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Abstract-In this paper, the conformal mapping method is used to solve the plane problem of an infinite 
plate containing a central lip-shaped notch subjected to biaxial loading at a remote boundary or a surface 
uniform pressure on the notch. The stress intensity factors K, and K,, are obtained by the derived complex 
stress functions. The simple analytical expressions can be applied to the situation of cracks originating 
from a circular or an elliptical notch. The plastic zone sizes for such notch cracks are subsequently 
evaluated in light of the Dugdale strip yield concept. The results are consistent with available numerical 
data. 

INTRODUCTION 

The stress distribution ahead of a notch and the stress intensity factor at the tip of a crack in a 
notch field are vital factors in fatigue investigations and failure analyses, since cracks nearly always 
initiate from a notch root, prior to final fracture. Some papers [l-71 have dealt with this problem 
using different approaches based on fracture mechanics from the time this discipline was introduced 
into engineering design, research and lifetime prediction. However, most solutions are given as 
numerical results. 

The engineering significance of stresses and stress intensity factors in a notch field has also 
attracted scientific efforts on deriving analytical or empirical expressions describing these 
parameters in relation to the notch-crack size and loading conditions. After examining a variety 
of experimental data of central and edge circular or elliptical notches, Smith and Miller[8] proposed 
an approximation for the stress intensity factor K of a crack of length 1 from a notch root under 
a remote uniaxial tensile stress cr 

The limitation of this is that the formula conforms well to the theoretical result only when 
1 < O.l&, where D is the depth of a notch and p is notch root radius. 

Among the theoretical procedures for evaluating the stress distribution ahead of a notch, the 
complex stress function is a method initially developed by Muskhelishvili [9], which is one available 
for solving problems for various notch shapes via conformal mapping. Later, the theory was further 
advanced by Paris and Sih [ 101 who established a relationship between stress intensity factors and 
a complex stress function. 

In this paper, we use the complex stress function method to solve the problem of infinite plates 
containing a central lip-shaped notch subjected to biaxial loading at a remote boundary or for a 
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Fig. 1. Infinite plate containing a central lip-shaped notch under (a) remote biaxial loading. (b) Uniform 
pressure on the notch boundary profile. 

uniform surface pressure on the notch profile, this being followed by an evaluation of the stress 
intensity factor at the notch crack tip. The analytical solutions are found to be suitable for 
configurations of cracks originating from a circular or an elliptical notch. Moreover, the plastic 
zone sizes for such notch cracks can be determined via the Dugdale strip yield concept [ll]. 

THEORETICAL CONSIDERATIONS 

Conformal mapping 
Consider an infinite thin plate with a central lip-shaped notch subjected to remote boundary 

biaxial loading or a uniform pressure on notch profile itself (Fig. 1). The conformal mapping 
method is used to derive the complex stress functions of the problem. First, the following formula 
is adopted to transform a lip-shape profile on the z-plane to an ellipse on the t-plane [Fig. 2(a-b)]. 

z = I ? ( f + f )  2 

where a is the half length of 
be unity. Secondly, we use 

the lip-shape profile, and the half width of it, b, is assumed always 

(a) z-plane (b) t-plane (c) (-plane 

Fig. 2. Mapping a lip-shape profile onto a circle. 
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to transform an ellipse on the t-plane to a unit circle on the [-plane [Fig. 2 ( k ) ] ,  and thus one 
can show 

(3)  r(1 + m) = 1 .  

Combining the above two transformations, we obtain 

where 

a 
2 

Equation (4) uniquely maps the outer region of a lip-shape profile on the z-plane onto the exterior 
of a unit circle on the I-plane. The parameters r and m are dimensionless and can be found to 
be 

R = - r .  ( 5 )  

and 

Note that, since alb > O  

-1 d m  G O .  (8) 

Let y be the circumference of the unit circle of the [-plane, and so equation (4) has the form 

where q = el'. Noting that z = x + iy, we obtain, from equation (9) 

] cos e (1 +m)' 
x = -  1 +  

a[ 2 1+m2+2mcos28  

+m)2 ]sint(. J 
2 (1 + m )  [ l -  1 +m2+2m cos2B 
a (1 -m) 

Y =--.- 

The above equation describes the contour of a lip-shaped notch on the z-plane (Fig. 3). 

