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ASYMPTOTIC FIELDS NEAR THE CRACK TIP IN 
ELASTIC-PERFECTLY PLASTIC CRYSTALS 
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Institute of Mechanics, Academia Sinica, Chinese Academy of Science, Beijing 

Abstract-The basic equations of plane strain problem for the elastic-perfectly plastic crystals with double 
slip systems have been presented in the basis of three dimensional flow theory of crystal plasticity. Using 
these equations the stationary crack tip stress and deformation fields are analysed for tensile load. The 
fields involve an elastic angular sector and are fully continuous. An asymptotic solution is also obtained 
for the steadily growing crack that consists of five angular sectors: two plastic angular sectors in the front 
of the crack tip connected with the boundary on which the associated velocity field has discontinuities; 
a secondary plastic angular sector near the crack face; two elastically unload angular sectors connected 
with the boundary on which the discontinuity of the associated velocity field occurs. The asymptotoic 
solution is not unique. A family of solutions is obtained. Finally, the application of these solutions on 
both FCC and BCC crystals is discussed. 

1. INTRODUCTION 

RECENT YEARS crack tip stress and deformation fields for elastic-plastic crystals have attracted 
scientists’ attention. The first reason for that may be denoted to the developments of micro fracture 
mechanics. The second reason is due to application of crystal element on engineering practice which 
shows some special advantages. 

Rice and Nikolic[l] have firstly presented the analysis of elastic-perfectly plastic crack tip 
response of crystals in anti-plane shear. For stationary cracks they got complete field solution. For 
growing cracks, they obtained the asymptotic solution. 

The strain hardening effect has been considered by Rice and Saeedvafa[2] and the solution of 
HRR singularity type has been obtained. 

The nearest work given by Rice[3] shows the crack tip stress and deformation fields for tensile 
loaded perfectly plastic crystals. The crack tip fields are assembled by four angular sectors and 
shown to change discontinuously from sector to sector for a stationary crack. The asymptotic 
solution of growing crack consists also of four angular sectors. 

But as pointed out by Rice[3], the asymptotic solution is not unique. This paper presents 
the analysis of crack tip stress and deformation fields for tensile loaded elastic-perfectly plastic 
crystals. 

The basic equations of plane strain problem for the elastic-perfectly plastic crystals with 
double slip systems have been presented in the basis of three-dimensional flow theory of crystal 
plasticity. 

Using these equations the stationary crack tip fields are analysed for tensile load. 
The fields are assembled by three angular sectors: a plastic zone in the front of the crack; a 

plastic zone near the crack face; an elastic zone between two plastic zones. The stress and 
displacement fields are fully continuous. 

In the plastic zone ahead of the crack there is a concentrated plastic shear zone between two 
rays: the first ray is along the active slip direction traces and the second ray is perpendicular to 
the active slip plane traces. 

In the plastic zone near crack face there is also a concentrated plastic shear zone. 
The assembly of growing crack tip field involves five angular sectors: two plastic 

zones ahead of crack; a secondary plastic zone near crack face; two elastic unloaded zones 
between them. The present solutions contain a free parameter and give a family of crack tip 
fields. 

Finally the application of these solutions on the FCC and BCC crystals are considered and 
associated crack tip stress and strain fields are obtained for FCC and BCC crystals. 
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2. BASIC EQUATION 

For the sake of simplicity, we start from the analysis of double slip plane model of crystal 
proposed by Asaro[4]. In the sixth section of this paper, the application of the present results on 
FCC and BCC crystals will be discussed. 

As shown in Fig. 1, the plane model of double slip involves two slip systems: the primary slip 
system and the conjugate slip system. 

Using this model, Asaro[4] has successfully demonstrated the complex phenomena of latent 
hardening and rotation of crystals. 

Imagine the crack plane lies on the symmetric plane and set up a fixed Cartesian coordinate 
system OXYZ (Fig. 2) centered at the initial crack tip. The (xi, x,, x3) is the tensor description of 

(X9 Y, z>. 
Let m(*), n(l) be the unit vectors defining the slip direction and normal direction of slip plane 

of primary slip system respectively. 
Let rn(‘), n(‘) be the unit vectors along slip direction and slip plane normal of conjugate slip 

system, respectively. 
Consider the plane strain problem of elastic-perfectly plastic crystals. 
Assume the deformation gradient is small and the effects of rotation of crystal direction on 

the equilibrium equation and deformation are neglected. Apparently both are important for future 
work. 

2.1. Yield condition 

According to the Schmid rule, the yield condition for elastic-perfectly plastic crystals can be 
expressed 

r(a) = r(a) c * (2.1) 

where z@) is the resolved shear stress of the a th slip system, 2:) is the critical shear stress of the 
ath slip system. 

