
Dynamics of Atmospheres and Oceans, 14 (1989) 17 - 39 17 
Elsevier Science Publishers B.V., Amsterdam - Printed in The Netherlands 

THE EFFECT OF VARIABLE CURRENTS 
ON INTERNAL SOLITARY WAVES 

X. ZHOU 

Institute of Mechanics, Chinese Academy of Sciences, Beijing (People's Republic of China) 

R. GRIMSHAW 

School of Mathematics, University of N.S. IV., Kensington, P.O. Box 1, N.S.W. 2033 (Australia) 

(Received December 17, 1987; revised June 9, 1988; accepted August 26, 1988) 

ABSTRACT 

Zhou, X. and Grimshaw, R., 1989. The effect of variable currents on internal solitary waves. 
Dyn. Atmos. Oceans, 14: 17-39. 

The effect of variable currents on internal solitary waves is described within the context of 
a variable coefficient Korteweg-de Vries (KdV) equation, and the approximate slowly 
varying, solitary-wave solution of this equation. The general theory which leads to the 
variable coefficient KdV equation is described; a derivation for the special case when the 
solitary wave and the current are aligned in the same direction is given in the Appendix. 
Using further simplifications and approximations, a number of analytical expressions are 
obtained for the variation in the solitary wave amplitude resulting from variable shear in the 
basic current or from when the basic current is a depth-independent flow which is a simple 
representation of a geostrophic current, tidal flow or inertial wave. 

1. INTRODUCTION 

Internal solitary waves are a commonly occurring feature in stratified 
fluids whenever the combination of basic flow stratification and velocity 
shear permit the formation of a horizontal waveguide. In nature these waves 
have been observed on the thermoclines of lakes, fjords or in coastal waters 
(see, for instance, Farmer (1978) or Apel (1980)), and on inversion layers in 
the atmosphere (see, for instance, Christie et al. (1978) or Clarke et al. 
(1981)). On the theoretical side it has been established that the appropriate 
equation to model these waves is either the Korteweg-de Vries equation 
when the horizontal waveguide has a limited vertical extent (Benney, 1966; 
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Maslowe and Redekopp, 1980; Grimshaw, 1981), or an evolution equation 
of the Benjamin-Ono type for a deep fluid. 

Usually the theory has been developed for the case when the basic flow 
stratification and velocity shear vary only in the vertical direction, with the 
consequence that the horizontal waveguide is uniform and the model evolu- 
tion equation has constant coefficients. However, in many natural situations 
the basic flow is variable with respect to both time and the horizontal 
coordinates. For example, internal waves in coastal waters propagate over 
varying bottom topography or through a horizontally sheared current, while 
in fjords the internal waves often propagate in the presence of temporally 
and spatially varying tidal currents. Atmospheric internal waves propagate 
on inversion layers which may erode in time, and through regions of 
horizontal wind shear. The theoretical basis for the study of these situations 
are variable coefficient evolution equations of the Korteweg-de Vries family, 
which have been derived in a general setting by Grimshaw (1981) For the 
special case of solitary waves on the free surface of a homogeneous fluid 
(i.e., water waves), the variable coefficient Korteweg-de Vries equation has 
been derived and discussed by Ostrovsky and Pelinovsky (1970), Kakutani 
(1971), Johnson (1973), and many others (see the reviews by Miles (1980) or 
Grimshaw (1986)) for the case when the variability is due to bottom 
topography, and by Zhou (1985) when the variability is due to a current. 
Applications for the case of internal solitary waves have been when the 
variation in the horizontal waveguide is due only to variable bottom topog- 
raphy (see, for instance, Djordevic and Redekopp (1978), or Grimshaw 
(1983). Here we concentrate on horizontal variability associated with shear 
in the basic flow, although we shall also consider the effects of variable 
bottom topography, and some situations where there is also temporal 
variability. The importance of velocity shear in the basic flow in determining 
the properties of internal solitary waves has only recently been recognized 
(Noonan and Smith, 1985; Smyth and Holloway, 1987). For simplicity we 
shall only consider the case when the waveguide has a limited vertical extent 
so that the model evolution equation is a variable coefficient Korteweg-de 
Vries (KdV) equation. 

Next we shall describe the variable coefficient KdV equation derived by 
Grimshaw (1981) for the general case when the basic stratification and 
velocity shear vary both spatially and temporally. In the Appendix we 
describe an alternative derivation when the basic flow is steady and two-di- 
mensional (i.e. the basic horizontal current is uni-directional and varies 
horizontally only in that direction), and the waves propagate in a direction 
parallel to the basic flow. For the general case we first introduce non-dimen- 
sional coordinates based on a length-scale h 1 (a typical vertical dimension), 
a time-scale N~-1, where N 1 is a typical value of the Brunt-Vaisala frequency, 
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and pressure-scale oagh 1 where 01 is a typical value of the density. These 
scales combine to form the non-dimensional Boussinesq parameter o = 
N~hlg~ 1, which is a measure of the strength of the basic flow stratification. 
Relative to these non-dimensional coordinates, the wave field has a length- 
scale of c-1, an amplitude-scale of c 2, and evolved on time- and space-scales 
of E-3 where c is a small parameter. The basic flow is given by a horizontal 
current uo(X', T'; z) and a density field p0(X', T'; z), while the 
Brunt-Vaisala frequency N is given by Pot = - ° P  N2. Here z is the vertical 
coordinate, while 

X' 3 T'  = C x ,  = E 3 t  (1) 

where x is a horizontal coordinate and t is the time. 
The wave field is described by c2A(s, 0)~(X',  T'; z), which to leading 

order is the vertical particle displacement. Here the phase variable is given 
by 

