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ABSTRACT: The results of experiments in open channels and closed pipelines show 
two kinds of patterns for the vertical distribution of particle concentration (i.e., 
pattern I and pattern II). The former shows a pattern of maximum concentration 
at some location above the bottom and the downward decay of the concentration 
below the location. The latter always shows an increase of the particle concentra
tion downward over the whole vertical, with the maximum value at the bottom. 
Many investigations were made on the pattern II, but few were made on pattern 
I. In this paper, a particle velocity distribution function is first obtained in the 
equilibrium state or in dilute steady state for the particle in two-phase flows, then 
a theoretical model for the particle concentration distribution is derived from the 
kinetic theory. More attention is paid to the predictions of the concentration dis
tribution of pattern I and comparisons of the present model are made with the data 
measured by means of laser doppler anemometry (LDA). Very good agreements 
are obtained between the measured and calculated results. 

INTRODUCTION 

There have been numerous investigations into the problems of particle 
concentration distribution in two-phase flows with two-dimensional steady-
flow conditions since Schmidt (Graf 1971) started similar work on dust dis
tribution in the atmosphere during early 1930s. So far, diffusion theory, 
mixture theory, energy theory, similarity theory, stochastic theory and others 
have been used to approach the problem of the vertical particle concentration 
distribution. A review of all these theories and their relationships is given 
in Ni and Hui (1988). As a result, a generalized formula on the vertical 
distribution of the particle concentration was obtained by Ni (1989), includ
ing, for special cases, nearly all the previous formulas derived from different 
theories. 

Ni and Wang (1987) also found two kinds of patterns of particle concen
tration distribution, pattern I and pattern II, as shown in Fig. 1, instead of 
the unique pattern II distribution known to most investigators. A lot of mea
sured data show the existence of pattern I [those reported by Bouvard (1985), 
Dai (1985), Michalik (1973) and Wang (1989)], but little attention has been 
paid by the researchers. According to Ni and Wang (1987), the mechanism 
for the existence of two kinds of concentration distribution patterns can be 
explained qualitatively from the angle of fluctuating characteristics of the 
fluid and particles. To explain the mechanism more precisely, a kinetic the
ory of two-phase flow for the microscopic descriptions of particles is intro
duced in this paper and we supply a lot of measured data from the experi
ments that were specially designed for testing the present model. Noting that 
numerous work has been done on pattern II, emphasis is laid on the expla
nations and predictions of pattern I in the following analyses. 
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VELOCITY DISTRIBUTION FUNCTION FOR PARTICLES IN DILUTE STEADY 
TWO-PHASE FLOWS 

Working much like the ordinary kinetic theory of gases, the kinetic theory 
of two-phase flow in a liquid-particle system gives us much more infor
mation than other theories could. The movement of solid particles can be 
described by the Boltzmann equation 

df df dFj (df 
dt dx, dv, \dt (1) 

where/ = f(v,,x,,t) = velocity distribution function of particles; v, = sto
chastic velocity; x, = spatial position; t = time; F, = unit mass force on a 
particle, including both the gravitational force and the action of the ambient 
fluid. The right-hand side of Eq. 1 is the collision term, which describes 
the collisions between solid particles. 

The velocity distribution function of particles means the number of par
ticles with velocity between v, and v, + dv, per unit volume is fdvidv2dvl. 
For two-phase flows, if the velocity distribution function/can be obtained 
from Boltzmann equation of particles in connection with the equation of 
motion of the liquid fluid, then exhaustive information, including the issue 
of concentration distribution, will be considered to be known. However, it 
is almost impossible to find a solution from Eq. 1 under ordinary flow con
ditions, owing to the fact that the collision term is a complex integral term 
of/. For flows in equilibrium state or in dilute steady state, the effect of 
collisions are relatively small, so (df/dt)c can be neglected approximately. 
In such circumstances, Eq. 1 is simplified as 

df dF,f 
v, — + = 0 

dx, dv. 
(2) 

and the velocity distribution function / for particles is thus obtained from 
Eq. 2 by means of a variational method similar to the treatment for equi
librium state of molecules in the kinetic theory of gases. 