If we take the opposite slip as another slip system, there are four slip systems 
altogether. 

Consider only isotropic yielding and neglect the Bauchinger effect. We have 

~9=7~, a=1 2 3 4 9 7 3 . 

For resolved shear stress, we have formula 

7(a) = fl: p(a) = a..pw 
rl rl' (2.2) 

here 

F”) = .!(m(@ @ n(a) + n(a) @ m(N). (2.3) 

For the sake of convenience, we can express the vector with a column and the second order 
tensor with a matrix. 

Fig. 1. Plane model of primary-conjugate slip systems. Fig. 2. Fixed Cartesian coordinate system. 
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We have 

d’) = ( - sin cpO cos rp, O>T 

m@) = { cos fpo - sinrp, OjT 

“‘2’ = (-sin tpo cos cpo o> 

+ 

L 

-sin 2i~1, -cos 2% 0 

cos 2% sin 29, 0 0 0 1 0 

F2) 1 [ 

-sin 2tpo -cos 2% 0 

= 

Lj 

-cos 

29, 

sin 

29, 

0 0 0 1 0 PQ’ = -pm, lp’4’ = -pm. 

From eqs (2.2), (2.4) and (2.3, it follows 

(2.4) 

(2.5) 

r(l) = i(fr, - o,)sin 2rpo + r,cos 2tpo, 

r(‘) = f(0, - cr,)sin 241, + z,cos 241,. 

In the polar coordinates (r, 6?), we have 

rot = - (a0 - flr)sin 2(8 - qo) + r,@ cos 2(8 - (po), 

r(*) = f(ae - cr,)sin 2(6 $40~) - zd cos 2(8 + cpo). 

2.2. Cf3nstitutiue relation 

(2.6) 

(2.7) 

The constitutive relation of crystals can be taken in the form, 

(2.8) 

where D, is strain rate tensor. D; is plastic strain rate tensor, 

DP = i p(“)i)@), n= 4, (2.9) 
a=I 

here j@) is the slip shear rate of the ath slip system. For continued active slip system lj@) > 0, 
otherwise l;@) = 0. 

The relation between strain rate tensor and velocity field is 

D, =i(aVJ/aX,+ aq/aXi)* 

For plane strain, we have 

D 33 = D,3 = Dz3 = 0. 

Noting 

(2.10) 

DC3 = Db = I);3 = 0, we obtain 

Using the above formulas, eq. (2.8) becomes 

D,, = -!- t& 
2P 

-$%&~p+D:~, (2.11) 

where h is the shear modulus and p = E/2(1 + v). The Greek indices a, /?, p, ran over 1 and 2 only. 
The repeated indices imply summation convention. 
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2.3. Stress function and stress components 

The equilibrium equation is identically satisfied through introducing the stress function 4, 

The stress function 4 of the asymptotic field can be expressed as 

4 = rZF(8) 

Using the stress function, the yield condition becomes 

r(‘)=iF”sin2(8 -cp,)-F’cos2(8 -(pO)=rc, 

r(‘)= -~F”sin2(8+cp,)+F’cos2(6+cp0)=r,. 

(2.12) 

(2.13) 

3. STRESS AND DEFORMATION FIELDS NEAR STATIONARY CRACK 

As shown in Fig. 3, the crack tip zone is assembled by three angular sectors. The domains 
A and C are plastic zones and the domain B is an elastic zone. 

Consider a pure mode I crack. Due to symmetry, we only consider the upper half plane. 
In domain A, two slip systems will simultaneously attain yield. For the first equation of 

formula (2.13), we obtain 

F=:sin2(0 -~o)*cos2(8-cp,)+A:. 
L L 

Hence the plastic zone is a constant stress zone. Noting 0 = 0, z,@ = 0, it follows 

A,, = - q cos 2rp,/sin 2~, , 

F= 
2 si22q, [COS 28 + 2, I. 

(3.1) 

(3.2) 

From eq. (3.2), we arrive at 

T(~)= -+F”sin2(8+cp,)+F’cos2(0+cp0)=r,. 

It means that the primary slip system and the conjugate slip system are simultaneously active 
in domain A. 

Similarly we obtain (in domain C), 

F=$l -cos28], k*=L. 
sin 2~, 

We have 

T(I)= T(‘) = -t,, in domain C. 

In elastic zone B, we have 

F = y [I - cos 28]+ B,* (1 - cos 2(8 + 8)) + By(8 - B - fsin 2(8 + p)) + B; cos 28 + B: sin 28. 