0 = e - 2 0 ( X  ', T ' )  (2a) 

w =  --Or, , ~ = V X , O  (2b) 

while the vertical modal function is given by 

(Oo~'2q~.)+ 0oN2q~ = 0 (3a) 

o W 2 q ~ - ~ = 0 ,  on z = f 0  (3b) 

q~=0, on z = - h  (3c) 

xW= w -  K'u  o (3d) 

where x = I KI. Here ~0(X', T ' )  denotes the position of the free surface of 
the basic flow, and h(X')  is the fluid depth. Equation (3a) with the 
boundary conditions (3b and c) define an eigenvalue problem which de- 
termines w = o~(g; X ' ,  T') .  This is the dispersion relation which, through 
eqn. (2b), determines the phase O. Because of the form of eqn. (3d) it 
follows that we may put w = xW(~-IK; X',  T') ,  where the modal equations 
(3a-c) determine W, which is the magnitude of the longwave phase speed; 
w = KW is then the dispersion equation for linear longwaves. To solve for 
the phase 19 we introduce the rays by the equations 

d T '  dX' 
- 1 ,  - - = V = v ~ w  (4a) 

ds ds 

dw 3w dK 
- - - - = - - ,  - - = - V x , O ~  (4b) 
ds ~T' ds 

where s is a time-like variable along each ray. Here V is the group velocity, 
and we note that it generally differs from the longwave phase speed ~-IKW 
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because of the possible dependence of W on the wave direction r - l K .  

However, it can be shown that co = K. V and hence 19 is constant on each 
ray. We let ~1 = 19 and ~'2 be initial coordinates on each ray and then the 
ray equations have solutions of the form T ' =  T ' ( s ,  ~;~, ~2) and X ' =  
X ' (s ,  ~1, ~2). We let J be the Jacobian of the mapping from (s, ~(, ~2) to 
(T', X'). 

It is shown by Grimshaw (1981) that the amplitude A(s,  8) satisfies the 
variable coefficient KdV equation 

A s + xl.tAA o + tc3~Aooo + vA = 0 ( 5 )  

where the coefficients are given by 

I /z= 3f~°poW2~3 dz (6a) 
a - -  h 

= d: (6b) 
- h  

f~'0 - -  2 
I =  2J_hPoWq¢: dz (6c) 

The coefficient v is given by 

v = ½ K ( I j ) - l ( j I x - ] ) s  + 2/ (7) 

where ~, is due tO non-conservative effects, such as friction or forcing, in the 
basic flow. The general expression for y is quite complicated and will not be 
displayed here, but we shall quote the results for the special cases discussed 
in later sections. Note that all the coefficients are functions of s, but are 
independent of 0. 

In general, the variable coefficient KdV equation (5) is not integrable, and 
we must resort to numerical or approximate solution procedures. Joshi 
(1987) has shown that those particular choices of coefficients for which eq. 
(5) is integrable correspond to just those cases for which it can be trans- 
formed simply into either a constant coefficient KdV equation (with v = 0) 
or into a constant coefficient concentric KdV equation (with v = s - I / 2 ) .  
The approximate procedures most widely used correspond either to the 
fission of a solitary wave when there is an abrupt change in the characteris- 
tics of the horizontal waveguide, or to the slowly varying solitary wave. 
Fissioning of internal solitary waves due to topographic variability has been 
discussed by Djordevic and Redekopp (1978) and Zhou (1987). Here we 
shall confine our discussion to the slowly varying solitary wave approxima- 
tion, which assumes that the properties of the waveguide represented by the 
coefficients in eq. (5) vary slowly with respect to the length-scale of the 
solitary wave. It has been shown by Grimshaw (1979) that the slowly 
varying solitary wave solution of eqn. (5) is given by 

A = a sech2fl~ (8a) 
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where 
s 

if' = 0 - fo ½~/xa ds  (8b) 

and 

/La = 12)~K2fl 2 (8C) 

The variation of the amplitude a with s is given by the wave-action flux 
equation which here takes the form 

0 ,.~ IJA 2 ,.oo IJA 2 
- - /  - -  d 0 = - 2 ~ , /  - -  dO (9) 
OS d__m K d_oo K 

On substituting (8a-c) into (9) we find that 

I~- 'XI2d2a3=(cons tan t )  exp( -4f0sy  ds)  (10) 

Note that when the waveguide is conservative (i.e., y = 0) eqn. (10) gives a 
local law for the variation of the solitary wave amplitude a. Also, it should 
be noted that the slowly varying solitary wave solution does not, on its own, 
conserve mass (Grimshaw, 1979; Chang et al. 1979; Knickerbocker and 
Newell, 1980), and to conserve mass is accompanied by a trailing shelf, or 
tail. This is a linear longwave where amplitude is much smaller than that of 
the solitary wave, but which has a much greater spatial extent. 

To complete this introductory section we now describe how this general 
theory reduces under the simplifying hypothesis that the basic flow is steady, 
two-dimensional and a function of X'  and z alone. It then follows from 
eqn. (4b) that w and 1 are constants, where K = (k, 1). Without loss of 
generality we can put o~ = 1, and the dispersion relation is then KW= 1, 
where ~ = ( k 2 + 1 2 )  1/2. This determines k = k ( X ' ) ,  since now W =  
W(K-lk; X') .  Note that the modal equations (3a and b) contain only 
W= W-x- lkuo,  and that the group velocity V = ( V  1, V2) where V 1 = 
3 / 3 k ( r W ) ,  V 2 = 3 /31(KW).  Clearly we can regard k, W, V 1 and V 2 as 
functions of X'  alone, with the constant l as a parameter. Then the ray 
equations have the solution 

, , foVVi -,  T '  = s -  ~l +1~2, s =  d X ' ,  

0 = ~ ,  o0=1 ,  •W=I 

Note that it may be shown that 

fo x' X'  O =  - T '  + k d + lY '  

t ~0 X' 1 Y'---~2 + V2V (- d X '  ( l l a )  

( l lb )  

(12) 
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and we recall from eqn. (2a) that 0 = ( - 2 8 .  The Jacobian J = V 1. When 
these results are substituted into eqn. (5) we obtain 

A s + W-a#AAo  + W-3}~Aooo + t,A = 0 (13a) 

where 

v =  ½ ( W V I I ) - a ( W V a I ) s +  7 (13b) 

For the special case when the solitary waves also propagate in the X '  
direction, we may put  l =  0. Then it follows that W-- W ( X ' ) ,  k = W -a, 
V a = W and V 2 = 0. Since the derivation of the variable coefficient KdV 
equation in the general case (Grimshaw, 1981) is rather abstract and lengthy, 
we present in the Appendix a brief account of a more direct derivation for 
this special case. 