In the same spirit of the kinetic theory of gases, the kinetic theory of 
particle-liquid system can be treated on the basis of the Boltzmann equation 
of the velocity distribution function. For example, the equilibrium state of 
molecules in ordinary kinetic theory of gases means a statistical average state 
of the balanced collisions among the molecules themselves. A similar def
inition is available for the equilibrium state of particles in two-phase flows, 

Tlmax p a r t i c l e concen t ra t ion n 

FIG. 1. Two Patterns for Concentration Distribution 
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but the equilibrium state in particle-liquid flows means balanced states of 
collisions among the particles and also interactions between particles and 
ambient fluid. For the dilute steady state in particle-liquid flows, collisions 
among the particles seldom occur and an assumption of the equilibrium state 
in literal meaning can be used, so a function H(f) for particles may be de
fined in a manner similar to that in kinetic theory of gases (Chapman and 
Cowling 1970) 

H{f) = Sf(.v„x„f) In [f{vl,xi,t)-]dvi (3) 

in which dv, = dvidv2dv3. For equilibrium state, a minimum H(f) will be 
expected. By utilizing the form of the variation equation, we have 

m(f) = 8 fflnfdv, = 0 (4) 

with its additional conditions, such as the conservation of particle-number 
per unit volume 

hn = hffdvt = 0 (5) 

the conservation of momentum 

8 / mvfdv, = 0 (6) 

and the conservation of kinetic energy 

/i 8 | - mv2fdv, = 0 (7) 

Using the Lagrange method with Eq. 5 multiplied by an operator X' and 
making a scalar product of Eq. 6 and the vector ( l /m)b, and also with Eq. 
7 multiplied by (3, the variational problem becomes 

1 + In / - \ ' - b • v + - m$v2 jdvfif = 0 (8) 

or 

l n / = (X' - 1) + b v - -m$v2 / = exp U + b-v - - m(3v2 j (9) 

in which X = X' - 1, and both Lagrange operators (P and b) are not related 
to t. 

The action force F exerted on a particle by the liquid may be related to 
the stochastic particle velocity v. As a result, the operators such as X, p and 
b are also probably related to v. For the sake of simplicity, we assume F 
and all the other operators are independent of v, which means a substitution 
of v by a statistical mean velocity. In such a case, combining Eq. 9 and Eq. 
2, we can obtain equations as follows 

50 
— = 0 (10) 
dXj 

biF, = 0 (11) 

db, db, 
— + — = 0 (12) 
dXj dXj 
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ax 
m$F, = 0 (13) 

dx, 

in which i, j = 1, 2, 3, p is a constant determined from Eq. 10. From Eq. 
13, X is expressed as 

\ = / m(3F • dx = m(3 } F,dxi (14) 

then, a final determination of X is based on a given Ft. Rewriting Eq. 9, 
we obtain 

/ = exp ( X + b,Vi - - $mv2 \ (15a) 

/ = Aexp fx - - m p v 2 ) (156) 

then, by analogizing the method used in the kinetic theory of gases, we 
obtain the equation of velocity distribution function of particles for equilib
rium state or for dilute steady state in two-phase flow, which has the same 
form with that of molecules in similar conditions. Here A = exp [ ( 1 / 
2)m$2{voif], V2 = V • V = 2(t/ - volf, vol = b,/fim, and V is the peculiar 
velocity of a particle. Five parameters of A, X, p, v01, v02, fo3 are left to be 
determined, and X can be found from Eq. 14. 

Perhaps the major difference in connotation between the velocity distri
bution function of molecules in the kinetic theory of gases and that of par
ticles in particle-liquid flows is the consideration of the actions of collisions 
and external forces. Generally speaking, action of collisions among mole
cules is the most eminent factor in the former and the external forces can 
be neglected, but the circumstance for the latter is just opposite in dilute 
steady two-phase flow because of very few collisions and the eminent action 
of external forces. For flows with high concentration, both the action of 
collisions and that of external forces must be fully considered. 

If the velocity distribution function/can be determined, all the parameters 
on the movement of particles will be given correspondingly 

n = Sfdvt (16) 

(17) vp = - vfdvt 
n J 

V2
P = - | (v - vp)

2fdvt (18) 

Here n = number of particles per unit volume; vp and Vp = mean velocity 
and mean square value of the fluctuating velocity of particles, respectively. 

It is very difficult for us to determine all the parameters in Eq. 15, but if 
the concentration distribution of a particle is discussed alone, the problem 
will be greatly simplified because only the unknown parameter A needs to 
be given. This can be done by giving a reference concentration na near the 
boundary or the vertical mean concentration n. 
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VERTICAL CONCENTRATION DISTRIBUTION 

From the previous analysis, if we assume that the parameters are not re
lated to the stochastic velocity v of the particles, then the following equations 
can be obtained 

r (2Av2, 
n = fdv, = A\ — ex (19) 

J-oo \m$/ 

^-ZLv-^'-h (20) 

For a two-dimensional flow, X is given by 

\ = mp f Ftdx, = mp J" (Fxdx + Fydy) 

