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ABSTRACT

The hierarchial structure and mathemeatical property of the simplified Navier-Stokes
equations (SNSE) are studied for viscous flow over a sphere and a jet of compressible flu-
id. All kinds of the hierarchial SNSE can be divided into three types according to their
mathematical propertyand also into five groups according to their physical content. A
multilayers structure model for viscous shear flow with & main stream direction is pre-
sented. For the example of viscous incompressible tlow over a flat plate there exist
three layers for both the separated flow and the attached flow; the chsracter of the
transition from the thrée layers of attached flow to those of separated flow is elucidated.
A concept of transition layer being situated between the viscous layer and inviscid
layer is introduced. The transition layer features the interaction between viscous flow and
inviscid flow. The inner-outer-layers-matched SNSE proposed by the present author:in
the past is developed into the layers matcked (LsM)-SNSE.
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I. InTRODUCTION
L ]

Varieties of approximation formulations of the Navier-Stokes (NS) equations,
such as the Euler equations, the boundary layer equations and varieties of the simpli-
fied Navier-Stokes equations (SNSE), have been widely used for analyzing and com-
puting flow fields. H. Lomax™ and R. W. MacCormack™ considered that the “thin-
layer” approximation NS equations, i.e. SNSE, are the first logical step for computing
complicated viscous flows with engineering value. This can be justified either on a
physical order of magnitude analysis or on a computational accuracy argument. If Re
are large, some viscous terms included in NS equations are of small order of magni-
tude and especially cannot be computed correctly with the available grid resolution,
there is no reason to keep them. It is therefore necessary to accept or reject reason-
ably the viscous terms. On the other hand, in order to obtain a stable and meaning-
ful solution of a complication viscous flow field, it is also necessary to resolve care-
fully many scales of the length and the time that prove a measurement of the rate
of change of the variables describing the motion of the fluid and to match properly



No. 2 SIMPLIFIED NAVIER-STOKES EQS. 169

the computational grid-spacing with the scales. The numerical simulation of separated
flow demonstrated that if the adopted grid does not match with the scales of the
triple-deck theory®® it is impossible to obtain a reliable exact solution?,

In this paper we shall foliow the idea of [1] and further study the hierarchial
structure of SNSE and the mechanical connotation and mathematical character of
various SNSEs. These problems are concerned at least in the following four aspects:
resolving the spatial scales of the flow field, comparing the orders of magnitude
between the inertial terms and viscous terms included in NS equations, subdividing
the flow field and simplifying NS equations. We take these four aspects as a whole
and examine them comprehensively. A multilayer structure model for viscous shear
flow with a main stream direction is presented. The concept of transition layer being
situated between the viscous layer and inviscid layer is introduced.

Fig. 1. Viscous flow over a sphere and spherical coordinates (r, 8, @).

II. SeatiaL ScAres, THE ORDER-OF-MAGNITUDE ANALYSIS AND HIERARCHIAL

STRUCTURE OF SIMPLIRIED NAVIER-STOKES EQUATIONS

In order to study viscous compressible flow over a sphere, we take the spherical
coordinates (r, 8, @) (refer to Fig. 1). Assume that § = 0 is a symmetrical axis of
the flow. The fundamental equations describing the flow are as follows:67”]
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Re™ ™ Re "7 %1

where ¢ is the time, p the density, p the pressure, T the temperature, u the coef-
ficient of viscosity, A the coefficient of heat conductivity, # and v are the velocity
components in the r- and 6-directions, respectively, r and 6 are the coordinate
variables. All of the above quantities are nondimensional. The reference values of
these quantities are fs Pws PolUzs U%/Cps Hews Aws U, and L respectively. f is the
<haracteristic vibration frequency of the body, L, the characteristic length of the body,
7 the ratio of specific heats. C, and Cy are the specific heats at constant pressure
and constant volume, respectively. The subscript co denotes the free stream condition.
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The expressions of the four nondimensional parameters S,, Re, P,and 7 are as follows:

St= fL, Re=pcoUuoL’ Pr=CP#J T=&-— (2'6)

