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A B S T R A C T  

The creep and relaxation behaviour of laminated glass fibre reinforced 
plastics (GRP) in three-point bending were studied both experimentally 
and analytically. Creep and relaxation experiments were carried out on 
eight types of specimens, consisting of  glass fibre fabric reinforced epoxy 
beams. While the bending deflexion and creep strains were measured in the 
creep tests, the load and relaxation strain were recorded in the relaxation 
tests. Marked creep effects were seen in the tests, where the environment 
temperature was 50°C and the period of the measurement was 60 min. An 
attempt to predict the creep deflexion and relaxation behaviour was made. 
The transverse shear effect on creep deflexion was taken into account. The 
predicted results were compared with experimental ones. They were found 
to be in reasonable agreement, but the linearization assumption, upon 
which the relaxation behaviour analysis was based, appears to lead to 
larger inaccuracies in the results. 

N O T A T I O N  

a Half  span of the beam specimen (Fig. 1) 
A Material constant (eqn (1)) 
A1 Constant  (eqn (26)) 
b Width of  the beam (Fig. 1) 
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Constants (eqn (33)) 
Material constant (eqn (1)) 
Constant (eqn (27)) 
Integration constants (eqns (31) and (36)) 
Constants (eqn (3l)) 
Constant (eqn (34)) 
Young's modulus 
Deflexion of the beam which is a function of time 
Pure bending deflexion 
Maximum deflexion, i.e. deflexion of the central 
point of the beam 
Respective value Ofjm~× for constant load case 
Transverse shear deflexion 
Functions of time (eqns (31), (36) and (45)) 
Respective functions off l ( t )  and f~(t) for the con- 
stant load case (eqn (47)) 
Constants (eqns (36) and (38)) 
Shear modulus 
Thickness of the beam 
Constants (eqn (15)) 
Material constant 
Bending moment (M( t )  = Q(t )  x = "p(t)x)  
Material constant (eqn (1)) 
Load 
Load function 
Coefficients of load function 
Constant load 
Material constant (eqn (1)) 
Modification of q (eqn (12)) 
Initial value of q (eqn (11)) 
Shear force (2Q = P) 
Initial shear force (Q0 = Q(0)) 
Slopes of creep strain curves at steady stage (Fig. 7) 
Time 
Selected time points for determining Aq (eqn (12)) 
Initial value of t (eqn (11)) 
Coordinate axis 
Coordinate axis 

Notation defined by eqn (37) 
Coefficients of linearized function of • and qs 
Shear strain 
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e Direct strain 
e h Direct strain at the top surface of the beam, 

E h ~--- E [y=h  

ei Strains at the selected times, ti, for determining Aq 
(eqn (12)) 

er ,  , er2 As shown in Fig. 7 
eT Direct strain at steady creep stage 
eo Initial value of e (eqn (11)) 
e* Equivalent strain 
(r Direct stress 
O'h Direct stress at the top surface of the beam 
O'hC Direct stress of the top surface at time C (see Fig. 7) 
O'T Direct stress at steady creep stage 
O'o Initial value of o- (eqn (11)) 
o-* Equivalent stress 
r Shear stress 
qb(t), 0(t) Functions of time (eqn (2)) 

1 I N T R O D U C T I O N  

Glass fibre reinforced plastics (GRP) have long been used and are being 
increasingly applied to engineering structures and constructions. They have 
the advantageous properties of high specific strength and modulus. But 
they show remarkable viscoelastic effects when loaded by bending, shear- 
ing and torsional forces and under off-axial tension in respect to the fibre 
direction. In order to ensure that the structural components  of GRP are 
reliable in service, the designer should know their creep behaviour well 
and take it into account in design. The relaxation behaviour of chopped 
strand mat (CSM)-GRP was experimentally studied in the previous 
paper.~ The research described in the present paper is concerned with 
creep and relaxation behaviour of glass fibre reinforced plastics in three- 
point bending. Eight types of GRP beam specimen were tested. 