Basic equations 

general case on the [-plane are 
According to the theory developed by Muskhelishvili [9], the complex stress functions for the 
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Fig. 3. Solid curves showing the contours of two lip-shaped notches. (a) a /b  = 2.0, m = - 0.2361 and 
r = 1.309; enclosing a circle of d = b. (b) a/b = 4.0, m = - 0.1231 and r = 1.140; enclosing an ellipse of 

d = 26. 

where 40([)  and $o(() are holomorphic for I > 1, and 

while on y 

where X and Y are the resultant forces on the notch boundary, and r and r, are constants 
depending on the remote loading conditions. Note that, for plane stress 

3 - v  
l + v  

K = -  

where v is Poisson’s ratio. 
On the other hand, the boundary conditions for the general case on the [-plane are such that 

(16) 
W h ) -  - 
W Y )  

4 ( 9 )  + = 4 (Y)  + $(Y) = f 
where the prime notation denotes differentiation with respect to q and the bar denotes the complex 
conjugate. In the above equation 

f = i (X,  + iY,) ds (17) 1: 
where X ,  and Y,, are the resultant amounts of the positive normal stress on the element ds of the 
boundary. Substituting equations (14), (1 5) and their conjugates into (16), one obtains 

and 
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where 

and 

SOME SOLUTIONS 

Case 1: remote biaxial loading 

biaxial loading [Fig. I(a)], the corresponding boundary conditions are 
Boundary conditions. When a plate contains a central lip-shaped notch and is subjected to remote 

where the first equation is written such that no rotation at infinity is assumed, al and a’ are the 
remote principal stresses due to external loading, and c1 is the angle made by the direction of aI 
with reference to the axis Ox; and 

f = o  

X + i Y  = O .  (24) 

Therefore, equations (20) and (21) become 

and 

where 

R 
4 

fo = - -(a, + a d  

and 

which are deduced from the mapping function [equation (9)]. 
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Complex stress functions. Since 40(i) and +o([) are holomorphic outside y ,  and 40(i) and t,bo(() 
- - 

are holomorphic inside y, we have, according to the Cauchy integral theorem 

Then, equations (18) and (19) can be written as 

and 

and 

Note also that 

and 

-- 
We find that [~0(5)/~0’(5)] 4; (I/[) is holomorphic inside y ,  except at 5 = i f i ;  and [W/)IW’(~)] 
4;([) is holomorphic outside y, except at i = f i/&. So that, according to the Cauchy integral 
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theorem (for lcl > 1) 

w(5) __ 

w ' ( 0  
where G,(C) and G2(i) are respectively the principal parts of 46([) for 5 = +_ i&; and 

where H,( [ )  and H 2 ( i )  are respectively the principal parts of [ m / w ' ( ( ) ]  4;(5) for 5 = +_ i/&. 
In equations (40) and (41), the constant 

(1 - m2)2 
(1 + mZ)( 1 - m + m2)' Mo = 

In order to solve the first term in the right hand side of equations (33) and (34), we again apply 
the Cauchy integral theorem (for > 1) 

and 
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where gl(i), g2(5) and g3( [ )  are respectively the principal parts of [ o ( [ ) / w ' ( [ ) ]  for 5 = 0 and 
[ = k i&; and hl([), h2(c )  and h 3 ( ( )  are respectively the principal parts of [ m / w ' ( i ) ]  for ( = co 
and 5 = 

___ 

i / f i .  Substituting equations (25), (26) and (40x46) into (33) and (34), we have 