Fig. 3. Assembly of angular sectors for a stationary crack. 
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On boundary Trr, since the stress components are completely continuous, it results in 
B,*=B$= Bj’ = 0. We obtain 

F = y [I - cos 28]+ Bf[8 - f - fsin 2(8 + b)], 

where fl = K - 8, fi is the angle between the boundary rB and the crack face. 
From the complete continuity of stress components on boundary rA, we find 

T (2, + cos 2~) = y (1 - cos 2a) + Bf’[a + /? - K - $.in 2(a + /3)] 

-k*sin2a=k*sin2a$By[l-cos2(a+/?)], 

-2k*cos2a =2k*cos2a +2B:sin2(a +/I). 

The last two formulas of eq. (2.13) can be represented as 

Bfsin2(a +/I?)= -2k*cos2a, 

B:[l - cos 2(a + p)] = -2k* sin 2a. 

Eliminating By from above formulas, we arrive at 

cos 28 - cos 2a = 0. 

(3.3) 

It means that a = /? or /I = rc - a; the latter case removes the domain B. It is not a true 
solution, and must be ruled out. We have 

a =/I?, Bf’ = -k*/sin 2a, 

A, = 1 + 2(7c - 2a)/sin 2a, (3.4) 

r y [cos 28 + K,], in domain A 

F= 

i 

$1 - cos 2&J+ By - isin 2(8 + /I), in domain B 

y [l - cos 281. in domain C (3.5) 

The angle a is an unknown parameter which needs to be determined in the following 
discussion. 

In domain B, we find 

T(l) 
= -T, + B:[COS 2(p + Cpo) - COS 2(e - rpo)], 

T 0) = -z, -t B?[COS 2@ + Cpo) - COS 2(8 - CpO)], 
(36) 

dr”’ 

de- 
- -& sin 2(e - cpO), 

dr’*’ k* . 
-- T - sin 2a sin 2(o - %I. 

(3.7) 

It can be seen that the extreme points oft(‘) are 8 = rp, and 8 = (rr /2) + cp,, , the extreme points of 
rc2) are 0 =(R/2)-qo and 8 =n -‘p,,. 
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+I) = +I) _ _2tccos2(S + @I) 
mm - sin 2a sin 2~, 

- Tc. 

At e =rL --(PO, 

T.(2) = +2) = - 22, sid(j? + qo) 
mm sin 201 sin 2q, 

- Tc. 

At e =;-(Do, 

*5(l) = t(,) _ 2% cos2(B + cpo) 
max - sin 2cp, sin 2u 

- 7,. 

Since the yield constraint condition should be satisfied in domain B, hence we have 
a =P >cpo,a =B 2(n/2)-c~~. 

In fact, if a < cpo, then the angle 8 = K - ‘p. must lie in domain B, and r(‘) = rtin < - rc. 
On the other hand, if a <(x/2) - cpo, the angle 8 = (7r/2) + cpo is within domain B and 

z(‘) = z;l < -z,. . 
Thus we confirm that 

‘. (3.8) 

Consider now the deformation field in domain A. From eq. (2.9), we find 

1 

DP, = -f(li, + Y,)sin 2~,, 

02’2 = @, + Ij2)sin 2~,, (3.9) 

or2 = f<?il - j2)cos Qo, 

{ 

0,’ = - 0: = ;{1;) sin 2(8 - cpo) - j2 sin 2(8 f cp,)}, 

0; = ;{y, cos 2(e - cpo) - j2 cos 2(e + up,)), 
(3.10) 

where Dp, Dg, OFti are strain rate components in polar coordinates and i),, j2 are the slip shear rate 
of primary and conjugate slip systems, respectively. 

Because domain A is a constant stress zone, hence the elastic strain rate vanishes in the 
asymptotic sense. The singularity part of strain rate is due to plastic strain rate. 

Let 

eq. (2.10) has the form (in polar coordinates), 

(3.11) 
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Using the first two formulas of eq. (3.1 l), we find 

here 

h(e) = f[f, sin 2(e = cpO) - & sin 2(e + cp,)], 

H(e) = h(e) de. 
s 

Substituting eq. (3.12) into the third formula of eq. (3.1 l), it follows 

- t In [h’(e) + H(e)] - i (f: + &) = i [f, cos 2(e - cpO) - & cos 2(e + cpo)l. 

(3.12) 

(3.13) 

Thus we obtain following compatibility equations: 

w(e) + H(e) = 0, (3.14) 

f; +fO = fZ cos 2(e + cpo) - f, cos 2(e - vol. (3.15) 

From eq. (3.14), we find 

1 

H(e) = A, sin 8 - A2 cos 8, 
h(e) = A, cos 8 + A2 sin 8. 