The creep of composite materials is nonlinear in most cases, even when 
the deformation is very small, unless the duration of measurement  is very 
short. The creep problem of a three-point bending beam is of particular 
complication, since both stress and strain are functions of coordinate as 
well as of time. So, few papers are seen in literature dealing with analysis of 
this problem. In the present paper,  an attempt is made to predict creep 
deflexion and relaxation strain, and the transverse shear effect of 
the composite beam is taken into consideration. The typical creep and 
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relaxation behaviour of one kind of specimen were analysed. The pre- 
dicted results were compared with experimental ones. The agreement 
between them is reasonable. 

2 EXPERIMENTAL INVESTIGATION 

The three-point bending test represents a typical loading case of many 
structures. The transverse shear creep behaviour which characterizes the 
laminated composites can be examined through this test scheme. 

2.1 Materials and specimens 

The tested materials are eight types of laminated sheet made of glass fibre 
fabric reinforced epoxy resin. The specimens are categorized into eight 
groups according to their warp to weft ratio and lay-up angle. The 
configuration and glass content of the specimens are shown in Table 1. The 
nominal dimensions of the specimens are 80 mm x 15 m m ×  (3-5) mm. 

T A B L E  I 
Categories of the Specimens 

Group  number  | II llI IV V VI VII VIII 
Warp/weft  ratio 1:1 1:1 4:1 4:1 4:1 7:1 7:1 7:1 
Lay-up angle 0 ° ±45 ° 0 ° 90 ° +45 ° 0 ° 90 ° -+45 ° 
Number  of layers l 1 11 11 11 11 7 7 7 
Volume fraction of fibre 29.3 29.4 33-1 31.1 26.9 29.9 31.0 26.0 

(%) 

2.2 Experiments 

The experimental set-up and the dimensions of the specimen are schemati- 
cally shown in Fig. 1. The tests were conducted by using the INSTRON 
1195 testing machine. The temperature in the testing chamber is 50°C. 
When the load, p, is kept constant the variations of deflexion and strains 
with time are measured and the test is then called the creep test. If the 
deflexion of the beam specimen is held constant, the load and strain are 
measured as functions of time, the test is called the relaxation test. Before 
the tests, some preliminary tests were conducted to measure Young's 
modulus E and the shear modulus G under the temperature of 50°C. Two 
strain gauges were used to measure creep and relaxation strains. They 
were stuck on both sides of the beam and positioned at the centre and 1/4 
span of the beam respectively. 
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a~ Y 

l"  +a I Jl 
D 

i ! Fig. 1. Experimental scheme and specimen con- 
figuration. 

The test procedure is as follows. At  first, the specimen is warmed to 50°C 
in the testing chamber and kept at 50°C for 20 min until the bending load 
was applied. The bending load should be applied as fast as possible to 
reduce the creep effect in the loading process, but impact must be avoided. 
When the strain reaches a predetermined value, which is below 
6000 × 10 -6  mm/mm,  and the load p (or the deflexion of the central point 
of the beam) is kept constant, the strains and the deflexion (or load for the 
relaxation test) are measured. The creep duration was 60 min or longer. 

2.3 Experimental results and discussion 

The creep strain and deflexion curves of the eight specimens are illustrated 
in Figs 2 and 3, respectively. It is obvious that the specimens with a 45 ° 
lay-up angle exhibit the most remarkable creep effect, because in addition 
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Fig. 2. Creep strain curves. Fig. 3. Creep deflexion curves. 
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Fig. 6. Relaxation load curve of specimen VI-5. 

to transverse shear deformation, the in-plane shear deformation gives 
large contributions to the creep strain and displacement. Comparing 
deflexion f(t) and strain e(t) curves of 0 ° specimens with those of 90 ° 
specimens reveals that the former have less creep effect than the latter. 
Among  the 0 ° specimens of the three different warp/weft ratios, the 7:1 
specimens have the least creep effect. Figures 4, 5 and 6 are the relaxation 
strain and load curves. It can be seen that all the load curves decrease 
monotonically with time. But as for the strain curve, while most curves 
increase monotonically with time in the duration of measurement ,  the 
curves of specimens of V-5 and VI-5 increase with time at the early stage 
and after reaching their maximum values tend to decrease. This reveals the 
complexity of the problem. 