R 1 R m 
(Dl + 0 2 1  - i 

(al - a') - e2ja - - 
i 40(i) = 

and 

4 +- 1 Jm 
The differential of equation (47) is readily obtained 

R 1 R m 
e2ja + - (al + a') 5 4 i 4h(i) = - z (al - a') 

from which 

R 
4 

- M ,  [(a, + a')(] - m') + 2(al - 02)m e-'"]] - -(al + a2) (50) 

where 

m 
1 - m  +m2'  

MI = 

Taking into account equation (50) and its conjugate then by substituting equations (47) and (48) 
into equations (11) and (12), we finally obtain the stress functions 

1 
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Equations (52)  and (53) together with (49), (50) and (36) are the complete solution of Case 1 .  

Case 2: uniform pressure on the notch surface projile 

[Fig. 1 (b)], the corresponding boundary conditions are 
Boundary conditions. When the boundary of a lip-shaped notch is subjected to a uniform pressure 

r=r,=o 
and 

X, = - P cos(n, x )  

Y, = - P cos(n, y )  

(54) 

(55)  

where P is the magnitude of the pressure and n is the exterior normal to the notch profile. Hence 
the complex boundary conditions are 

m 
(1, + iY,) ds = - Pz = - PR 

and 

Complex stress functions. One may assume that, for this kind of first fundamental boundary 
problem, the stresses and the rotation vanish at infinity. Then, $([) and $(c) are holomorphic 
outside y, and 

4 (m)  = * ( G o )  = 0 .  

By employing the Cauchy integral theorem, we have (for 15 I > 1 )  
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Then, from equation (16) and its conjugate, we obtain 

-_ 
As in Case 1 [m([)/m’(i)]4’(1/[) is judged to be holomorphic inside y, except at [ = 5 i&; 
and [ m / m ’ ( i ) ] 4 ’ ( [ )  is holomorphic outside y, except at 5 = & i/&, According to the Cauchy 
integral theorem, one finds (for I > 1) 

- 

-- 
where G,(O and G 2 ( ( )  are respectively the principal parts of [o(i)/0’(5)]4’(5) for i = f i&; 
and 

- (65) 

where H , ( [ )  and H 2 ( i )  are respectively the principal parts of [ ~ / ) i o ’ ( ~ ) ] ~ ’ ( [ )  for i = 5 i/&. 
Note that [o( [ ) /w’ ( [ ) ]  and Mo are given in equations (36) and (42). 

In order to solve the first term on the right hand side of equations (62) and (63), we again use 
the Cauchy integral theorem (for 

- 

1) 

and 

Substituting equations (56) and (57) into (62) and (63), and using the above integral formulae as 
well as those of equations (43) and (44), we obtain 
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and 

~ 

1 o(0 
i o w  +(i)= - P R -  ---4’(i)+2m 

5 +- 

From the differential of equation (68), we obtain 

where 

m(1 - m + r n 2 ) ( 1  + m - m 2  + m 3 )  
( 1  + m2)(1  - m)’ 

M3 = 

Therefore the complex stress functions are 

rn(1  + m)’[l + m - m 2  + m 3 )  
(1 + m2), 

(72) 

(73) 

and hence this problem is solved. 

Case 3: uniform pressure on part of a notch boundary 

subjected to a uniform pressure (Fig. 4), the corresponding boundary conditions are 
Boundary conditions. When a part of a notch boundary that is symmetric to the y-axis, is 

r=r,=o (74) 

and 
J f = - P z ,  for z2 to - i  to z ,  

“_I)  

x + iY = iP(z,  - z2).  