(3.16) 

Due to eqs (3.13) and (3.15), we arrive at 

I 

Q = -{sin 2(e + &[f; +fo] + cos 2(e + cp,).2h(@}/sin 4~,, 

Q = -{sin 2(e - qo)[f;; +fo] + cos 2(e - cp0).2h(8)}/sin 4~~. (3.17) 

At 8 = 0, V, = 0, hence A, = 0. Domain B is an elastic zone, so that the strain rate and velocity 
fields have nonsingularity. 

For stationary crack, the normal component Ve of velocity should be continuous across the 
boundary rA. 

Thus we have A, = 0. It results in 

h(e) = H(e) = 0. 

$ = -sin 2(e + cpo)[f; +fJ/sin 4~,, 

$ = -sin 2(e - cpO) [f; +&]/sin 4~~. 

(3.18) 

(3.19) 

If ‘p. > (n/4), thus 0: > cpo. In domain 0 < 8 < (n/2) - (po, the functions sin 2(8 - cpo) and 
sin 2(8 + cpo) have different signs. In order to confirm that 

?, 2 0, & > 0, (3.20) 

we must have 

[fb’+fo]=O, o+f$,, $=&=o. 

In domain (7t/2) - VP00 < cpo, the functions sin 2(0 + cpo) and sin 2(8 - cpo) are minus. Hence the 
constraint condition will be met if and only if 

f6 +fo < 0. 

In a similar way, we find 
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Anyway there is a concentrated strain zone in domain A. The strain rate has singularity of 
type l/r in domain 

Similarly, there is a concentrated strain zone in domain C. 
It is worth noting that the angle a is a free parameter which needs to be determined from the 

analysis of complete solution. But the following constraint condition should be met 

4. STRESS AND DEFORMATION FIELDS NEAR GROWING CRACK TIP 

As shown in Fig. 4, the polar coordinate system (r, 6) is moving with crack tip. According 
to McClintock[S], Slepyan[6], Rice et a1.[7] and Gao[S], the tip zone for a steadily growing crack 
involves an elastic unloading zone and a secondary plastic zone. 

Figure 5 shows an optional assembly of sectors for a steadily growing crack: the angular 
sectors A and B are plastic zones; the sector D is a secondary plastic zone and the sector C is a 
elastic unloading zone. 

The stress function of asymptotic field can be expressed[7] 

4 = rZF(8) 

7 [cos 28 + K,], in domains A and B 

F(8)= ~F,(e)+~+c,+c,[l-c0s2(8 -P)]+C,sin2(8-j?), in domain C (4.1) 

i 
y [I - cos 281, 

k* = r,/sin 2~~ 

in domain D 

(4.2) 

where 

F@)=(l -cos28)lnsin8 -tI.sin28 -c0sze. (4.3) 

As pointed out by Drugan and Rice[9], for a quasistatically growing crack, any moving surface 
whose normal is inclined with the moving direction, is not a discontinuity surface. Hence on 
boundary Te and Tc, full stress components are continuous. We find that 

lC:(lnsinB-F,(P))+4C,= -2k*cosq?, 

(4.4) 

Fig. 4. Polar coordinates (r, 0) centered at the moving Fig. 5. An optional assembly of four angular sectors for a 
crack tip. steady growing crack. 
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y FS(j9 + YjJ + C3 + C,[l - cos 2(p - j!l)] + C, sin 2($J - j3) = y [1 - cos 2~1, 

y F:(T) + T + 2C, sin 2(7 - /I) + 2CS cos 2(7 - fi) = -k * sin 27, (4.5) 

1 C:(lnsin~-F,(~))+4C,cos2(~-B)-4C,sin2(~-B)=2k*cos2y, 

here y is the angle between Tc and the crack face. j? = x - y ; the inclined angle of Te with respect 
to x axis. 

Let 

x: = c:/4, x: = c:/4. 

From eqs. (4.4)-(4.5) it follows 

allxl + 42x2 = h, 

azl xl + aZ2x2 = b2, 

a31x1 + a32x2 = b,, 

where 

all=F:(~)+2sin2(~-B)[Fs(8)-Insin8]-cos2(g-B)FI(B), 

a12 = 1 - cos 2(7 - p), 

b, = - 2k* sin 27, 

a,, = In sin 7 - F,(y) - [In sin /I - F,(jI)]cos 2(7 - fl) + SF:(p) sin 2(F - j.?), 

a2, = $in 2(jJ - /I), 

b,=k*cos2, 

(4.6) 

(4.7) 

(4.8) 

a31 = F,(T) - F,(p) - [In sin /I - F&I)][l - cos 2(p - /I)] - fFg(/3) sin 2(y - /3), 

U32 = 7 - p - : sin 2(“j - /I), 

b3 = +k*[l - 2, - 2 cos 271. 

