 3 I III- 11’. 

After a simple algebraic calculation we can also arrive at 

(ln U)* = ,$, $N, @ N, = D+~(l_JIZLU-‘-U-‘RLU). 
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(53) 

Combining (52) with (53). the co-rotational derivative (In U)* is expressed by D and U, 

which is useful in determining the conjugate stress of the generalized Hencky strain. 

We insert eqn (53) into (48) and arrive at 

I? = g(U)U(ln U)*+RLE-E@ = ~[g(U)U(ln U)*+(ln U)*Ug(U)]+RLE-ERL. 

(54) 

which leads to the following expression 

I?‘“’ = i[V’“(ln U)* + (In U)*U’“] + & (fi’,U’” - U’“RL). (55) 

for the Seth strain E’“‘. In particular, wc obtain 

E”” = (ln U)* +@E”” _ E’n’R’.. (56) 

In what follows. wc want to seek the cxprcssions for the rcli’tivc time dcrivativc and 

the co-rotational dorivativc of In V. To do this, wc first make USC ofJ’(V) = R./‘(U)R”. and 

have 

(57) 

Combining (57) with equations (51) and (47). finally we arrive at 

(In V)’ = D+i(V@V-’ -V-‘i2’V)+fiL In V-In V@, (58) 

(In V)* = D+ i(V@V- ’ -V-‘I%‘) = D+i(FRLF-‘-F-TRf.FT). (59) 

where fi’- = RR’-R” as defined in (37b). The result shown in (59) is the same in form as 

obtained by Gurtin and Spear (1983) whcrc they did not give an explicit representation for 

R, = Q.“. 

5. WORK CONJUGATE AND CONJUGATE STRESSES 

According to Hill (1978). the stress T conjugate to the gcneralizcd strain E can bc 

defined through 

w = 111 tr (aD) = tr (TE), (60) 

where w represents the stress power worked on a volume element in reference configuration 

and u the Cauchy stress. In fact, the symmetric tensor T in (60) can be determined uniquely 
as the form of E is prescribed. 

Before deriving the general relation between T and u. Consider. as an example, the 
simple case E = E”‘” = U - 1. From (60). we obtain 
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(61) 

This result can be found in Hill (1978). Conversely u can be expressed in T” ‘I. In fact, 

from (39) and (60) it follows that 

I 

u = III(I II -III) 
R(I IIIT”“’ +([‘+I[)UT” :U+U’T” :‘U’_III(T” z)U+UT”‘:‘) 

The general relations between T and u are not as simple as (61) and (62). 

Because we already have an explicit representation of (In U)* and E. the representation 

of the stress T conjugate to E can be derived without any difficulty. from (54) and (60). it 

follows that 

III tr(a*D) = III tr (6-D) = tr [Tg(U)U(ln U)*+(ET-TE)QL]. (63) 

where ET- ET is measure-invariant (Hill, 1975, unpublished). Since (In U)* is measure- 

invariant, the diagonal components of Tg(U) in Lagrangian triad and tr (T,q(U)). tr 

(T.q(U)U) as well as tr (T{/(U)lJ’) arc nlcasurc-invariant, too. Combining (42b). (54) and 

(03). the cxprcssion for (r by virtue ofT can bc obtained. For convcnicncc WC introduce the 

following n0tation, 

‘I’, = Tg(U)U, ‘I’, = ‘1’14; - CT + i( UT,,U ’ - u “I’,,u), (64) 

then Wc arrive at 

lllRraR = Sym T,+ 

or 

u = ,~~IRSym T,+ 

(65a) 

(65b) 

where p, can be found in (42b) and 

a/_, =T& ‘-U-‘TE. 

I u, = UTJJ ’ - U 'T& 

u; = UT,-TJJ . 

where Sym {a} means the symmetric part of ( * ). When the specific form of E is given in 

terms of U, the above representation (65a) with (65b) can bc simplilicd further. To show 
this, let’s consider the case T = T”‘, from (64)-(65) wc have 

T, = T’“‘, TE = l(UT’“‘U-’ -U- ‘T(“‘U)-((ln U)T”‘-T’“‘(ln U)), 

then 
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o-c-!-R 
I 

T”‘+ i p,a: R’. 
i- - I 

(66) 

The representation of T with respect to u or d can be derived from (73) through lengthy 
algebraic calculation. 