U 7 2 . Cy

And assume that

n= (.l)mi R 2= (-L)mz s (05 <oy, ;< 1), (2.7)
T, T, >
" Analysis. 1f the Reynold’s numbers Re is larger than unit.y, the length scale
of the viscous flow region in the O-direction is much larger than thatin the r-direction
in the neighbourhood of the solid wall except the vicinity of the stagnation point and
can be expressed as '

r@ v Re™ ™0, rwv>Re ?, Re "0 >Re %, (n,>mn=0), (2.8)

in which we have assumed that the curvature radius of the spherical surface 1s of
the order of unity and therefore it is much larger than the thickness of the viscous
region. We point out emphatically that the length scales in the r- and 6-directions do not
satisfy the relationship (2.8) in the vicinity of the stagnation point. The time scale

and the order of magnitude of all the variables can be expressed similarly as
tv Re ™™, uwn»Re ™4, yvw»Re ™™, pwRe ",
TwvwRe ™™, pwnRe ™, puw»Re %, AL Re ™,

(2.9)

In Relationships (2.8) and (2.9), n, may be called the exponent of both the scales
and the order of magnitude of the variables, the subscript s denotes any of 7, r, 0,
usv, Py T ps p and 1,

From the equation of continuity (2.1), equation of state (2.5) and the relationship

of 2 9y w _I_._Qﬁ, we can deduce the following results
r 86  pr 08
n=-—mn,+tn=—n+mn, n,=n+nr, 2n,=n,— ne, (2.10)

Using Relationships (2.8)—(2.10), we can easily find the orders of magnitude of each
term in Eqs. (2.1)—(2.5), which are also indicated under the corresponding terms.
The order-of-magnitude exponents of all the inertial terms in the NS equations (2.2)
and (2.3) satisfy the following relationships
(—”v + ﬂx): (—2n, + ng), (_'“u —n, +n), (— fy + n, + ng) = (— 2?3,;) >
(_”n + ”:), (_‘2“‘« + ”r): (_”a —n, + ng) = (_”:t - ”rz). (2'11)
The order-of-magnitude exponents of all the diffusion terms including the viscous and
heat conduction terms satisfy the following relationships
(=n,+2n)>(—n,+ 2n), (—n,+n,+ n) >(—n, + n,) > (—n, + 2ng) >
(_”v + nf}‘)s (_"”u + ”r) > (_”v) > ("—ﬂu + 2”8) > (_“ﬂh‘ + nﬂ) = (—ﬂ“),
(2.12)
in which (—1 4 n, — n,) included in all the order-of-magnitude exponents has been

omitted for brevity and it is assumed that n, = 3mg, For the case of 7y < n, < 3n,
an inequality similar to Relationship (2.12) can be easily found.
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For the case where the maximum inertial term and the maximum viscous term
Ov R S ( i
or pRe Br 6‘:‘
small order of magnitude terms from Egs. (2.2)to (2.4) in sequence of Inequalities
(2.11) and (2.12) and then obtain nine kinds of SNSE. These nine kinds of SNSE

have the same order of magnitude, i.e. # , we neglect the

are as follows.

1) The boundary layer equations (BLE). When all the terms in Egs. (2.1)—
(2.5) are retained up to the order of magnitude of Re™**”s "« "*?%, we obtain the
boundary layer equations (BLE). BLE is as follows:

dp
dr _y, (2.13
Or ' )
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pReP, Or or pRe \Or

The equation of continuity and equation of state are always Eqs. (2.1) and (2.5)
for any of SNSE; therefore, we will not write them.

2) Modified boundary layer equations (MBLE). When all the terms in Eqgs.
(2.1)—(2.5) are retained up to the order of magnitude of Re ", we obtzina mod-
ified boundary layer equations (MBLE). The difference between MBLE and BLE is
only in the momentum equation in the r-direction. The normal momentum equation

of MBLE is

2
_ 410 (2.16)
r p Or

3) O(Re™2"*7)-SNSE. This SNSE is obtained by retaining all the terms in
gs. (2.1)—(2.5) up to the order of magnitude of Re ?«*?, We omit them for
brevity.