(4.9) 

For a given y, one can get the solution of xl, x2, A, from eq. (4.6), then all coefficients 
c :, c:, cj , cd, c5 and stress field near crack tip. But we need to check the solution in order to confirm 
all constraint conditions to be satisfied. 

Firstly the yield constraint condition should be met in domains C and D: 

(4.10) 

Secondly the velocity discontinuity may occur on boundary rA or rB, r,-, but they must obey 
some additional constraint conditions. In the next section we will prove that 

Cl tgP -c,<o, 

B =Max(%, I-%). 

(4.11) 

(4.12) 

The calculation is carried out for rp, = 54.74”. We do not find any suitable angle y, at which 
the eq. (4.6) and the constraint conditions (4.10), (4.11) are simultaneously satisfied. Hence this 
option is ruled out. 

The other option is shown in Fig. 6. The assembly of sectors involves five angular sectors. The 
domains A, B are constant stress zones; domains C, D are elastic unloading zones; domain E is 
a secondary plastic zone. The velocity discontinuity may occur on boundary rA, re and Tc. 
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Fig. 6. Another optional assembly of five angular sectors for a steady growing crack. 

As pointed out by Rice[3], the velocity discontinuity ray must have the direction of slip plane traces 
or normal traces of slip plane. Hence we have 

P =Max(qo,~-vo) 
When qpo 2 (z/4), we have 

c1 =LJ&), 
2 B =cpo. 

Thus the velocity jump is slip-type shear on rB but kinking-type shear on rA. 
The stress function of asymptotic field can be expressed as 

f#J = ?F@), 

y [A, + cos 2 01, in domain A and B 

(4.13) 

p&9)+ y 8 + C, + C, [ 1 - cos (e - j3)] + C, sin 2(e - fi), in domain C 

F(e) = 

1 
(4.14) 

yF,(e)+ 7 8 + D, + D4[( - cos 2(e - $1 + D5 sin 2(0 - j$ in domain D 

I q1 - cos 281, in domain E. 

Due to continuity of stress components on Ta, we find 

C,=$, +cos2/3) -+(B)-5$, 

C.I = - YCOS 2p - y (In sin /?) - F,(p), 

c, = 
C: F;(B) 

- ysin2/I -4. C: - __. 
2 8 

The continuity of stress components on Tn results in 

D3=$1 - cos 27) 

D4 = !$ cos(27) - 7 [In sin p - F,(p)], 

DT F;(y) 
D5=~sin2~-q.T-gDf. 

(4.15) 

(4.16) 
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From the stress continuity on Tc, it follows that 

(cF ,” : )F,(p)+ (C’~D’)fl+(C~-D,)+C,[1-cos2(8-/3)]+C,sin2(/J-/?) 

- D4[1 - cos 2(/T - y)] + D, sin 2@- 7) = 0, 

a(C: - D:)F1@) + t(C: - D:) + 2C, sin 2(/T - /I) + 2CS cos 2(/J - fl) 

-2D,sin2(/?-y)-2D,cos2@-y)=O, 

(C?-D?)(lnsinB-FS(fl))+4C4cos2(~-/?)-4CSsin2(/T-fl) 

- 4D4 cos 2(/? - jr) - 40, sin 2(! - 7) = 0. 

On r,, velocity jump occurs, we have 

$2) = -_z CY (or r (1) = -_T,). 

939 

(4.17) 

(4.18) 

(4.19) 

(4.20) 

On the other hand, the normal velocity component must be continuous across rF, it yields 
(the proof will be given in the next section) 

C: sin B - C: cos B = 0: sin fl- 0: cos 8. (4.21) 

Hence we have 

i 

D:=D$cosB+C:, 

D:=Ddsinfl+C:. 
(4.22) 

In the next section we will find the following constraint condition: 

D,*<O. (4.23) 

Let 

c: G Do* 
x1=-q x2=-q s=q,c. 

From eqs (4.17)-(4.19), (4.20) and (4.23), it follows 

allxl +%2x2 = h, 

a21Xl + a22x2 + a23x3 = 62, 

a31 XI + a32x2 + 033x3 = b3, 

here 

aI r = FI (fl) + 2@n sin B - F, (/I)]sin 48 - Fi (/I) cos 48, 

U,2= 1 -COSdb, b,= -2, 

a2l = F;(j) + 2[ln sin 7 - F,(T)]sin 2@ - y) - F;(y)cos 2(/? - y), 

u22 = 1 - cos 2(/3 - y), b, = 0, 

a31 = 4, - d2,, u32 = d22 - 42, 

u33 = d22 sin /I + d,, cos /3, 

U23=U22 sin/I -a,, COSfl, 

b3 = cos 2/3/sin 2~, . 