2. APPLICATIONS IN THE ONE-DIMENSIONAL CASE FOR A STEADY BASIC 
FLOW 

When the basic flow is independent of Y' and T' ,  and is directed in the 
X '  direction (i.e., is steady, two-dimensional and a function of X '  and z 
alone) then the reduction of the general theory was described at the end of 
the last section, and the equation to be considered is the variable coefficient 
KdV equation (13a). Note that in the title of this section we have called this 
the one-dimensional case because the basic flow has only one horizontal 
component  which points in the X'  direction, although, of course, the total 
flow is two-dimensional, and the solitary waves may propagate in a direction 
different to the X '  direction (if l 4: 0). 

For specific applications we must now specify the basic horizontal veloc- 
ity field (u0( X' ,  z). Once this has been done, the general strategy is to solve 
the modal equations (3a-d) and hence find W, calculate the coefficients/x, 
and v from eqns. (6a-c) and (7), and then determine the variation of the 
solitary wave amplitude from eqn. (10). For any given uo(X ' ,  z) this 
procedure can, of course, be carried out numerically. However, our aim here 
is to obtain analytical expressions for the solitary wave amplitude, and, as 
we shall see, the greatest difficulty with this strategy is obtaining sufficiently 
simple expressions for the basic flow so that the modal equations can be 
solved analytically. 

The basic flow now satisfies the eqns. (A. la-d) .  The solution of (A.lc and 
d) is given by 

Uo=Xt' z, W o = - ~ t ' x  , (14a) 

Po = Po ( g' ) (14b) 
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The functional form of p0('t') can generally be determined by evaluating P0 
and ,I, far upstream, as X '  ---, - oo. Eliminating P0 from eqn. (A. la  and b) 
we find that 

poJ( rl, if') = Fo~ - c 6 G o x ,  (15a) 

where 

~=~zz+C6gd.x ,x ,  W P o l d P ° ( o - 1 7 ,  1 2 1 6  2 + ~Uo + 2 '  Wo) (158) 

J ( A ,  B ) = A x , B z - A z B  x (15c) 

In the absence of the external forces F 0 and G o eqn. (15a) has the solution 
=~( , I , ) ,  which can be recognized as Long's equation for the steady 

two-dimensional flow of a stratified 
conditions (A.2a and c) become 

'I' = 0, on z = ~'o(X') 

q ' = - Q ,  o n z = - h ( X ' )  

fluid (Long, 1953). The boundary  

(16a) 

(16b) 

where Q is a constant describing the total mass flux of the basic flow. The 
boundary condition (A.2b) becomes 

p0 0x, + u0 + w0)z  o] = O'( F 0 -[- c 6 a 0 ~ ' 0 x  , ) ,  on z = ~o(X ' )  

(i7) 

The basic flow is thus described by eqn. (15a), with boundary  conditions 
(16a and b) and (17). The 0(c 6) terms may be omitted. Even so, however, 
these equations are non-linear, and further simplifications and approxima- 
tions are needed. We shall exploit the Boussinesq limit a-- ,  0, as well as 
other simplifications. For applications to internal solitary waves in the 
atmosphere or ocean, a is typically in the range 10 -2 to 10 -3. 

2.1. Flow over topography 

We shall suppose that h ( X ' )  ~ h o as X '  ~ - ~ ,  and that upstream 

Uo---, Uo + aZ } 
O o . e x p ( _ o N Z z  ) as X ' ~ - ~  

Where U, a and N o are constants. Hence 

1 2 X t -~ Uo z + ~az , as - - . -  

(18a) 

(18b) 

(19) 

and elimination of z between (18b) and (19) defines p0(~).  For  this case we 
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shall suppose that the X '  variation in the basic flow is solely due to the 
topography, and hence we can put the external forces F 0 and G O equal to 
zero. Equation (18b) can then be integrated to give 

~/= ,/(xI,) (20) 

where the functional form of ,fig') is determined by considering the limit 
X ' ~  - o o .  In order to obtain a tractable equation we exploit the limits 
o ~ 0 and a h o / U  o ~ O. The assumption that a h o / U  o is small is not a major 
restriction on applications. For instance a = 10 -2 allows for a velocity 
difference of 1 m s-1 over a 100 m depth range. It may then be shown that 
eqn. (20) becomes 

q'z~ + f l z ( q" -  U0z) = a l l - 8 2 ( -  , Z2(v0,i,z  - u0 )+ 
ZXt ¢ 

U0 2/-702 + 5  "'" 
/ . . I  

(21a) 

where 

f l  --- N o U o  I (21b) 

and the omitted terms in (21a) are higher order terms in o and a. The 
boundary conditions (16a and b) become 

xI' + ½og'z(U 2 -  92 ) + . . . .  0, on z = 0  (22a) 

, 2 - h ( X ' )  (22b) = - U o h  o + Saho ,  o n z =  

To leading order, the solution of (21a) and (22a and b) is 

sin flz 
q" -- Uoz + Uo( h o - h ) - -  + 0(o, a h o / U o )  (23) 

sin flh 

However, although the 0(o, a) terms are readily calculated the correspond- 
ing expressions are still too complicated to allow us to obtain analytical 
solutions of the modal equations (3a-c). Hence we make the further ap- 
proximation flh o --+ 0, which can be regarded as a large internal Froude 
number approximation, and restricts our results to relatively strong currents, 
or winds. We find that 