3 T H E O R E T I C A L  PREDICTIONS 

3.1 Basic assumptions 

In the three-point bending beam undergoing creep and relaxation tests, 
the strains and stresses are all functions of time and coordinates, so the 
analyses are very complicated. To simplify the calculations the following 
assumptions were adopted: 

(1) The small strain and small deflexion assumption: For all tests, the 
largest strain is smaller than 2% and the largest ratio of deflexion to 
span is smaller than 4%. 

(2) The plane cross-section assumption: That is, the cross-section of the 
beam is assumed to remain flat after deformation,  but no longer 
perpendicular to the central surface of the beam. 
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(3) The material behaviour  in tension is the same as that in compres- 
sion, so both cases can be analysed by using the same constitutive 
equation. 

3.2 Creep equations 

The deflexion in both creep and relaxation tests can be divided into two 
parts: pure bending deflexion and transverse shear deflexion. The follow- 
ing equation was used to calculate the pure bending deflexion in the creep 
test: 

or  
e = ~ - + A o S " ( 1 - e  qt)+BoS't  (1) 

The first term on the right side of eqn (1) refers to the elastic strain. The 
second and third terms are for the transient and steady stages respectively. 
For relaxation, the pure bending deflexion was analysed by using the 
following generalized creep equation: 2 

g + qk = -~  + do + tb + + qq~ (2) 

where • = A o  vm and 0 = B o " .  
As for the creep equation of transverse shear creep effect, it was 

assumed that the transverse shear deflexion could be approximately 
est imated by a one-term equation which corresponds to the steady stage of 
creep. The equivalent stress and equivalent strain for a pure shear stress 
state are given as 

o'* = X~3 r (3) 

1 
e* - k/3 y (4) 

The relationship be tween  ~r* and e* is 

e* = Bo-*" (5) 

Then 

~/ = 3 ("+ l)/2B~'n (6) 
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3.3 Experimental determination of the constants in equation (1) 

The analysis proceeds as follows. The five constants of eqn (1), A, B, m, n 
and q, are determined experimentally first, then, by using eqns (1) and (6) 
the creep deflexion of the beam is calculated. Finally, the relaxation strain 
and deflexion with eqns (2) and (6) are analysed. 

Fig. 7. Creep strain curves for determining the constants 
in eqn (1). 

The two constants B and n in eqn (1) were determined by referring to 
Fig. 7 and using the following formulae: 

n = ln(Sl/S2)/in(xl/x2) (7) 

B = S 10"h']~ (8 )  

where sl and s2 are the slopes of the creep curves at the steady stage and x~ 
and x2 are the coordinates of the two strain gauges on the bending 
specimen. Subscript T refers to the steady creep stage. 

From the measurements of the transient creep stage, the constants A 
and m were calculated by using the following formulae: 

ln (e r , / e r )  
m = (9) 

ln(Xl/X2) 

where er, are as shown in Fig. 7. 

A = Er O'hT m (10 )  

The constant q was determined through a quasi-least-square method. An 
initial value qo was approximated by substituting an estimated value of 
stress O-o into eqn (1). O'o was selected as the mean value of the elastic stress 
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and ~rhc , and the corresponding time to was assumed to be half the time 
duration of the transient stage. 