(4.24) 

(4.25) 
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d,, = [In sin fl - F,(B)] - [In sin B - F,(/?)]cos 4/I 

d,, = fsin 4/3, d2, = fsin 2(8 - y). 

d,, = [ln sin B - I;,(p)] - [In sin 7 - F,(~)]cos 2(8 

- f F: (/?) sin 48, 

(4.26) 

- y) - iFi sin 2(/3 - y). 

For a given angle y, the solution of x,, x2, x3 is obtained from eq. (4.24). Then get all 
coefficients. Check now the following constraint conditions: 

On domains C, D, we have 

For coefficients C:, C:, Db, we have 

(4.27) 

(4.28) 

The calculation is carried out for cpO = 54.74”. Thus tl = 35.26”, B = ‘pO = 54.74”. 
The calculation shows that the correct solution is obtained for each y when 9.009” < y < 12.7”. 

The solutions satisfy all asymptotic equations and full constraint conditions. 
For y = 12.7”, the present result is completely coincident with the result given by Rice[3]. 
The stress distribution along circumferential direction is shown in Fig. 7. The velocity field 

is continuous across the boundary rA. 
Hence the difference between domains A and B is only the strain rate field. There is a 

concentrated shear strain on domain B. 
The resolved shear stresses T(‘) and rc2) are shown in Fig. 8, for y = 12.7”. On the front crack, 

z(‘) = 2(Z) = z,; near the crack face, ~(‘1 = T(~) = - TV. It means that, the primary and conjugate slip 
systems are simultaneously active on domains A and B, but sliding in opposite directions on 
domain E. 

Figure 9 shows the stress distribution along circumferential direction for y = 9.009”. 
Figure 10 shows the resolved shear stress for y = 9.009”. 

The calculation confirms that the boundaries rA, rB and Tc have a velocity jump. 

5. VELOCITY AND DEFORMATION FIELDS NEAR GROWING CRACK TIP 

The analysis of velocity field is an essential part for asymptotic solution of a steadily growing 
crack. 

Fig. 7. Stress distribution at the crack tip along the circumferential direction for the elastic-perfectly plastic 
crystals undergoing double slips in the case y = 12.7”. 



1.0 

0.6 

0.6 

OA 

0.2 

0 

- 0.2 

-0.4 

-0.6 

-0.6 

- 1.0 

Asymptotic fields near the crack tip 941 

Fig. 8. Resolved shear stresses at the crack tip along the circumferential direction for the elastic-perfectly 
plastic crystals the same as Fig. 7. 

Fig. 9. Stress distribution at the crack tip for the crystals the same as Fig. 7 in the case y = 9.007”. 
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Fig. 10. Resolved shear stresses at the crack tip for the crystals the same as Fig. 9 in the case y = 9.007”. 
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For a fixed material point, 
a and the material coordinates 
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the polar coordinates (r, 0) are the functions of the crack length 
x,, x2. We have 

i 

x, = Aa + r cos 8, 

x2 = Aa + r sin 0, (5.1) 

Aa=a-a,, 

i 

ar 0 aa, = -case, 

ae 0 zl, = i sin 8. 

5.1. Velocity fields in domain A and B 

We have 

i 

$ = - {sin 2(0 + po)(fi +fo) + cos 2(0 + cp0)*2h(8)}/sin 4q,, 

& = - {sin 2(8 + po)(fl; +fo) + cos 2(8 + cpo).2h(8)}/sin 4q,, 

h(0) = A, cos 0, 

H(B) = A, sin0, 
in domain A 

h(B) = B, cos 0 + B2 sin 0, 

H(B) = B, sin 13 - B, cos 8. 

in domain B 

At 8 = 0, 

5 = -{sin 2&j-{ +&) + cos 2q,*2h(O)}/sin 4q,, 

Q = - { - sin 2rp, cf;l +fo) + cos 2q,. 2h (O))/sin 4q,. 

Due to F, 3 0, F > 0, it follows 

24,=2h(O)< +g2cp,Cf;;+fo)~=ol GO. 

The normal velocity component is continuous across the boundary rA, it results in 

B,=B,,coscr+A,, B, = B,, sin a, 

h(B) = 8, cos(8 - LX) + A, cos 8, 

= B,, sin(0 -g) + A, sin 8. 

(5.2) 

(5.3) 

(5.5) 

(5.6) 

(5.7) 

(5.8) 

The plastic deformation work rate is non-negative when a material element passes through 
the boundary rA. Thus we have 

It results in B,, G 0. 
When cp0>(7r/4), we have a =(72/2)-q0,/?=(po. 
In domain A, 0 < 8 < (7r/2) - ‘p. 

sin 2(8 - cpO) G 0, sin 2(8 + cp,) 2 0. 
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Let 

Substitute into eq. (5.4), we find 

fZ = - 6 .2h (6). sin 2(8 - cpJ/sin 4~~. 