Uohoz f l2Uo(h 0 - h ) ( h  2 - z 2 ) z  
q , - - - - +  + 

h 6h 

oVdho( -- h2 )z 

2h 4 

(24) 
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Finally u 0 and P0 are found f rom eqn. (14a and b), and are given by 

UO m 
Uoh 0 f l 2 U o ( h o - h ) ( h 2 -  3z2 ) oUo3ho(h2-h 2) 

- - - +  + 
h 6h 2h 4 

(h~_h2) 
z 

2h 
+ --- (25a) 

N 2 h o B 2 ( h o - h ) ( h 2 - 3 z  2) oUoZho(h~-h 2) 
- - = - - +  + 

N 2 h c h [Ah 4 

2hU o 
+ --- (25b) 

These expressions hold in the jo int  approximat ions  of large internal Froude  
number  (fib o << 1), weak shear (ah o << U0), and the Boussinesq limit (o << 
1.) 

We turn next to the solution of the modal  equations (3a-d) .  To leading 
order the modal  funct ion and W are given by 

q~ = sin(s~rz/h)  + O( o, aho/Uo, f12h2 ) (26a) 

kUoh o No( hho); 
W = - - +  + 0 ( o ,  aho/Uo, f12h2) (26b) 

~h srr 

where s =  1, 2, 3, ---, and we recall K = ( k ,  /), x = ( k 2 + / 2 ) ' 2  and is a 
constant.  Since ~:W= 1, eqn. (26b) determines the variation of k with 
h (X ' ) .  Note  that the second term of eqn. (26b) is 0( flh 0) relative to the first, 
and hence k varies approximately in propor t ion  to h. The group velocity is 
given by 

I 

U°h° + + 0 (27a) 
= h Uo, 

lNo( hho) 1/2 
v2= +0(o ,   ho/Vo,  2h o) (27b) 

KS'//" 

Here, in the expression for V 1 the first term dominates ,  and so V 1 varies 
approximately in inverse propor t ion  to h. It can also be shown that  1/2/1/1 is 
an increasing function of h. The solution of the ray equations is given by 
eqns. ( l l a  and b) and (12), and the Jacobian J = V 1. Al though the second 
term in eqn. (26b) is 0(flh0) relative to the first, it has been retained as it is 
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the leading order term in W, where here W = W -  x-lkuo. Next we calculate 
the coefficients #, ?~ and I from eqn. (6a-c). We find that 

I=  Nosrr( ho/h )l + 0(o, aho/U o, flEh~ ) (28a) 

• = ½No( h/s~r )3( ho/h )" +0(o, aho/U o, flZh2 ) (28b) 

However/~ (eqn. (6a)) is itself 0(o, aho/U o, flho) and to calculate it directly 
from eqn (6a) requires evaluation of the 0(o, aho/U o, flho) terms in q, (eqn. 
(26a)) and W (eqn. 26(b)). Alternatively, we integrate eqn. (6a) by parts to 
obtain the equivalent expression 

- - 4 3  I/x= 3 P0wE):q~q~ 2 d z -  2 ¢ poN2):q, 3 dz + 3O(poW q~):=¢0 

+ 203( P0 N 2 ~6~b3 )Z=¢o (29) 

From this expression we can calculate/~ directly from eqn. (26a and b) and 
find that, to leading order 

# =  o [ 3 -  ½(1 - ( - 1 ) ' ) I N  3 (hho) -'~ 

+ a [ X _ ( _ l ) , ] [ 2 k  1 4N o 1 ,] 

3Uo (s,r) 

2 , [ h o - h ] [  2k Uoho [ h0 4N0( h )2(~_20)1] 
- f l  ( - 1 ) / _ ~  - - + - -  - -  +---  (30) 

K srr 3 srr 

In the coefficients of both a and /3 in this expression the second term is 
O(/3ho) relative to the first term, and hence can be neglected. Also the ' o '  
term in eqn. (30) is O(/3ho) relative to the 'fl2hg' term, and can also be 
neglected. 

Finally, the variation of the solitary wave amplitude is determined from 
eqn. (10) with the friction coefficient y = 0. Thus 

a 3= (constant)/x/XI2 Va 2 (31) 

where I, I1, I, 2~ and # are given by eqns (27a), (28a and b) and (30), 
respectively. Utilizing the further approximations outlined above we find 
that, to leading order 

a =,constant) ( ) , -%o a [ 1 - ( - 1 ) ' ]  - / 3~ ( -1 ) 'U° (h° -h ) }  

+ o (constant) (32) 
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1.00 

a 3 

(a) 

(b) 

0 .  I' L I i x I 

O. h/ho 1.00 

Fig. 1. A plot of the solitary wave amplitude a as a function of the depth h for case (a) of 
section 2, when / = 0, a h o / U  o = flh o = 0.1 and oN2ho = 0.01. The curve (a) is for the mode 
s = 1, and (b) is for s = 2. Note that the two curves have been normalized differently. 

where  we recall  that ,  to leading order ,  k varies ap p ro x im a te ly  in p r o p o r t i o n  
to h. Thus ,  for  ins tance,  if the sol i tary wave p ropaga tes  in the d i rec t ion  in 
which  the dep th  h is decreasing,  then  k decreases  and  so the wave crest  
t ends  to align paral le l  to the cur ren t  (which is in the X '  direct ion) .  On  the 
o the r  hand ,  112/V 1 decreases  as h decreases  and  so the ray d i rec t ion  tends  to 

re f rac t  towards  the basic current .  I f  we assume that  the m o d e  n u m b e r  s is an 

o d d  integer,  and  that  the ' a h o / U  o' t e rm in eqn. (32) domina t e s  over  the 
2 2 ,  fl h 0 term,  then  the sol i tary wave ampl i tude  decreases.  However ,  if the 

m o d e  n u m b e r  s is an even integer,  or  the ' 2 2, fl h 0 t e rm in eqn. (32) domina tes ,  
then  the sol i tary wave ampl i tude  at first increases,  bu t  then  decreases.  We 
also no te  tha t  the ' o '  t e rm in eqn. (32) p roduces  no  change  in the ampl i tude  
as the de p th  h varies. In  Fig. 1 we show a p lot  of  the sol i tary wave 
ampl i tude  ' a '  as a func t ion  of  h for  the special case l = 0  for some 
represen ta t ive  values  of  a h o / u  o, f lh  o and  o N  2 h o, and  for  the m o d es  s = 1 
and  s = 2. The  cases when  / :~ 0 are similar. 