O'o + Acre ' (1  - e -q°t°) + Bo'~)to (11) 
~t) = T 

where eo is the measured strain at 6,. 
The modification of q can be calculated through the formula 

Z (eO- ei)e-q"t'ti 
A q =  ' 

Thus, the approximate value of q can be obtained as 

q = q o + A q  (13) 

3.4 Solution for the creep deflexion 

3.4.1 The deflexion for pure bending 
Based on the solution from Ref. 3, the pure bending creep deflexionfd can 
be obtained by integration of the following equation: 

h d2fd " ~  = K l M + K2 Mm + K3M n (14)  

where M is the bending moment and is equal to Qx, 

KI = 3/(2Ebh 2) 

{ Kn ~m { ( l ' k g d )  'n+l 
K2 = A \ 2-b-~J Kd(1 + m )  

(1 + Kde-qt) m+ i I 
Ko(m + 1) J 

K3 = \2bh2] t+ q ( 1 - e  q') 

K .  = (2n + 1)/n 

K d = (3 - Kn)/K~ 

(15) 
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U p o n  integrat ion and using boundary  condit ions,  the following 
obta ined;  

K2Q m xm+2 K3Q n n+2 KI Q x 3 4 + 
f d - -  6h ( m + l ) ( m + 2 ) h  h ( n + l ) ( n + 2 )  x 

hi 
a 2 a m + 1 

-- K I Q  --~+ K a Q m m +  1 
K3 Qn a n + t] 

- -  + -nT-i- J 

are 

(16) 

3 . 4 . 2  T h e  t ransverse  s h e a r  de f l ex ion  

The  creep stress at the steady stage can be expressed as 3 

trT -- n 2bh 2 

Making use of the equil ibrium equat ion  and the boundary  condit ions,  the 
following expression of shear stress is obtained:  

[ l + 2 n  Q 1 -  (18) 
rx - 1 +----ff 2bh 

Substi tut ing the above equat ion  into eqn (6) and letting y = O, the shear  
strain at the middle  surface of the beam is der ived as 

1"/2 / ' l + 2 n  Q ~ t  3 Q t_3~n+ (19) 
")~y=O - -  4 b h G  ' B ~  ]-+ n 2bh / 

According  to the T i m o s h e n k o  beam theory,  the slope of the deflexion 
curve caused by the transverse shear force is equal to the shear strain of the 
beam at the central surface, i.e. 

dx - Yly=O (20) 

Thus,  the transverse shear deflexion was obta ined through a simple 
integrat ion 

3 Qx +1)/2B (l+2n Q '~" 
L - 2 2bh----G + 3(" 1 +----~ 2--~) xt (21) 
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The total deflexion of the central point of the beam is 

f .  . . . .  : { L + f d }  . . . .  

Thus 

I~ 2 Qm ,, f, .... _ KI Q a- ~ 4 am+2 + K 3 Q  an+2 
3h h(m + 2) h(n + 2) 

( )" 3 Qa 3~,,+~)/2B 1+2n Q at 
2 2 b h ~  + l + n  2bh 

(22) 

(23) 

3.5 Solution for the relaxation 

3.5.1 Calculation procedure 
Since the solution of the relaxation of the three-point bending beam is 
more complicated, it had to be dealt with through a further approxima- 
tion. The method was not to takefmax = const, as the initial condition and 
to solve the creep equation to obtain Q(t)  and e(t) ,  but to take the 
measured load curve of Q(t)  as the known condition and calculate e(t)  and 

f,.~x(t). 

3.5.2 Bending load function 
The measured load curve P(t)  was fitted with the third-order polynomial: 

P(t) = PI + P2t + P3 t2 + P4t s (24) 

Using the least-square method,  the coefficients of this function were 

determined.  

3.5.3 Solution o f  strain function 
The non-linear eqn (2) is extraordinarily difficult to handle. It was 
assumed that when m and n were not far from unity the two functions 
¢I~ = A o  m and ~0 = Bo" could be replaced by • = ~1 o- and ~0 = o~2o- , 
respectively. Thus, eqn (2) becomes 

6-+ A16-+ B, Lr = E(g +qk) (25) 

where 

A1 = (al + ~ 2 ) E + q  (26) 

and 

Bi = a2qE (27) 
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Multiplying both sides of eqn (25) by by and integrating it through the 
thickness of the beam, the following is obtained: 

3 .. 

eh + qeh -- 2Ebh  T ( M  + A 11~ -~" BI M )  (28) 

where 

M = boy dy 
h 

(29) 

and 

Y e = o" h ~ (30) 

e h denotes the strain of the top surface of the beam and eqn (30) is based 
upon the flat cross-section assumption. 