Noting h(8) = A, cos 8 < 0, while A, # 0, we obtain 6 > 0 

$-, = - 
i 

-sin 4q, 

sin 2(e - cpo) 
+ 6 sin 2(e + cpo) 2h(8)/sin 4~, 

1 

= 2 h(e) I sin 2(; _ po) + 6 s’“s;y-o”“‘} 2.0. 

Hence if A, # 0,6 > 0 and eq. (5.9) holds true, we confirm that f, >, 0, & > 0. 
When A, = 0, we arrive at 

I 

fb’ +.&I = O, 
++O. 

in domain A 

Consider now the velocity field in domain B. We have 

B,GO, h(e)<o. 

When B. or A, is not equal to zero, assume that 

If 6 2 0, thus & 2 0. We find 

5 sin 2(e + cpo) = 2h(e) i 1 

sin 2(e - cpo) 
+6 

sin 4~, I ’ 

In order to keep B 2 0,6 must be small enough. 

5.2. Velocity field in elastic unloading zone 

The stress rate function in domain C is 

4 =&f(e), 

It results in 

f(e) = F’(B)sin e - 2F cos 8. 

(6* = ?& = 0, 

Using above equations and formula (4.1), we find 

6, = f [C: cos e + C: sin 61. 

The elastic constitutive equations have the form 

D,= -Y&c - v h@) 

2/J (17 

D&=0, 

h((+(l-v). - a[C: cos 8 + C: sin e]. 
2P 

943 

(5.9) 

(5.10) 

(5.11) 

(5.12) 

(5.13) 

(5.14) 

(5.15) 

EFM 35/6--B 
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From the first two formulas of eq. (5.15) it follows 

Substituting the above formula onto the third formula of eq. (5.15), we obtain 

Hence we have 

H” + H = 0, 

,+A=(&- 1)HW. 

(5.16) 

(5.17) 

(5.18) 

Apparently eq. (5.17) is met, because 

(1 -v) = - h[C: sin 0 - CT cos @] + C$. 
2P 

Let C,* = 0, eq. (5.17) is satisfied. 
Define 

C (l-v)&c:, -- 
‘- 2/I 

C =(1--Q* 
2 2p =* 

(5.19) 

We have 

i 

h(8)=C,cos8-C,sinf3, 
H(8) = C, sin 8 - C, cos 8. 

(5.20) 

Comparing eq. (5.16) with eq. (5.3), one can see that the major singularity term of velocity 
is the same on both the elastic unloading zone and plastic zones A and B, but the nonsingula~ty 
term of velocity is a little bit different. If and only if v = l/2, the nonsingularity term is the same. 

Consider now the constraint condition for coefficients C, and C,. 
The normal velocity component has non-jump on the boundary Te. Hence we have 

C,sinfi-C2cosfi=B,sin/?-Bzcos/?. (5.21) 

It follows 

C,tg~-C,=(B,cosa+A,)tg~-B,sina=B,sin(~-or)/cos~+A,tg~~O (5.22) 

It is the constraint condition (4.11) and (4.18). 
In a similar way, we obtain the velocity field on domain D: 

h(e)=D,cose +D2 sin 8, 
H(8) = D2 sin B - D, cos 8, 

(5.23) 

: 

D =(l-“)(iD* 
I 2/f ” 

J) =(1--)&D*. 
2 

2P 2 

The continuity of normal velocity on Tc yields 

(5.24) 

C,sin/?-C,cosfi=o,sinB-&cosfl. (5.25) 
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Thus 

Cysinj-C:cosj=D:sinfD:cosp. (5.26) 

It is the formula (4.21). From eq. (5.26), we arrive at 

1 

D:=D,*cosB+C:, 

D:=D,*sinp+C:. 
(5.27) 

When a material element transverses across the r,, the plastic work rate should be 
non-negative. Thus 

D,*<O. (5.28) 

6. APPLICATION ON FCC AND BCC CRYSTALS 

The crystal axis coordinates for FCC and BCC crystals are shown in Fig. 11. The x,, y,, z, 

axes are along the [loo], [OlO], [OOl] directions, respectively. The fixed Cartesian coordinates OXYZ 
used in the previous sections are also shown in Fig. 11. 

The crack plane lies on (010). Crack tip is along [lOTI. Obviously such cracked crystals will 
undergo the plane strain deformation when external load is parallel to the plane OXY and 
distributed uniformly along the Z axis direction. 

The second orientation has the crack line rotated at 90” anticlockwise from the above 
orientation which provides also a plane strain solution. 