W e  shall conc lude  this subsec t ion  by  con t ras t ing  these results with the 
co r r e spond ing  results when  u 0 = 0 (see, for  instance,  G r i m s h a w  (1983)). In 
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this case Po = exp ( - o N 2 Z )  for all X ' ,  and the solution of the modal  
equations (3a-d)  is 

= sin(sTrz/h ) + 0( o ) (33a) 

W =  Noh/s~r + 0(o )  (33a) 

Since •W= 1, x now varies inversely with h, and as the solitary wave 
propagates  in the direction in which the depth  h is decreasing, then x 
increases and the wave crests tend to align normal  to the X '  direction. Also 
V2/V 1 = l / k  and hence decreases as h decreases, and so the ray direction 
refracts towards the X '  direction. Here V a = k W / x .  The coefficients ~, 
and I are given by 

l ~ = o { 3 - ½ [ 1 - ( - 1 ) ~ ] ) N ? h / ( s ~ r )  2 + 0 ( 0  2 ) 

= Noh3/2(s~r) 3 + 0(o) 

I = Nos~r + 0(o) 

(34a) 

(34b) 

(34c) 

The  solitary wave ampli tude is again given by eqn. (31), which reduces to 

a 3 = (constant)  x 2/k  2h 4 _.[_ 0( O ) (35) 

Thus as the dep th  decreases, the solitary wave ampl i tude now increases. 
These results are in direct contrast  to those given above when a basic current  
is present  (i.e. u 0 ~ 0), and emphasize the impor tance  of considering the 
effect of currents when evaluating the properties of internal solitary waves. 

2.2. Flow with variable shear 

We shall now suppose that  the depth  h is a constant,  and that the basic 
flow is given by 

= Uoz + a ( X ' ) ( z  2 + hz) (36a) 

Uo= U o + o t (X ' ) (2z  + h) (36b) 

Note  that xt, satisfies the boundary  condi t ions (16a and b), where we are 
assuming that  the free surface is ~'o = 0. Here a ( X ' )  is an arbitrary shear, 
a l though we shall suppose for simplicity that [ahol  << Uo. The density is 
given by 

po = exp(-oUgqi ' /Uo ) (37) 

so that  the Brunt -Vaisa la  frequency N is constant  to leading order. This 
flow must  be mainta ined by an external force F 0, which is given by (see A. 
la)) 

Fo= PoUoax,{2z + h + flZ(½z3 + ½hz2) } +---, (38) 
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where the omi t ted  terms are 0(a 2, oc th /U  o, o t 2 h 2 / U g )  and fl is again given 
by eqn. (21b). 

The  solution of the modal  equations (3a-d)  is 

q~ = sin(s~rz/h ) + O(o, ah /Uo)  (39a) 

k U  o Noh 
W -  + - -  + 0(o,  cth/Uo) (39b) 

STr 

where again s = 1, 2, 3 ---. Since xW = 1 it follows that  here k, and hence x, 
is a constant  to leading order. Similarly V 1 is a constant  to leading order, 
while VE/V 1 is proport ional  to h to leading order. Hence the wave crests 
have a constant  al ignment to the current direction, while the ray direction 
refracts towards the current  direction. The coefficients/z,  I and X are now 
given by 

. . . . .  a[1 ( 1)s] 1 + 8 Noh )2 + 0 (3  - ' [ 1 - ( - 1 ) s ] } ~  --(S7/.) 2 
s Tr 3 Uo ( s lr 

+---  (40a) 

h = Noh3/2(svr) 3 + 0(o,  aho/Uo)  (40b) 

I = Nos~r + O(o, aho/Uo)  (40c) 

The  coefficient 7 is calculated from eqn. (A.15) and we find that  

"/= 0(o z, oah/Uo, ~2h2/Uo 2) (4a) 

Hence, the variation of the solitary wave ampl i tude is again determined by 
eqn. (31), which reduces to 

a 3 = (constant)  o~ [1 - ( -  1) s] + ( , (constant)  (42) 

Consider,  for instance, the situation when a---, 0 upstream, as X ' ~  - ~ .  
The  solitary wave, propagat ing in the positive X '  direction, is then advanc- 
ing into a region of increasing shear as Is[  increases. When  the mode  
number  s is an even integer, the solitary wave ampli tude is unaffected by the 
shear to this order. However, when the mode  number  s is an odd  integer, the 
solitary wave ampl i tude increases if a is positive, but  decreases if a is 
negative. 

3. APPLICATIONS IN THE TWO-DIMENSIONAL CASE 

Our aim here is to model  situations in which internal solitary waves are 
propagat ing  through geostrophic currents, tidal flows or inertial waves. Thus  
we shall assume that  the basic flow is depth- independent ,  with two horizon- 
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tal components ,  and is driven by Coriolis forces. It is given by u 0 = 
( u 0 ( X '  ( Y',  T'),  vo(X',  Y', T ' ) ,  0 ) a n d  satisfies the approximate  equations 
(see, for instance, Gill (1982)). 