X -1  1 x  

Fig. 4. Uniform pressure on part of a notch boundary profile. 
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Since zI and z2 are symmetric with respect to the y-axis, it follows that 

X + iY = 2iPxl (76) 

and 
x - i y  = - 2iPxl 

Therefore equations (20) and (21) reduce to 

and 

(77) 

Complex stressfunctions. Substituting equations (78) and (79) into (33) and (34), we have 

and 

Using the boundary condition of equation (75), we write the first integral of the above equations as 

(82) 
m -- 

and 

This is followed by showing that 

and 

(83) 

(84) 

co 4;+m 4 2  - i 
2 v , + m  ‘ I1  -i 

- - l ~ n ~ + c ~ l n -  
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where 

whereas 

and 

m i 
r + m  i + m  

6, = 2 and 

' 1 2 - c  1 '12 - m ( q z - q I ) +  rnl +- In- --In- ( ;> %-i i '11 

where 
5 and cI =- 

1 + m i 2 '  
I 

bl = ~ 

1 + m i 2  
Subsequently, we solve the following integrals for the second and third terms on the right hand 
side of equations (80) and (81) 

and 

The fourth term on the right hand side of equations (80) and (81) respectively takes the same form 
as equations (40) and (41). Thus, we have 

where 
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- 

(94) 1 z2 1 1  - 5  
1 v 2 - c  

+ In __ - 2ix, In - 

and M, is provided by equation (42). The differential of equation (91) gives 

where 

y/2 

+ (1 + m)2 [ 25 Jm (arctan - ‘11 - arctan - 
( C 2  + m)’ Jm Jm 

from equation (99, the constant coefficients are deduced as follows 
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where MI is given by equation (51). Inserting equations (76), (77), (91), (93) and (97) into (1 1) and 
(12), we therefore obtain the complex stress functions for this problem 

APPLICATIONS 

With the previously derived complex stress functions, one may calculate, by using the following 
formulae, the stress distributions of plates containing central lip-shaped notches under different 
loading conditions 

where 

However, here we discuss the stress intensity factors at cracked lip-shaped notches, which are 
themselves deduced from the complex stress functions, together with their applications to other 
notch-crack configurations. 

Stress intensity factors for lip-shaped notches 

the form [lo] 
The relationship between stress intensity factors (KI and KIl) and a complex stress function takes 

K] - iKIl = 2JCf#/(l)[d(l)]-'/2. (101) 

Referring to equations (4), (5) and (3), we write 

(1 - m)' 
l + m  

~ " ( 1 )  = 2 R  

Remote biaxial loading. For the case of a central lip-shape notched piate under remote biaxial 
loading, we use equation (52) and the conjugate of (50) to obtain 

4'(1)=-(01+02)(1 R + m ) - - ( o , - 0 2 ) e 2 i a + M 2 [ ~ ( o l + 0 2 ) + ~ ( - ) ]  R R i (103) 

4 2 Jm  
where 
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As an example, we let CI = 71/2 and consider three typical degrees of biaxiality: A = 0 (uniaxial), 
1 .O (equibiaxial) and - 1.0 (shear), where A = 02/al. When A = 0, i.e. a2 = 0, by inserting equation 
(103) into (101), we find 

KI =cl& (1 + Fo) (105) 

K,, = 0 
m2(3 + 3m - m2 + 3m3) 

2 (1 -  m ) ( l +  m2)’ ’ 
Fo = 

When A = 1, i.e. a2 = a*, we have 

Kll = 0 

where 
2m3(2 - rn + m 2 )  
(I - m ) ( l  +m2)” 

Fl = 

When A = - 1 ,  i.e. a2 = - aI, we obtain 

K,, = 0 
where 

m 2 ( 3 - m + m 2 + m 3 )  
(1 - m ) ( l +  m2)’ ‘ 

F-I = 

Figure 5 shows the results of equations (105), (107) and (109), which describe the variation of 
K,/(a,&) with a increasing from b to 00, at different biaxialities. 

b 1 -  a 
Fig. 5. Variation of K,/(u, 6) with (1 - b /a )  for lip-shaped notches in infinite plates at three 

biaxialities. 
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It is obvious that, by referring to equation (7), if a % 1 (i.e. the notch tends to be a sharp crack), 
then m -0-, and 

F,-O+, F,+O- and f - l - O + .  