Substituting the loading function (24) into eqn (28) and remembering 
M = Q(t)x = kP(t)x, the strain function eh(t) is obtained: 

eh(t) = (Cl + ¢2 e-q t  -4- d l t  + d2t 2 + d3 t3 + d4t4)x = f l  ( t ) x  (31) 

where 

bl b2 2b3 6b4 
dt - ~ - -  q q2 q3 q4 

b2 b3 3b4 
d 2 -  2q q2 ~- q~ 

b3 b4 
d 3 - 3q q2 

(32) 

d4 b4 
4q 

and 

bl = D(2P3 + A1 P2 + BI Pl) 

be = D(6P4 + 4Al P3 4- B1P2) 

b 3 = D ( 3 A  l P4 + B1 P3) 
(33) 

b 4 = DB~ P4 
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and 

O = 3~(4Ebb 3) (34) 

The two integration constants Cl and c2 in eqn (31) can be de termined by 
using the measured curve of relaxation, eh(t). From eqn (31): 

e ( t )  Y = ~ e h ( t )  = f , ( t ) x y  (35) 

3 . 5 . 4  S o l u t i o n  o f  s t r e s s  

Substituting e ( t )  of eqn (35) into eqn (25), 

o-(t) = (c3e "~ + c4e t~ + go + gl t + g2 t2 + g3t3)xY = f2(t)xy 

where 

A1 1 X/AT - 4B1 
o~- 2 + ~  

A1 1 
X / A ~  - 4B, / 3 -  2 2 

(36) 

(37) 

and 

go = b 2 1 _ 

E I 2b3Ai 
gl = ~ b2 B1 

= E {b 3b4A1 
g2 7-~-~1 3 

B j  / nt~l k 

1 A l  - 
6b 4  

(38) 

g3 = Eb4/(hB1) 

The two integration constants c3 and c 4 in eqn (36) are de termined by 
using the following two initial conditions: 

(1) When t = 0, the stress o-(t) equals the initial elastic stress value. 
(2) Substituting 6- and 6- from eqn (36) and k and g from eqn (35) into 

eqn (25) and setting t = 0, the second condition for determining the 
two constants c3 and c4 is obtained. 
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When the stress solution of eqn (36) is known, the shear stress r(t) is 
derived as follows: 

h 2 _ y2 
(39) r(t) = f2(t) 2 

3.5.5 Solution for  bending deflexion 
The formula for calculating the deflexion of the beam caused by pure 
bending moment can be derived from the following equation: 

E h d 2 f d  

h d2x (40) 

Upon integration and using the boundary conditions, the deflexion of the 
central point was obtained as: 

a 3 

fdmax -- 3h fl(t) (41) 

The transverse shear deflexion was derived 
procedure. 
Substituting eqn (39) into eqn (6) yields 

through the following 

4/ = 3 (n+  1)/2Bf~(t) -~ (42) 

Integrating eqn (42) and setting initial conditions gives 

h _ y 2  )n {fz(t)}n + ' 
Y =  3(n+D/Z B 2 (n + l)(c3ae°~ + c4~et~ + gl + 2gzt + 3g3t2) 

_3(n+D/2B(h2-y2) n (c3+c4+g0) n+' 3Qo[ 
-~ (n +-f)-(c3d-+~4~+-g,) + 4-~-~  l - Yh--~) 

(43) 

By virtue of eqn (20), the transverse shear deflexion of the central point 
of the beam was obtained as 

3Qoa +,)/2 Ba (h_~)" 
f~m.x - 4hb~ + 3t" (n + 1----~ f~(t) (44) 
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where 

f~+ l(t) (C 3 q- C 4 -~g0) n+l 
f3(t) = (c30te~t + c41~e~ t + gl  + g2t + 3g3 t2) - (c30~ + c4j~ -~- gl) (45) 