Uor' + o - l f o x  ' =fro,  

UOT' + o - l ~ o y ,  = - f u  o, 

~oT' + h(Uox,  + roy,)  = 0 

(43a) 

(43b) 

(43c) 

Here we have assumed that the depth  h is a constant  and f is the Coriolis 
parameter .  In the general formulat ion of Gr imshaw (1981), the Coriolos 
terms are regarded as body  forces in the equations of motion,  and it can be 
shown that their contr ibut ion to 3' in eqn. (7) is 0(f2) ,  where f = f l N ~  -1, fl  
being the dimensional  value of the Coriolos parameter  and N 1 being a 
typical value of the Brunt-Vaisa la  frequency. Since this is a very small term 
in practice we shall suppose that y is zero, a l though of course, the Coriolis 
terms are impor tan t  in eqn. (43a and b) in determining the basic flow. Also, 
since ~'0 is 0(of) ,  it is also small, and can be taken as zero in expressions 
such as (6a-c).  Further,  we note that the density P0 is independent  of X' ,  
Y', T '  to leading order, and we assume that  P0 = P0(z) • It follows that  the 
moda l  equations reduce to 

N 2 
(poe&):+ O0--~-q~ = 0 (44a1 

0¢2~z -- dp = O, 2 = 0 (44b) 

~ = 0 ,  z = - h  (44c) 
K ' U  0 

W = - -  + c (44d) 
K 

Here c = W is a constant,  and the modal  functions ~ = ,~(z) are indepen-  
dent  of X',  Y' ,  T'. It follows that the coefficients/~, 2, and I (eqn. (6a-c))  
are also constants,  and the only quantities which vary in the KdV equat ion 
(5) are r and  J. Fur ther  the expression (10) for the solitary wave ampl i tude 
reduces to 

a 3 = (constant)  J -  2 (45) 

Finally, to determine x and J we must  consider the ray equations (4a and 
b). These become 

dT '  d X '  kc dY '  lc 
- - = 1 ,  - - = - - + U 0 ,  - - = - - + V  0 

ds  ds  x ds  x 
dw d k  d l  
- -  -~- K "  U O T , ,  - -  -m- - - K "  U O X , ,  - -  K "  U o y ,  
ds  ds  ds  

To make  further progress we now consider a number  of special cases. 

(46a) 

(46b) 
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3.1. Geostrophic current 

We consider the special case when u - - 0 ,  and v 0 = % ( X '  ), and so 
~ox' = Of Vo. The ray equations (46a and b) reduce to 

d T '  d X '  kc d Y '  lc 
- - = 1 ,  - , - - - = - - + v 0 ,  (47a) 

ds  ds  ~ ds  K 

do0 dk  dl  
. . . . . .  O, - - -  Vox,, - - = 0  (47b) 
ds  ds  ds  

It follows that ¢o and l are constants, and without loss of generality we put 
¢o = 1. The dispersion relation is then x W =  1, where ~¢ = (k  2 + 12) '2 and here 

lv o 
W = - -  + c (48) 

This equation thus determines k = k ( X ' ) .  The ray equations then have the 
solution 

1 x '~  d X '  

' ' f0 T '  = s - ~1 + / ~ 2 ,  s = - -  
k c (49a) 

) Y' = ~' fo IcY° 
2 "Jr- k + kc dx' 

t 

0 = ~ 1 ,  ~o=1,  ~ W = I  (49b) 

Note  that it may be shown that 

fo X' 0 = - T '  + k d X '  + l Y '  (50) 

The Jacobian J = kc/K and V2/V  1 = ( x V  o + lc) /kc .  The variation of the 
solitary wave amplitude is now determined from eqn. (45) and the relation 
x W =  1. Assuming that kc > 0 so that the solitary wave propagates in the 
positive X '  direction we find that as v 0 increases (decreases), the amplitude 
also increases (decreases), k decreases (increases) so that wave crests tend to 
align parallel (normal) to the X '  direction, and V 2 / V  1 increases (decreases) 
so that the rays refract away from (towards) the X '  direction. 

3. 2. Tidal flow. 

We consider a steady wave-like solution of eqn. (43a-c),  for which the 
solution is 

u 0 = n s in(reX'  + n Y ' )  (51a) 

v o = - m  sin(rnX' + n Y ' )  (51b) 
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very simple model  of a tidal flow in which the time variation of the tidal 
current  is neglected on the grounds that the internal solitary wave has a 
propagat ion t ime generally somewhat  less than a tidal period. The ray 
equations (46a and b) reduce to 

d T '  d X '  kc 
- - = 1 ,  - - = - - + n s i n ( m X ' + n Y ' )  

ds  ds  x 
d Y '  /c 
- -  - m s in (mX '  + n Y ' )  
d s  x 

(52a) 

do~ d k  
- -  = O, = m ( ml - nk ) cos (mX '  + n Y '  ) 
ds  ds 
d l  
- -  = n ( ml - nk ) cos(rnX'  + n Y '  ) 
ds 

(52b) 

F r o m  eqn. (52b) we see that o~ and ( m l -  nk) are constants. Without  loss of 
generality we put  o~ = 1, and so 

00 s in( reX'  + n Y ' )  + rc = 1 (53a) 

n k - m l = O  o (53b) 

where 00 is a constant.  These two equations together determine k, l as 
funct ions of ( reX '  + nY ' ) ,  and then eqns. (52a and b) can be solved. Indeed,  
eqns (52 a and b) can be t ransformed into a form similar to eqn. (47a) by 
using ( m X '  + n Y ' )  and ( - n X '  + m Y ' )  as new variables in place of X ' ,  Y'. 
We shall omit  details, as the conclusion is that 

(ink + nl )c  
J = (54) 