The four slip planes of FCC crystals are (11 l), (TIT), (71 l), (11 i). 
There are three slip directions [ 1071, [ 1501 and [Oi l] on the slip plane (111). The equal slip along 

the [ITO] and [OTl] directions on the slip plane (111) will result in slip along [l?l], and yield plane 
strain deformation. In fact designating (111) [liO] as a 2A slip system which have slip direction 
rnf) and unit normal n(‘) of slip plane. 

The slip system (111) [Ol l] is designated as a 2B slip system which have slip direction rng) and 
unit normal n(*) of slip plane. Both slip systems are simultaneous and have equal amounts of slip 
and result in the same shear rate I . (*) Thus the associated plastic strain rate DP is 

Dr = (Pg’ + w’)j (2) 

= ${(mg) + m’,)) 6 n(*) + n(*) @ (mf) + mf))}$(*) 

fee Crystal 

( Ill), [IT01 and [Oil] 

Fig. II. A FCC crystal with crack on (010) plane at tip along [lOr] direction. 

(6.1) 
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where 

pm = +l2) Q “(2) + “(2, Q &) 

rnf’ + m$) = J3 mt2). 

Similarly, for slip systems (TIT) [Oil] and (Tli) [llO], 

D’r’ = $ pCr$j’r’, 

where 

we have 

(6.2) 

(6.3) 

pm = gm”’ Q “‘U + ““IQ m(l)) (6.4) 

From eqs (6.1) and (6.3), we find 

Dr = fi (pCr)$Cr) + p(2)?(2)). (6.5) 

Comparing eq. (6.4) with eq. (2.9), it can be obtained that the problem of FCC crystals 
discussed here is equivalent to the corresponding problem of double slip crystals, if we take fi j(r) 
and fi jt2) considered here to be equal to v(‘) and y(2) of that considered on double slip crystals. 

Exactly speaking, the equal amounts of slip on both slip systems (Ill) [loll and (11T) [loll 
will also result in plane plastic strain: 

DP = f{&(j) Q $2) + n$)) + (32) + “83)) @ #)>. y *c3) = (2/45)&j *(3) (6.6) 

where 

fi3) = + (&3) Q X(3) + #3) @ &3,}. 

However, if the stress state does not attend yielding on those slip systems, then the crack 
problem of FCC crystals considered here is actually equivalent to the corresponding problem of 
double slip crystals. 

The yield condition is now discussed. The resolved shear stresses of slip systems 2, and 2, are 

52’ = o: pa), rfi”’ = 0: p(Bzj. 

When both slip systems are simultaneously active, we have 

0: pa” = n: pB2’ = 5 

where r is the critical shear stress of slip systems 2, and 2,. We find 

~:p(2)=t---.=T ;J c’ 
It means that the critical shear stress r, of double slip crystals is equal to 2$r. 

On the other hand, for slip systems (Ill) [loll and (1lT) [loll, we have 

ts: &) = 0: fig) = r, 

The eqs (6.7) and (6.9) can be represented as 

z, = sin2p,.f(o, - G,~) - y.YY cos 2~, = -r, 
& 

(6.7) 

(6.8) 

(6.9) 

(6.10) 

(6.11) 

7. CONCLUSION AND DISCUSSION 

Based on the above analysis, one can draw the following conclusions: 
(1) The plane double slip model of crystals[4] is adequate for explaining the crack tip fields 

of FCC and BCC crystals in the case of plane strain. 
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The asymptotic solution is not unique for a stationary crack. In order to confirm the continuity 
of full stress components, the crack tip zone must involve an elastic angular sector. This paper 
presents an asymptotic solution which consists of three angular sectors and satisfies all governing 
equations of asymptotic fields and is full of constraint conditions. It is confirmed in this paper that 
there is a shear strain concentrated zone at the front of the crack, which is coincident with the 
experimental observation[lO, 1 I]. 

(2) The asymptotic fields for growing crack of double slip crystals involve five angular sectors: 
two plastic zones ahead of the crack connected with the boundary across which the velocity jump 
usually occurs; a secondary plastic zone near crack faces; two unloading elastic zones connected 
with discontinuity boundary. 

(3) The above results can be immediately applicated on plane strain crack problems of the 
FCC and BCC crystals. 

For the case of the crack on the (010) plane with growth in the [loll direction and the case 
of a crack on the (101) plane with growth in the [OlO] direction, the above analyses are applicable. 
Thus one can get the crack tip stress and deformation fields for FCC and BCC crystals under tensile 
loading. This paper neglects the effect of finite deformation. The rotation, especially the rotation 
of crystal axes, is important which needs to be taken account in the future work. 
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