Thus, the total deflexion is 

a 3 3Qoa 3(n+l)/2Ba (h_~) n 
fmax = "~ f,(t) + 4bh--'-'G- + - - n + l  f3(t) (46) 

3.5.6 Creep deflexion under constant load 
If P(t) is set constant and equal to P0, and, following the procedure  
described above,  the formula of creep deflexion is obta ined as follows: 

a 3 3Qo 3(n + ~)/2 Ba (h_2~ '~ ¢~ax = 3--h f~'(t)+ 4bh----G + n+ 1 f°(t) \ 2 /  (47) 

where f(mJax, f~J(t) and f~(t) are the formulae corresponding to eqns (47), 
(31) and (45) for the case of constant load. Equat ion (47) is the creep 
deflexion of the solution of eqn (2). The predicted results of eqn (23) and 
eqn (47) are compared  in the following section. 

3.6 Numerical results 

The creep deflexion of specimen II-1 was calculated. Its warp/weft  ratio is 
1:1, and its lay-up angle is +45 °. The dimensions of the specimen are: 
b = 14 .9mm,  h = 1 .6mm,  2a = 70mm.  The coordinates of the two 
strain gauges are: xD = 14.5 mm, Xc = 33 mm. The creep load, P, is kept  
constant,  i.e. P = 2Q = 78.48 N. 

The relaxation behaviour  of specimen 1I-6 was predicted. Its dimensions 
are: b = 15.2 mm, h = 1.58 mm and 2a = 64.0 mm. The deflexion of the 
central point of the beam was kept  constant and fmax = 1"363 mm. 

In the preliminary tests, the material initial elastic moduli  were mea- 
sured at 50°C, with E = 8.34 GPa  and G = 0.18 GPa.  The five constants 
in eqn (1) were determined through the procedure  described above,  as: 
A = 21.7926 × 10 -6 ,  B = 6"4796 × 10 -6, m = 2"035 58, n = 1"8061, 
q = 0"3446/min. 

Figure 8 shows the comparison be tween  the experimental  creep 
deflexion with that predicted by eqns (23) and (47). The predicted line of 
eqn (23) is much closer to the experimental  one than that of eqn (47). 
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4 If''"(mm) Eqn(47 ) 

2 ~  ~r,v 
1[- t(min) 
0 ' 40 6'0 

Fig. 8. Comparison of the predicted and measured 
creep strain curves. ( ) Experimental; ( - - - )  
predicted by eqn (23); ( . . . . .  ) predicted by eqn 

(47). 

~×10 3 
8~ Eqn('35) 

1 Eqn~46Z-- 
t(min> 1 Exp t<min) 

0 4'0 6'0 2'0 ;0 6b 

Fig. 9. Comparison between ( - - - )  pre- 
dicted and ( ) measured relaxation 

strain curves. 

Fig. 10. Comparison between ( - - - )  pre- 
dicted and ( ) measured relaxation 

deflexion curves. 

Inaccuracy comes from the fact that the nonlinearity of eqn (2) has been 
linearized in deriving eqn (47). 

Figures 9 and 10 are curves of the relaxation strain and relaxation 
deflexion. The tendency of the increasing deviation of predicted curve 
from the experimental  one is due to the nonlinear effect of the relaxation 
behaviour.  For a long-term prediction, the linearization assumption is not 
feasible. Figure 10 also reveals the fact that the nonlinear effect becomes 
more  important  with time. 

4 C O N C L U D I N G  R E M A R K S  

The eight types of glass fibre fabric reinforced epoxy laminates were tested 
to examine the creep and relaxation behaviours. The creep deflexion and 
strains, and the relaxation load and strains were measured.  It was found 
that the viscoelastic effect is significant and has to be taken into considera- 
tion in design of the structures made of these materials. 

An  at tempt  to predict the creep and relaxation behaviour was made.  
The predicted results were compared with the measured ones and found to 
be reasonably good, but the linearization assumption used in the analysis 
for relaxation deflexion has considerable limitations. 
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