As a result, equations (105), (107) and (109) all reduce to 

KI = nI& (1 11) 
which indicates that the extremity of the present results decays to the solution of an infinite plate 
containing a central through crack. 

Uniform pressure on notch boundary. When a plate containing a central lip-shaped notch is 
subjected to uniform pressure on its notch profile, we have, from equation (72) 

1- m(1 - r n ) ( l  + m  - m 2 + m 3 )  
4’(1) =PR 1 - [ (1 + 

Substituting equations ( 1  12) and (102) into (101), we obtain 

K , = P & ( l + F p )  

K,, = 0 

where 

2m3(2 - rn + r n 2 )  
Fp = 

( 1  - m ) ( l  + m 2 ) 2 ’  

Note that, Fp = F l .  In other words, the stress intensity factor for a lip-shaped notch in a plate 
subjected to remote equibiaxial tension, is identical with that of a similar notch with its profile 
subjected to a uniform pressure of the same magnitude. This implies that Bueckner’s principle [12] 
is also applicable to this notch problem. 

Cracks originating from a circular or an elliptical notch 
If we make a replacement for a series of lip-shaped notches of different ratios of a /b  by a circle 

of radius d = b, and adding two slits of length 1 corresponding to (a  - d )  between x = k d and 
- + a [e.g. Fig. 3(a)], then we observe that, after a / d  2 1.4, the results yielded by lip-shaped notches 
are consistent with the numerical data produced from a circular notch containing two cracks 
[Fig. 6(a)]. In addition, if lip-shaped notches are replaced by an ellipse of b / d  = 0.5 with two cracks 
o,f corresponding length [e.g. Fig. 3(b)], after a / d  2 1.2, the present results also fit the related 
numerical data [Fig. 6(b)]. It seems that, in general, when 

a - d  
b 

~ 2 0 . 4  

the stress intensity factors of lip-shaped notch cracks are approximately equal to those for a pair 
of symmetrical cracks emanating from a circular or an elliptical notch. This suggests that, for the 
concerned configurations, the sensitive factor affecting K, and K,, is the total length of crack plus 
notch radius, whereas the notch shape itself is less sensitive. In this sense, the present analytical 
solutions and the simple K-expressions can be used to calculate stress intensity factors for cracks 
emanating from a circular or an elliptical notch. The above statement is illustrated by Fig. 7, 
indicating that three configurations of the same total notch-crack length 2a and notch width 2b, 
possess the same stress intensity factor at the notch-crack tip. Summing up equations (105), (107) 
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I I 

O S 9  t 
1.0 2.0 3.0 

a id  

I I 

Fig. 6. Comparison of present results to numerical data of 
matched configurations. (a) Cracks ema'nating from a circu- 
lar notch (bid = 1.0). 0: I = 0, average of data from Refs 
[ l ,  2.4.61; A: 1 = 1, average of data from Refs [ I ,  2, 61; V: 
I = - 1, average of data from Refs [2] and [6]. (b) Cracks 
emanating from an elliptical notch (b /d  = 0.5). 0: d = 0, 
average of data from Refs [Z, 4,6]; A: ,I = 1, data from 

Ref. [6]; V: 2 = - 1, data from Ref. [6]. 

Fig. 7. Three notch-crack configurations possessing ap- 
proximately the same stress intensity factors. 

and (log), we write 

K,, = 0 
where 

m 2  
2(1 - m ) ( l  + m2)2 

F =  [(3 + 3 m  - m 2  + 3m3) - 1(3  - 5m + 3m2 - m')]. (117) 

Equation (1 16) is a useful expression of the stress intensity factor for a notch crack (a = n/2) under 
various biaxial loading conditions. 