(m2 + n2)~x 

The variation of the solitary, wave ampli tude is now determined from eqn. 
(45) and the relations (53a and b). Assuming that ( m k  + nl)c > 0 so that  the 
solitary wave propagates  in the direction in which ( m X ' +  n Y ' )  increases, 
we find that as 00 sin(rnX' + n Y ' )  increases (decreases), the ampl i tude also 
increases (decreases), and (ink + nl) decreases (increases) so that  the wave 
crests tend to align parallel (normal) to the ( m X '  + n Y ' )  direction, while the 
rays refract away f rom (towards) the ( m X ' +  n Y ' )  direction. The special 
case 0 o = 0 is interesting as then the solitary wave is always propagat ing at 
right angles to the current, where k and l are constants,  so that  J is 
constant,  and the solitary wave ampl i tude remains unchanged.  
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3.3. Inert ial  current 

In this case the solution of eqn. (43a-c) is ~'0 - 0 and 

u o = U 0 sin f T '  
Vo = Uo c o s / 7 "  (55) 

The ray equations (46a and b) become 

d T '  d X '  kc  d Y '  lc 
- - = 1 ,  - - = - - + u  0 s i n f T ' ,  - - = - - + U  0cos fir ' ' ,  (56a) 
ds  ds x ds x 

do~ dk  dl  
= f U o ( k  cos f T '  - l sin f i r ' ) ,  = 0, - -  = 0 (56b) 

ds  ds ds 

From eqn. (56b) we see that k and l are constants and then w is given by 

o~ = x W =  xc  + Uo(k  sin f i r '  + l cos f T ' )  (57) 

The solution of eqn. (56a and b) is then 

T t ~ S  

X '  - + - - T '  - - -  
K I¢ K 

r' lCT, = - - + - - + - -  + - -  
K K K 

and the phase is given by 

(58a) 

uo 
cos f T '  (58b) 

f 

sin f T '  (58c) 
f 

U ,  
0 = - x c T '  + 7 ( k  cos f T '  - 1 sin . fT ')  + k X '  + I Y '  (59) 

The Jacobian J = ~, and is constant. Hence the solitary wave amplitude 
does not vary as it propagates in an inertial current. 

5. SUMMARY 

Our main aim in this paper has been to present in a succinct form the 
variable coefficient KdV equation which describes the propagation of inter- 
nal solitary waves in a variable current, and to obtain some relatively simple, 
albeit approximate, formulae for the variation of the solitary wave ampli- 
tude due to the variation in the basic current. The general theory was 
presented in section 1, based on the theory described by Grimshaw (1979, 
1981). For the sake of completeness we have included in the Appendix a 
derivation of the variable coefficient KdV equation in the one-dimensional 



34 

case when the solitary wave and the current are both directed in a single 
direction. 

Then in section 2 we have considered two cases when the basic current 
contains vertical shear, but with suitable simplifications and approximations 
it is possible to obtain explicit formulae for the variation of the solitary wave 
amplitude due to horizontal variability in the basic current. Although the 
formulae we have derived hold under restrictions which may not always be 
met in practice, we hope that the formulae will be useful in providing at 
least a qualitative guide to the effect of variable current shear on internal 
solitary waves. To obtain results for more general basic currents would seem 
to require numerical integration of the modal equations (3a-c), and numerical 
evaluation of the coefficients (eqn. (6a-c)). Although this is always possible 
in any given practical case, we have not chosen that course here, as our aim 
has been to obtain useful analytical results. In section 3 we have presented 
some results for internal solitary waves propagating through geostrophic 
currents, tidal flows or inertial waves, under the assumption that the basic 
current is depth-independent.  This last hypothesis allowed us to obtain an 
explicit formula (eqn. 45) for the variation of the solitary wave amplitude, 
which shows that the variation is entirely due to the spreading of the rays 
associated with the basic current. Three special cases were looked at in 
detail. 
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APPENDIX 

Derioation of  the eoolution equation in the one-dimensional case for a steady 
basic flow 

When the basic flow is independent of Y' and T' ,  and is directed in the 
X '  direction, and the solitary waves also propagate in the X '  direction, the 
ray equations (4a and b) are readily solved and the evolution equation (eqn. 
(5)) simplifies to eqn. (13a). This reduction was described at the end of 
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section 1. However, since the derivation of the variable coefficient KdV 
equation in the general case (Grimshaw, 1981) is rather abstract and lengthy, 
we present in this Appendix a brief account of a more direct derivation for 
this special case. Note that in the title of this Appendix we have called this 
the one-dimensional case because the basic flow has only one horizontal 
component  which points in the X '  direction, although, of course, the total 
flow is two-dimensional. 

Let the steady basic flow be described by the horizontal velocity u o = 
(u0( X' ,  z), 0), a vertical velocity caw0( X' ,  z), the density P0( X' ,  z) and the 
pressure po(X ' ,  z). They satisfy the Euler equations for inviscid, incom- 
pressible flow 

Po( UoUox' + WoUoz ) + o - l p o x  , = F 0 

f.6po( UoWox, Jr WOWOz ) Jr o - l (  poz Jr P0)=g6ao 

Uox, + Woz = 0 

UoOox, + WoPo: = 0 

(A.la)  

(A. lb)  

(A. lc)  

(A. ld)  

Here F 0 and G O are body forces which allow us to specify the velocity field 
(u o, Wo) arbitrarily subject only to the kinematic conditions in eqns. 14a 
and 14b. F o and G O may be external force fields, or internal friction forces, 
but in either case describe non-conservative effects. The boundary condi- 
tions at the free surface z = ~'o(X') and the rigid bot tom z = - h ( X ' )  are 

w o -  Uo~ox, = 0, or z = ~o(X' )  (A.2a) 

P0 = 0, or z = ~'0(X') (A.2b) 

W o + U o h x , = O ,  o r z = - h ( X ' )  (A.2c) 

Next let the wave field be described by a horizontal velocity u, a vertical 
velocity w, a density O and a pressure p. Then the total field u 0 + u, etc., 
satisfies the Euler equations for inviscid, incompressible flow. Subtracting 
the basic flow equations (A . l a -d )  we find that 

