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Abstract-A variational method is developed to find approximate solutions to the generalized Grad- 
Shafranov equations for an adiabatic compression of the plasma with toroidal rotation, via the expansion 
in Fourier series in poloidal angle of the flux surface coordinates. The numerical results, which are carried 
out by the present method and by the usual two-dimensional method for a static equilibrium state, agree 
well. 

1 .  I N T R O D U C T I O N  
THE AIM OF this work is to develop a variational method for seeking the approximate 
solutions to the generalized Grad-Shafranov equation for the adiabatic compression 
of plasma with purely toroidal rotation. We have treated the adiabatic compression 
of a plasma with both poloidal and toroidal rotation (PAN, 1989) under an assumption 
that the Mach number is small, which is removed in the present work. HAMEIRI (1983) 
has treated this problem by an extension of GRAD et al.’s (1975) “alternating- 
dimensions method” (ADM) via a variational principle based on a few constants of 
motion. For the evolving flux geometry, such a technique consisting of iterations 
between a partial differential equation and an ordinary equation via the variational 
step, significantly increases the computer time and storage requirements of a transport 
code. 

We find that the variational method developed by LAO et al. (1981) for finding 
approximate solutions to the Grad-Shafranov equation for plasma without flow can 
be extended to our case. 

2 .  T H E  SYSTEM O F  E Q U A T I O N S  
The first assumption made in this paper is that the compression takes place on a 

time scale much slower than typical Alfven wave transit time across the major dimen- 
sions of the device. The waves cause fast equilibrium ; the plasma, therefore, can be 
viewed as creeping from one equilibrium state to the next. The second assumption is 
that the plasma is governed by an axisymmetric ideal MHD equation, although the 
final plasma state may be affected by transport processes. We assume that during 
compression the poloidal velocity is damped out by parallel viscous stress. The third 
assumption is that the temperature on each flux surface is constant due to the very 
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TABLE 1 .-NOTATIOXS 

a = fn,’R2 I?, = R2/a 

The subscript m denotes the quantity at the magnetic axis, 
and y = a is the plasma boundary. 

high heat conductivity along a magnetic field. It means that the plasma we treated is 
slightly non-ideal, but more realistic. Under these assumptions, all the related equa- 
tions given by HAMEIRI (1983) are written in the following. The notations used are 
listed in Table 1. 

2.1. The generalized Grad-Shafranou equation 

where 

P = exp (Ho+ 4R’Q;) 

Qi = Q 2 / T ,  Ho = H/T+ln T 

U, = RQ 

B, = I /R 

and 
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P = pT = Spy, S = e’. (6) 

The cylindrical coordinates (R, 4, 2) are adopted. 2x1) is defined as the magnetic 
flux enclosed between the flux surface and the axis of symmetry. T($),  I($),  H($)  
and a($) are four arbitrary functions in (1);  U, T, P, p and s denote the plasma 
toroidal velocity, temperature, pressure, density and specific entropy, respectively. 
I(+) in (5) is the poloidal current enclosed between the axis of symmetry and the 
magnetic surface and determines the toroidal magnetic field. Relation (6) is the 
equation of state with y the adiabatic constant. The function $(R,  2) is determined 
from (1). Cl($) is the frequency of rotation. 

2.2. Conservation-law constraints 

Mass conservation ( P )  = m*’ 

toroidal magnetic field (B,IR) = f (*I*’ (9) 

total entropy inside each surface ( p S )  = o(+)$’ (10) 

where 

where m, I ,  f a n d  o are unchanged during compression, and C, V and dv represent 
the area of a flux surface, the volume inside a closed flux surface and the volume 
element, respectively. Equations (7)-( 10) indicate that, within each moving flux tube, 
the plasma mass, angular momentum, toroidal magnetic flux and the total entropy 
remain constant during compression. Equation (10) implies that no heat flows across 
flux surfaces. 

3 .  ANALYTIC FORMULATION 

3.1. Variational principle 
Consider the functional Q defined as the volume integral 

Here the Lagrangian associated with equation (1) is given by 
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which can be found even by inspection, and the volume integral is over the entire 
volume of plasma, V. The variation of Q with respect to I) yields the Euler equation 

It implies that the assumed Lagrangian in (13) is correct and that Q is stationary 
for $ satisfying the generalized Grad-Shafranov equation (1). The key idea of the 
variational method is to convert a two-dimensional problem to a one-dimensional 
problem by the choice of a convenient form of solutions, say a Fourier series, of which 
the amplitudes are determined in such a way that Q is stationary. Its advantage will 
come to light later. 