Plastic zone sizes 

Invoking the Dugdale strip yield concept [l 13, we assume the following model to evaluate the 
plastic zone sizes for cracks emanating from a circular notch in an infinite plate subjected to 
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(a) Total problem (b) Case A ( c )  Case B 

Fig. 8. Proposed model for plastic zone size determination. 

external biaxial loading. As shown in Fig. 8, the problem is created by the linear superposition of 
Case A (an infinite plate containing a central lip-shaped notch under external biaxial loading 
[Fig. 8(b)]), and Case B (an infinite plate containing a central through crack, with cohesive stress, 
(T,, distributed over two plastic enclave portions [Fig. 8(c)]). 

For Case A, referring to previous work, we have 

Kf = (1 + F )  (118) 

whereas for Case B, the following well-known solution is introduced 

a, 
a 

K: = - 20, J: arccos -. 

For the total problem, the resulting stress intensity factor at the plastic enclave tip vanishes, i.e. 

Kf + K: = 0 .  ( 120) 

Substituting equations (118) and (119) into (120), we have 

rJ, 2 1 a0 -=-.- arccos -. 
oo 7t l + F  a 

Regarding the three biaxialities of 1 = 0, 1 and - 1,  for instance, we can write the above equation 
as 

where 

0 1  2 1 a0 arccos - 
0, 71 1 + F j  a 
-=-.- 

Fa 1 = 0  

F-l 1 = - 1  
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0 0.2 0 . 4  0.6 0.8 1.0 

Ol/% 

Fig. 9. Plastic zone sizes for cracks emanating from a circular notch at three biaxialities. 

with F,, F, and F - ,  being provided by equations (106), (108) and (110). Figure 9 demonstrates the 
results for these three biaxialities in the form of plastic zone size, rJ1, as a function of a,/., and 
l,,/d. The comparison of the present results with available numerical ones given in Table 1 clearly 
shows that the values calculated from equation (122) are in good agreement with those from Rich 
and Roberts[l3] who regarded the yield stress ays as a, for the uniaxial tension. The difference, for 
most of the data pairs tabulated, in comparison with the present work is about or less than 1%. 
It is worth noting that the cohesive stress oo depends not only on the yield stress oyys but also on 
the T stress that may prevail parallel to the mode I crack plane as a component of axx and is a 
function of stress biaxialities [14]. 

The same technique can be used to obtain similar results for cracks originating from an elliptical 
notch in an infinite plate subjected to remote biaxial loading. 
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Table I .  Values of a, /ao as a function of r p / l  and lo/d for 1 = 0 
10 rp - 
d l  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 
0.5 0.162 0.239 0.306 0.372 0.441 0.515 0.601 0.703 Eq. (122) 

0.158 0.239 0.306 0.366 0.428 0.514 0.595 0.695 Ref.[13] 
1.0 0.199 0.292 0.371 0.446 0.522 0.600 0.684 0.777 Eq. (122) 

0.205 0.295 0.373 0.446 0.517 0.600 0.686 0.777 Ref. [13] 
2.0 0.232 0.337 0.429 0.506 0.583 0.661 0.740 0.822 Eq. (122) 

0.223 0.337 0.425 0.512 0.587 0.669 0.737 0.822 Ref. 1131 

CONCLUSIONS 

A conformal mapping technique has been applied to the problem of an infinite plate containing 
a central lip-shaped notch subjected to biaxial loading at remote boundary and also for a uniform 
surface pressure on notch boundary profile. The derived complex stress functions can be used to 
obtain the stress distribution ahead of the notch and the stress intensity factors at the notch tip. 
The analytical K-expressions can be applied to a circular or an elliptical notch containing two 
symmetrical cracks, when the ratio of crack length to notch radius is in excess of a specified extent. 
Based on the present solutions, an analytical formula characterizing the plastic zone sizes for cracks 
emanating from a circular notch is obtained. These are of engineering importance and assist 
analytical derivations required for fatigue and failure analyses. 
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