\ = wP(J Fydy + c) = m(3 f Fydy (21) 

with the constant c being zero. In addition, note that V2
P in equation 

«P = P • (22) 

is unknown, a relation of 

3 a 
=? = - r (23) 
V* £/| 

is assumed and Eq. 22 becomes 

«P = ^ (24) 

where [/* is shear velocity, and a is a coefficient. 
Since Fy, the total vertical action force per unit mass on a particle, consists 

of many forces, such as drag force, lift force, gravitational force, added mass 
force, and pressure gradient force, etc., we can't expect to determine each 
force individually. In fact, even though the effects of interaction forces due 
to acceleration, rotation, etc., have been discussed in the literature, they 
have not been included in any successful treatment of theoretical analysis of 
the flow problems of particle-liquid system. Usually, the added mass force 
can be neglected for the case of small acceleration of particles, and also the 
action from the collisions between particles can be ignored for dilute particle 
concentrations. Based on these considerations, all the vertical forces acting 
on a particle by the fluid can be taken as a comprehensive force, known as 
comprehensive lift force. According to Owen (1969), the comprehensive lift 
force by the fluid on a particle can be expressed as 

, dUf p, dUt / p / \ U% 
Lf~ pf(Uf-Up)D

3-/~^m^(Uf-Up) = a'M m — (25) 
dy pp dy \pp/ y 

then we obtain 

/pA V\ ir 
mFy = a'[^\m -£>3(P p - P /)g (26) 

\Pp/ y 6 
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F, = „ { » ) * _ (x _ »)fl (27) 
\Pp/ y \ pP/ 

in which, the first term in the right-hand side is the comprehensive lift force 
and the second is the effective gravitational force of the particle; pf and pp 

= density of fluid and particle, respectively; D = the particle diameter, Uf 

and Up are the x-direction velocity of fluid and particle. 
Based on this analysis, we have 

ul) 
t>f I P/\ 9y 

= -Z*-n + ({ - 1) In (Hid (28) 

Here T\ = y/H and if is a characteristic length, representing flow depth in 
open channel and pipe radius in pipelines. Z# and £ are defined as 

P/\ QH 
Z* = a( 1 - ^ | ^ (29) 

PP/ V\ 

i = a ' a -^ + 1 (30) 
PP 

From Eqs. 19 and 28, a formula for the vertical concentration distribution 
of particle numbers per unit volume is given by 

n=A{-^-) (ff^t-W (31) 

when a reference concentration na at -na is given, the coefficients in Eq. 31 
is thus determined, then the following relation is obtained 

- = ( —) e-
z*^-^> (32) 

na \T\al 

and the vertical mean concentration of particles is 

i r r1 

it = — ndy = ndt] (33a) 
H Jo Jo 

« = ^ • n i ' V ' ^ a . z * ) (336) 
in which 

7«,Z*) = i ^ V 2 * 1 ^ (34) 
Jo 

finally, we obtain a theoretical model for the vertical concentration distri
bution of particles 

n Z* r i 7 „ 
- = •n'- 'e-Vi (35) 
" 7«>Z*) 
Letting dn/dr\ = 0, the location of maximum concentration along the ver
tical is determined by 
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Thr. 
tt~ 1) (36) 

and when Z* = 6(<a0/KU*) (here K is Karman coefficient and to0 is settling 
velocity in still water) and £ = 1 is taken, a typical result for the pattern II 
distribution in sediment research can be derived 

—• = g-«">»/«'*>ci-i..> (37) 

which is the so-called Lane-Kalinske formula tested by the measured data 
in river hydraulics. It is clear that Eq. 37 is only a special case of Eq. 32. 

COMPARISON WITH DATA 

To test the relation (Eq. 35), we made a series of experiments on the 
particle-liquid flows in a 4 X 6 cm2 square pipe by means of LDA. The 
fluid and particle properties with some experimental results are given in Ta
ble 1, in which, £/* = shear velocity; C = (ir/6)D3n, the vertical mean 
volumetric concentration. All the particles used in the experiments are spher
ical plastic. The results of comparison are shown in Fig. 2 with given pa
rameters Z* and £ 

Z* = 5 — 
U* 

£ = 6-
D 

H 

= + 1 

p/ 

(38) 

(39) 

It is clear that all the measured data agree very well with the relation (Eq. 
35). 

It should be stressed that there indeed are some differences between the 
particle concentration distribution in pipeline flow and that in open channel 
flow. Generally speaking, the former is more uniformly distributed than the 
latter under the similar flow conditions. When the data measured in open 

Run 
number 

(1) 

1 
2 
3 
4 
5 
6 
7 

TABLE 1. 