3.2. Transformation of coordinates 

(y, 8, @) with the relations 
Consider the transformation of the cylindrical coordinates (R, 4 , Z )  to coordinates 

then it follows that the representation of Q in new coordinates is 

with the transformed Lagrangian 

where y is a function of $, 4 is the ignorable toroidal angle and 8 is the poloidal angle 
increasing 271 the short way around the torus ; y = a denotes the outermost flux surface 
and the subscripts 8 and y denote the differentiation with respect to these variables. 

The representation (16) consists of two dependent variables R and Z (0 plays 
the role of a coordinate). Since the stationary value of Q is independent of any 
transformation, one can see that the variation of Q with respect to R and Z subject 
to the boundary constraints 6R = 6Z = 0 should reproduce the inverse generalized 
Grad-Shafranov equation. This has been proved by LAO et al. (1981) For clarity, the 
proof is briefly given in the following. 

The variation of Q with respect to R and Z under the fixed boundary constraints 
6R = 0 and 6 2  = 0 yield the Euler equations, respectively, 
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with 

One of the advantages for the use of the transformation (1 5) is that a free boundary 
problem for determining $ by (1) becomes a fixed boundary problem of solving the 
Euler equations (19) and (20) in coordinates (y, 6). 

The proof indicates that the solution to an Euler equation is also a solution to the 
associated equation (l), therefore the variational method provides a new way to treat 
our complicated problem. 

4 .  APPROXIMATE SOLUTIONS I N  TRUNCATED FOURIER SERIES 

4.1. Convenient truncated Fourier series 

(1981) 
The specific one-to-one transformation in Fourier series developed by LAO et al. 

nT 

R(y,e) = R,(y)-r  COS^+ Rn(Vl)COSne (22) 
n =  2 

(23) 
ni- 

Z(y, e) = E(y) y sin e+ 1 Rn(q) sin ne ( n = 2  

is adopted, where y($) is the flux label, the amplitudes R,(y), - y  and E describe the 
shift, the minor radius and the ellipticity of the flux surface, respectively, whereas the 
amplitudes R,(y) and ER2 describe the triangularity of a flux surface. 

One of the reasons for the use of the truncated Fourier series is that the main 
features of the magnetic field can be approximately described by a limited number of 
leading terms of the series. 

4.2. Euler equations for  the Fourier coeficients 
It has been shown that the solutions to the Euler equation (14) or the transformed 

Euler equations (19) and (20) are the solutions to the generalized Grad-Shafranov 
equation (1). If a finite number of leading terms in the Fourier series are used to 
approximately describe the topology of the magnetic field, then the best choice of the 
Fourier amplitudes involved in the chosen terms can be obtained in such a way that 
Q is stationary. 
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The variation of Q with respect to R,(y) and E(y) generates a new set of Euler 
equations 

where the prime denotes differentiation with respect to y,  and (( >) is the poloidal 
angle averaging operator 

with 

MO = -z, (27) 

M I  = ER, sin O $  Z, cos 8 (28) 

Mn = ER, sin ne - Z, cos ne (29) 

The above Euler equations (26)-(30) comprise a system of coupled, second order, 
nonlinear ordinary differential equations in variable y for R, and E. Once the free 
functions I ,  Q, and H o  involved in G are given, all the Fourier amplitudes are then 
determined by the set of ordinary differential equations (24)-(30) with boundary 
conditions given in (42)-(47). 

4.3. Determination of I, Ho, Qo, T and p 

(7)-(10) and the Bernoulli equation (2). The convenient form for p satisfying (7) is 
The five functions I ,  Ho,  no, T and p may be determined by the four constraints 

p = m$'[, with([) = 1 (3 1) 

where 5 may be viewed as the spatial dependence of p .  Substituting (31) and (4) in 
the angular momentum constraint (8), one obtains 

(R2(>Q = llm. (32) 
By using state equation (6), (2) can be written as 
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(33) 

and taking a surface average we have 

Thus (34), (33) and (31) give 

>. eR 2R$2 /( eR2Qai 2 i= 

From (39 ,  (32) and (34) we obtain 

Substitution of (6) and (31) in (10) and use of (35) lead to another relation 

Finally, elimination of H o  from (36) and (37) results in 

Substitution of (5) in the toroidal magnetic flux constraint (9) yields the free function 

Since on each surface all the unchanged constraint quantities I ,  m and c in (37) and 
(38) are known, H o  and Ro can be determined numerically by (37) and (38) with the 
given R,. 

With the three algebraic relations (37), (38) and (39), the set of Euler equations 
(24) and (25) can be solved for R and E through the boundary conditions prescribed 
by the compression method. 