To avoid this complexity. an alternative way can be taken for eqn (6) by applying the 
general approach as described in detail by Wang and Duan (1989). based on which the 
solution of (6) can be expressed by 

(67) 

where 

i-2: = EC-PE. ~2,’ = EI?E-‘-E-‘tE, CC, = RE-‘--E-‘I?., (68) 

with 

A, = 41; 111,-l/ II;-- l81,II,~l1I~+4Il,z+27Ill/?. 

whcrc I,. II, and III, arc the three invariants of E. We make use of eqns (53) and (54) to 
cxprcss D in terms of E:. l?. U as well as 52’. in the form 

i, = ~y(u)u]-‘(B-nLE+mL)-~(URLU-‘-U-‘RLU). (69) 

Then cqn (60) can be rcwrittcn as follows: 

tr (T-6) = III tr (a-D) = 111 tr (2-b) 

= III tr {a[(y(U)U)-‘(I?-RLE+ERL)-:(U@U-‘-U-’RLU)]}, (70) 

where b = R*aR and b = RTDR. Now utilizing (67). inserting it into (70) and through a 
cumbersome algebraic calculation we finally find the solution of (70) as given by 

T= IIISym u[y(U)I_Jl-‘+ i dC( , 

i- - I 
(71) 

whcrc 

?l/_ , = x:‘E-‘- E- ‘72”. Xc = EX’E- ’ -E- ‘XfE, X( = EZf-Z:‘E (72) 

with 

x’ = -EG[g(U)U]-‘+d[g(U)U]-‘E+$[UdU-‘-U-’bU]. (73) 

As an important example of the applications of (74) let us calculate the stress T’O’ 
conjugate to the logarithmic strain E’O’ = In U. Since J(1) = In )., so i.J’(E.) = g(i.)l = I. 
which means g(U)U = I. In this case, eqns (71)-(73) lead to the simpler form 
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(73) 

with 

xl_n, = xtn (ln U)-‘-(In U)-IS’“, 

xt = (1n U)x’“(ln U- ’ - (In U)- ‘E’” (In Lb. 

cy = (ln U)x’” -P(ln U) (73 

and 

C’“=&lnU-InUti+j(UBU-‘-I_-‘tiU). (76) 

This result can be compared with Hoger (1987). 

With the help of (74). we can easily find the stress ?‘“’ conjugate to the strain In V. 

Before deriving this stress, it is worth pointing out that since (In I’)’ is not objective. an 

objective time derivative, say (In V) ‘. has to replace (In V)’ in using the formula (60). that 

is. we must have 

111 tr (an) = tr (T’“‘(ln U)‘); tr (an) = tr (?““(In V) ‘). (77) 

Since (In U)’ = R’(ln V) ‘R, from (X5) WC immcdiatcly arrive at 

(78) 

Thcrcforc. the conjugate stress T”‘) of In V is just ‘~““/lll. the mapping of lhc conjugate 

slrcss ‘1““’ of In U in the current conliguration by using the trwdwm~tion I< as dclincd in 

(25). divided by 111. The same conclusion can bc drawn for the rclntion bctwccn the stress 

conjugats to/‘(U) and that forj’(V). 

Hogcr (1987) discussed the conjugate stress of In V and concluded that the stress 

generally dots not exist. However she seems to ignore the fact that the gencralizcd strain E 

and its conjugate stress T are defined in the reference con&ration. If USC is maclc of the 

work conjugate principle to define the conjugate stresses in the current conliguration, an 

objective time derivative of strain should bc dcfinrd to roplacc the simple time dcrivativc 

of the strain. The above discussion concerning thr conjugate stress for In V obviously 

confirms our argument. 

6. CONCLUDING REMARKS 

Making USC of a group of complete and irrcduciblc gcnsrators of a linear tensorial 

equation, the solution of this equation is obtained by an expansion tcchniquc. In particular. 

the tensorial equation for a spin RLof the principal triad ofa symmetric and non-degenerate 
tensor U has been formulated and discussed in d&l. Based on this novel technique, the 

invariant rcprcscntation of the spin in terms of U and 0 has been given in a closed form. 

and it has a simpler form as the tensor U has multiple cigcnvalucs. 

To show the applications of the proposed method, three specific problems which are 

obviously very fundamental in the study of constitutivc relations for finite deformations 

have been successfully treated, including the stretch tensor and its spin, the invariant 

representations of generalized strain rate. Above all, the gcncral invariant rcprcscntation 

of the stress and the generalized strain, which, to the best of the authors’ knowledge, has 

not been known before. As an important example of the applications. the logarithmic 

strain and its conjugate stress given either in the refercncc configuration or in the current 
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configuration have been discussed in some detail and their invariant representations have 
been analytically formulated in a compact form. 
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