Mean 
diameter 
D (mm) 

(2) 

1.8 
1.3 
1.4 
1.1 
0.85 
0.6 
2.29 

Diameter 
D (mm) 

(3) 

1.6-2.0 
1.0-1.6 
1.2-1.6 
1.0-1.2 
0.7-1.0 
0.5-0.7 

2.29 

Descriptions of Experiments 

Density pp 

(gr/cm3) 
(4) 

1.05 
1.05 
1.60 
1.60 
1.60 
1.60 
1.34 

Settling 
velocity u)„ 

(cm/s) 
(5) 

2.56 
2.17 
6.90 
5.15 
4.51 
3.79 
6.15 

1 Data 

Series A 

C 
• ( % ) 

(6) 

0.330 
0.440 
0.310 
0.240 
0.097 
0.057 
0.440 

[ /* 

(cm/s) 
(7) 

3.28 
3.35 
4.76 
4.52 
4.79 
4.90 
4.83 

Series B 

C 

(%) 
(8) 

0.130 
0.570 
0.198 
0.200 
0.194 
0.042 
0.510 

(7* 
(cm/s) 

(9) 

6.13 
6.00 
6.11 
6.15 
6.33 
6.23 
6.17 
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0 1 2 3 4 0 1 2 . 3 4 0 1 2 3 

FIG. 2. Comparisons of Eq. 35 and Pipeline Data 

channel flow by Bouvard and Petkovic (1985) are compared with Eq. 35, 
this argument is confirmed. In such a case, expressions for Z* and £ must 
be recast 

15 — 
I/* 

£ = 1 8 -
D 

+ 1 

(40) 

(41) 

P/ 

With these two parameters, we obtained very good agreement between Eq. 
35 and Bouvard data, as shown in Fig. 3. 

From these mentioned discussions, the patterns for particle concentration 
distribution is determined by the parameters Z* and £. When £ = 1 is taken, 
the ordinary pattern II distribution is really true, but for larger £, the pattern 
I distribution more frequently occurs. Until now, the cause of formation for 
the two patterns of concentration distribution has been explained by attrib
uting it to the lift force from the simple-kinetic^theory point of view, in such 
a way that all the fluid and particle properties have been considered reason-
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H 
1.0 

0.5. 

(Bouvard) n(mm) Calculated H 
1.0-

Calculated (Bouvard) D (mm) 

0 0.1 0.2 0.3 0.4 0.5 0.6 0 0.5 1.0 1.5 2.0 

FIG. 3. Comparisons of Eq. 35 and Channel Data 

ably. This makes a possibility of evaluating the particle concentration dis
tribution quantitatively. 

CONCLUSION 

Based on kinetic theory in two-phase flow, the law of vertical distribution 
for dilute particle concentration has been discussed from the angle of mi
croscopic descriptions of mechanism. The main contributions made in this 
paper are as follows: 

1. The vertical distributions of particle concentration are classified into two 
kinds of patterns (i.e., pattern I and pattern II), and the mechanism for the ex
istence of two kinds of concentration distributions is given in a reasonable way. 
The cause of formation for the pattern I and pattern II is mainly attributed to 
the lift force on the particles by the fluid. 

2. By analogizing the method adopted in the kinetic theory of gases, the ve
locity distribution function of particles is obtained. As a result, a theoretical 
model for describing the pattern I and pattern II distributions is presented. All 
the data measured by means of LDA agree very well with the present model. 
This is a rare achievement for earlier models. 

3. The pattern I distributions frequently appear for large light particles and 
the positions for maximum concentration in a vertical line rise with the increase 
of shear velocity. For small heavy particles, the pattern II distributions are com
monly formed. 

4. The observations made both in open channels and pipelines show that par
ticle concentration distributions in pipelines are more uniform than those in open 
channels. 
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APPENDIX II. NOTATION 

The following symbols are used in this paper: 

D = particle diameter; 

/ = velocity distribution function of particles; 
Ft = the unit mass force on a particle; 
Fy = the vertical component of Fi; 
g = gravitational acceleration; 

H = characteristic length; 
K = Karman coefficient; 
Lf = comprehensive lift force on a particle; 
m = mass of a particle; 
n = particle numbers per unit volume; 
n = vertical mean particle numbers per unit volume; 

na = particle numbers per unit volume at the position a; 
t = time; 

Uf = fluid velocity component in x-direction; 
Up = particle velocity component in x-direction; 
£/$ = shear velocity; 

V = peculiar velocity of a particle; 
vp = mean velocity of particles; 
Vj = the particle stochastic velocity; 

v0l = characteristic velocity; 
Xj = spatial position; 

Zit = parameter related to suspension index; 
a = coefficient; 

a ' = coefficient related to lift force on a particle; 
3 = Lagrange operator; 

X' = Lagrange operator; 
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A. = \ ' - 1; 
tl = y/H; 
p/ = density of fluid; 
pp = density of particle; 
w0 = settling velocity; and 

I = parameter defined in the text. 
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