For small Mach number RRo, (37) and (38) give the approximate explicit expressions 
for no and Ho,  respectively, by neglecting the order higher than Rio: as shown below : 
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(41) 
a 1  
m 2  

H o  = In ( M $ ’ ) ~  + - - - (R’) Szi. 

Replacing the three free functions I, H o  and Szo in e by (39), (40) and (41), 
respectively, we obtain new expressions for the Euler equations (24) and (25). There- 
fore the resulting set of nonlinear, second order, coupled ordinary differential equa- 
tions can uniquely determine the required amplitudes R, and E. Consequently $ is 
determined under the prescribed boundary condition. 

To conclude, in contrast with HAMEIRI’S generalized ADM via a variational 
principle, the present variational method is a computationally fast, yet sufficiently 
accurate method for determining the evolving flux surface geometry. 

5 .  N U M E R I C A L  SOLUTIONS 
5.1. Boundary conditions 

Equations (22) and (23) are second order ordinary differential equations. The shape 
of the outermost flux surface provides one of the two sets of the boundary conditions : 

when 

y = U ,  $ ( U )  = 0, E(u) = E, 

R,(a) = R,,, n = 0,2 ,3 . .  . . 

(42) 

(43) 

At the magnetic axis y = 0, the amplitudes and derivatives of R,, Ri vanish, therefore 
y = 0 is a critical point of the differential equations. LAO et al. (1981) give the forms 
of the solutions in the vicinity of y = 0. 

(46) R, = Rnoyn n = 2,.  . . , 

which may be viewed as another set of boundary conditions at small y, and ?&, and L 2  
are arbitrary, small constants. 

5.2. Numerical method 
The numerical method is similar to the one in LAO et al. (1981). By substituting 

(44)-(47), and (40) and (41) into (24) and (25) one can determine the solutions by 
using a shooting technique and the Runge-Kutta method through the relations (44)- 
(47). 

Calculations have been carried out for static equilibrium states of plasmas in 
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FIG. 1 .-Plot of constant + contours during compression. 

Tokamaks with circular, elliptic and D-shape sections and for the adiabatic com- 
pressions of rotating plasma with small Mach number. The details are given in a 
separate report by one of us (D. Fu). Only the results for the adiabatic compression 
of rotating plasma with D-shape and Mach number 0.4 are shown in Figs 1-4 
as examples. The numerical results calculated by our method and the usual two- 

( e )  ( d )  ( c )  ( b )  ( a )  

'#I 0.5 

I " t  0 1.0 I ~ 2.0 3.0 4.0 5.0 6.0 

8(8*0,*) 
FIG. 2.-Radial distribution of magnetic flux $, at 0 = 0, n. 
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R 
FIG. 3.-Radial distribution of the pressure of plasma at 0 = 0, n. 

R 
FIG. 4.-Radial distribution of the toroidal current at 0 = 0, n 

dimensional method for a static equilibrium state are given in Table 2 for a 
comparison. 

6 .  CONCLUSIONS 
Table 2 shows that the numerical results calculated by our method and the usual 

two-dimensional method for the static equilibrium state agree well. 
Figure 1 indicates the changes in $ contours during compression for the case of 

p, = 1, Roil = 5.294, E, = 1.3, aT = 0.1 and M(&) = 0.41. The final compression 
ratio may raise the temperature of plasma significantly. 

Figures 2-4 describe the distribution of $, the pressure and the toroidal current on 
major radius, respectively. The pressure p* gets higher and higher when the plasma 
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TABLE 2. -THE NUMERICAL RESULTS CALCULATED BY THE USUAL 
TWO-DIMENSIONAL METHOD AND THE PRESENT VARIATIONAL 
METHOD FOR THE STATIC EQUILIBRIUM STATE WITH j, = 1.0, 

E = 0.37307, E, = 1.0,6, = 0 AND 6* = 0.0025 

Two-dimensional 0.8439 3.803 0.1875 2.9040 

Variational method 0.8437 3.809 0.1821 2.9039 
Error 0.0002 0.006 0.0054 0.0001 

method 

is compressed towards the axis of symmetry, as does the current J4.  The rise in 
pressure and toroidal current result in a higher temperature. 

It is found that, when the Mach number is small, for example 0.4, the effects of 
plasma rotation are negligible. 

The present variational method may save computer time considerably. 

R E F E R E N C E S  
GRAD H., Hu P. N. and STEVENS D. C. (1975) Proc. natn Acad. Sci. U.S.A. 72, 3789 
HAMEIRI E. (1983) Phys. Rer;. A27, 1259. 
LAO L. L., HIRSHMAN S. P. and WIELAND R. M.  (1981) Physics Fluids 24, 1431. 
PAN L. J. (1989) Plasma Phys. Contr. Fusion 31, 1005. 


