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Although the study of progressive waves could be traced back to the last century, it
was not until 1915 when Rayleigh!" began seriously to consider nonlinear behaviour of stand-
ing waves due to the difficulties arising from the unsteadiness. Based on the criterion that
the downward acceleration of the crest cannot exceed gravity acceleration g, Penney &
Price!? discovered the slope of steepest standing wave being 0.22 with an enclosed angle of
90° around the crest. Nevertheless, the above findings are still in controversy>*. In 1960,
Tadjbaksh & Keller' calculated the approximate solution of finite depth to the third order
by virtue of keller-Ting’s approach. In the meanwhile, they found the nonuniqueness of the
solution at several critical depths, which was dealt with by Vanden Broeck!®. In recent dec-
ade, Rottman'” investigated interfacial standing wave, while J. C. Li¥ examined the effects
of geometric factors on the standing wave in a nearly circular basin. In this note, we
attempt to further discuss the standing wave of finite amplitude in a circular basin with
uneven bottom.

We assume that the fluid is incompressible, inviscid and the motion of fluid is
irrotational. Also, the wave slope e=a/4 and the Ursell number al?/#® are required to be
small. In addition, large Rossby number ¢/DQ will guarantee the negligibility of Coriolis
force. Where a is the wave amplitude, 4 wavalength, ¢ phase velocity, & water depth, D the
radius of the basin and Q angular velocity of the earth.

F4 . . .
For a basically axisymmetric system, we prefer to

g choosing cylindrical-coordinate as independent varia-
bles with r being the radial coordinate, z the vertical
and 0 the azimuthal angle. As usual, we set the origin
0 at the surface of quiescent water, positive

Z=~h+8f(r, 6) z direction being upwards. Then, the expression of the
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K'// 1Ty bottom can be written as
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Z=—h+9(r.0), (1)
Fig. 1
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where 4 is a small parameter with f and its derivative being of O(1). If all the physical quan-
tities are made dimensionless as follows:

r=k7'r’, z=k"127, n=ek 'y,
t=1(kg ) '?t’, w=(kg)'"*w’, t=w' ',
O=e'? k2@ p=(pgk 'y,

and we omit all the superscripts merely for simplicity, then, the velocity potential ®(r,6,z,¢)
will satisfy:

Ve =0; (2)
®.=wy, , atz=0 2.1)
0®,+n=0, atz=0 (2.2)
®,=0, atr=R (2.3)
®,=0, atz= —h+0f (r,0), (2.4)

where # is the wave shape, w the circular frequency. The nonlinear effects will be considered
later.

The derivatives at the bottom should be

0 i N
o ot +éf’6r +0r2 a0 (3)
on V 1+ 3+ 830 '
If we expand ®, n, w as power series of §, and transfer the boundary condition ( 2. 4) to
undisturbed surface z= — A, then we have
® =0, (4.1)
. [ )
®.=,f + _rT(Doo fo—(Dozz,f’ (4.2)
1 1 1
(DZ: = 7 (Do: (ff + r? f02 ) + q)ur:f.fr+ 72_ (Doﬂz.f.f()
- _;_q)():z;fz+®lr-f‘r+ —:Tq)lﬂﬂ?—q)]z:f' (4'3)

Thus, we are able to solve the whole problem by using perturbation theory.

Evidently, the zeroth solution is nothing but the oscillation of the fluid in a circular ba-
sin with flat bottom. The influences of bottom topology will embody in the solution of
higher order. If we only discuss the perturbation of fundamental wave, the first order solu-

tion turns out to be :
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O, =[c®" Jy(r)(chz—ch(z+h))

+ Y (a™cos nf+ bi"™ sin n Jehk "™ (z+ h ), (k"mr)

+Y "(c"™cos nf+ d™ sin nf )chk'"™ 2] (k "™r)] cos nb (5)
= {w, /0 J{r)+ o (1 —ch h)J(r)

+ oY ' [(c"™ + a™ch k"™ cos nf+ (d*™+ by"™

x chk"™ sin n9)] J (k"™ r)} sint, (6)

where J,(r)is the n-th order Bessel function, k™™ =z"™ /2% V(2" is the m-th zero of
JAz)). ¥’ indicates that the summation is carried out for n#0 or m#1, a»m, plem,
=™, di»™ are related to the coefficients of Fourier-Bessel expansion for the function

B (r.0)=w,/shh( ,J (r)—fT(r)). (7)

The revised circular frequency of the first order looks like

___‘23_ (o,n________ 8
= S c= SR ShhTAR) j JrJo(r)B(r 0)dr do. (8)

Following (6 ), we are able to derive the solution of the first order due to nonlinearity.
O, =Byt +1ay+ Y, a,Jo(kO™r)ch k™(z+ h)sin 2t, 9)
= — Bowo+ LA 03 i(r) — 1/ *(r)]

—[2a,0,+ 3 A0 JAr)+ 1A} Iy (r )+ ¥, 2044, ch K™ h Jy(k'"™r )] cos2t,  (10)

where B,, a,, are related to the Bessel expansion coefficients of JZ (r)and J,2(r). The re-
vised circular frequency w, happens to vanish.

The results obtained above lead us to draw the following conclusions:

(1) The sign of the revised frequency depends basically on that of the integral

2n R
. f f rJy (r)B,(r.0)dr d0. (11)
0o Jo

Generally speaking, the convex bottom with smaller total volume of water will result in
higher frequency. On the other hand, the concave bottom will show the contrary effects, As
a comparison, @, due to nonlinearity happens to be zero.

(ii) The uneven bottom will also deform the shape of standing wave so that it will be-
come unaxisymmetric. However, there still exists a moment when the free surface is com-
pletely flat. The node line of wave is removed to r,=ry+ dr (), in which r, is the first zero
point of the zeroth order Bessel function and
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r(8)=wo/T(ry)Y [ (™™ + al™ch k") cos nd+ (d}™
+ b(l'h””ch k‘"’m )h )Siﬂ no ) Jn(k(n,m)ro )] i ( 12)

As for nonlinear wave, the surface will never be {lat though the wave shape remains

axisymmetric.

If 6=0(¢), the effects of both kinds are capable of being superposed. Their coupling
will manifest itself in the higher order solution.

(iii ) According to Bernoulli equation, the revised pressure of the first order includes the

static one due to both factors and the dynamic one due merely to nonlinearity.

(iv) An example with convex paraboloid bottom is illustrated in Figs. 2 — 4,1 e.
f(r.0)=a"—r.

n

h 0.8
r, =240, 2,12, 1.80

Fig.2.

Fig. 3. Fig. 4.
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