Ipo + o)[u, + tUo + u)ux + (, w0 + w)uz + WUoz + 

+ c3O(UoUox , + WoUo: ) + o-lPx = 0 (A.3a) 

(PO d- p)[W t Jr (Ig 0 + U)W x Jr ( ,3  jr W)Wz .jr •3WWOz ..}_ ,6UWox,] 

Jr- '6p( UoWox' + WOWOz) Jr o - l (  Pz + O) = 0 (A.3b) 

u x + w~ = 0 (A.3c) 

O, + (Uo + U)Ox + ('3Wo + w)p:  + WOo: + "3UOox'=O (A.3d) 
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The boundary  conditions are 

e l + ( u o + U ) ( ~ o + ~ ) x - ( C 3 W o + W )  = 0 ,  on z = ~ 0 + ~ "  (A.4a) 

P0 + P = 0, on z = ~'0 + ~" (A.4b) 

w + ¢3uhx,--  0, on z = - h  (A.4c) 

Here ~" is the displacement of the free surface due to the waves. 
To describe weakly non-linear longwaves, we let W ( X ' )  be the speed of 

linear longwaves, and put  

X'W_ 1 0 = c - 2 ( s  - r ' ) ,  S = f o  d X ' .  (A.5) 

Thus 0 is a phase variable for linear longwaves and scales with c, while s is 
a time-like variable which scales with ~3, where we recall from eqn. (1) that 
X '  and T '  scale with c 3. Then we let the wave field depend on 0, s and z, so 
that u = u(O, s; z), etc. Next  we recall that the wave field scales with c 2, and 
put  

U F ul U2 
W 2 / OWl C4 CW2 

= c  / + + . . .  (A.6)  
P oPl oP2 
P I L °Pa °P2 

On substituting into eqn. (A.3a-d)  we find that, to leading order, 

P o ( -  W u l o -  W~'~wa) + Pl0 = 0  (A.7a) 

Plz + Pl = 0 (A.7b) 

Ulo + WWlz = 0 (A.7c) 

- WPl O - WPoNzwl = 0 (A.7d) 

where 

W = w - u 0 (A.7e) 

Similarly we find that the boundary  conditions (A.4a-c)  become, to leading 
order, 

- W~ao - Ww a = 0, on z = ~'o (A.8a) 

aPl - Po~l = O, on z = ~0 (A.8b) 

wl --- 0, on z = - h  (A.8c) 
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The solution of eqns. (A.7a-d)  and boundary conditions (A.8a-c) is given 
by 

u, 

wl = - A ° W - i ~ ' q  (A.9) 

Pl APo~'2d~z 

Pl ApoN2d? 

where the modal function ~(s;  z) is defined by eqn. (3a-c) and now 
W = W -  u 0 (see eqn. (3d), where here l = 0). The modal equations (3a-c) 
determine both ~(s;  z) and the linear longwave phase speed W. Also, we 
recall that A ( s ,  8)  is defined so that to leading order the vertical particle 
displacement is e 2Aq~. 

At the next order we find from eqn. (A.3a-d) that 

P o ( -  ~ ' u 2 0 -  W ~ ' z W z )  + Pzo = F2 (A.lOa) 

P2~ + P2 = p o W - l W w l o  (A.lOb) 

U2o + Ww2z = - uls (A.10c) 

- -WP2e- WPoN2w2 = G2 (A.10d) 

where 

F 2 = -190[(UoUl) s + UlUl8+ W ( w  0 + W)Ulz ] - P l s  + p' (oPlo + p O s -  °WFo) 
Po 

(A.lOe) 

G2= - (uoPl s  + uloos + UlPlO ) + W ( w  0 + wl)Pl z (A.10f) 

Similarly, we find that the boundary conditions are 

- W~za - W w  2 = / / 2 ,  on z = ~'0 (A.11a) 
1 2 2 

oP2 -- P0~'2 = O P l ~ ' I  - -  I ° P o N  ~1, on z = ~'o (A.11b) 

w 2 = - W - l u a h ~ ,  on z = - h  (A.11c) 

where 

H 2 = - [(Uo~,) s + (U,~l) o + Uoz~l~',o + Ua~o,. + Uoz~o~'l]. (A.11d) 

Putting W w  z = - Wq~ z and eliminating u 2, P2 and Pz from eqn. (A.10a-d) 
we find that 

(poWZ~2z)z  + poN2~2 = 12 (A.12a) 

where 

12= - F2~ + W -  'G 2 + ( OoWu,s)2 + Oo~ 'W- 'w loo  (A.lZb) 
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The boundary conditions (A.11a-c) become 

OPo~"2~2z -- P0~2 = g2, on z = ~'0 

where 

J2 = - ~ ' -  'poH2 - °F2 + °Po~'U,~ + ° (  Pl~a ) o - °PoN2~'a~'lO 

Wep 2 = u a h ~ ,  on z = - h  

(A.13a) 

(A.13b) 

(A.13c) 

Equation (A.12a) with the boundary conditions (A.13a and c) has a 
solution if and only if the following compatibility condition is satisfied 

ff  2, dz  - - ( po r zbllhs)-h = 0  (A.14) 

This is established either by constructing the general solution of eqn. (A.12a) 
using the method of variation of parameters, or by finding the adjoint 
operator to the left-hand side of eqn. (27a) and then applying the Fredholm 
alternative condition. After substitution of the expressions (A.9), the condi- 
tion (A.14) is seen to be an equation for A ( s ,  0). Upon simplification it may 
be shown to reduce the KdV equation (13a), with the coefficients given by 
eqns. (6a-c) and (7), where we note that with l = 0 ,  ~ =  W - t ,  V 1 = I V ,  
V 2 = 0, and hence s and 0 ( =  ¢ -20)  as defined by eqns. (11a and b) and 
(12) agree with eqn. (A.5). Also we now find that 

I y  = - f~°,~zFo~ dz (A.15) 
J -h 
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