4) O(Re""«")-SNSE. This SNSE is obtained by retaining all the terms in
Egs. (2.1)—(2.5) up to the order of magnitude of Re ”s"7», i.e. to the order of
Re "%~ "7~ The left-hand sides of O(Re "~ ")-SNSE are consistent with those
of Eqs. (2.2)—(2.4), that is to say, all of the terms in the Euler equations are re-
tained. The right-hand sides (RHS) of this SNSE are as follows:

RHS, =+ 0 ( a“) 1 [2(8" + mots)
3pRe Or or 3rpRe 08 or
0 Ov
6+ 3 _ﬁ) ] 2.
— (et 26 ) ar (217)
1 3 ( 3:}) 1 ( Ou Ov "
RHS,; = —_— —2u —, 2.18
e eRe Or or roRe Y or # 8r) ( )
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Fig. 2. Hierarchial structure of the Simplified Navier-Stokes Equations for a
viscous compressible flow over a sphere (length scales in the r- and @-directions:
r~Re*, r0 ~Re ™3 n, > ng=>0),
2
RHS, =10 (l ar)+ “ (ay) 2 ( - a:r), (2.19)
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or
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where the subscripts 7, 8 and T denote the momentum equations in the r- and 6-
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directions and the equation of energy, respectively. Such marks will be used below.

5) O(Re 7 7 72%9) . SNSE and other four kinds of SNSE with much higher
accuracy, i.e. O(Re ™" % %%19)_.SNSE, O(Re '*7% % ")-SNSE, O(Re™*% " %™
290)-SNSE and O(Re™*% 7" "«*76).SNSE, contain all of the terms in the Euler
equations, Their right-hand sides are omitted here for the sake of brevity.

6) O(Re™ ™"~ "u"?4)-SNSE. When all the terms in Eqs. (2.1)—(2.5) are reta-
ined up to the order of magnitude of Re™'*? 7« ", we obtain the NS equations.
Thus we see that the inner hierarchy from BLE to NS equations includes ten

levels and nine kinds of SNSE (refer to Fig. 2).

For the case where the maximum order of magnitude of viscous terms is compara-
ble to the minimum order of magnitude of inertial term, 1. e.

uo 1 i( 6‘0)
r oRe Or ﬂar’

we neglect the small order of magnitude terms from Eqs. (2.1) to (2.5) in sequence
of the inequalities (2.11) and (2.12) and then obtain nine kinds of SNSE, which are
as follows:

1) The Euler equations. When all the terms in Eqs. (2.1)—(2.5) are retained
up to the order of magnitude of Re "+ ", we obtain the Euler equations which are
not written down for the sake of brevity,

2) Euler-boundary-layer combined equations. This SNSE is obtained by retaining
all the terms in Eqs. (2.1)—(2.5) up to the order of magnitude of Re 7o~ 7u™ %27,
which has the following right-hand sides

RHS, — 0, (2.20)
1 o ( 6‘9)
RHS, =  —— s 2.21
o oRe Or # or ( )
RHS; = 1 0. (.1 .‘23) 4+ B (Q’i-)z, (2.22)
pReP, Or or pRe \Or

3) Layers matched (LsM)-SNSE. This SNSE is obtained by retaining all the
terms in Egs. (2.1)—(2.5) up to the order of magnitude of Re™'*% ™" %27, The
LsM-SNSE has the following right-hand sides

RHS, = _4 9 (xz _@i) — 1 [2 (ﬁ + vcotﬁ)%
3pRe Or or 3pr Re 06 or
6;&) av}
— 0+ 39£) 97 :
(‘" co 86 /) ar )’ (223)
RHS, = —L 0 (, 22 (2.24)
o pRe Or ar /)’ .
1 0 ( 6'1‘) ©“ (60 )2
RHS; = 9 (225) + gy, 2.25
g pReP, Or \ Or pRe \Or ( )

4) O(Re **7 7~ #%7).SNSE. The inertial terms and viscous {terms are retained
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up to the order of magnitude of Re ™% "« "*" and the terms smaller than them
are neglected from Egs. (2.2) to (2.4). O(Re™'*" "% 7+9.) SNSE is consistent
with O(Re ™™ ")-SNSE that belongs to the inner hierarchy is from BLE to NS
equations (refer to Eqs. (2.17)—(2.19) and Fig. 2). However, it should be noted
that this same set of equations is deduced according to some different estimations
of the order of magnitude. Other five kinds of SNSE with much higher accuracy are
respectively O(Re ™" ™7 %1226).SNSE, O(Re % " "*76).SNSE, O(Re ™'+~ )
SNSE, O(Re™*% 7 "%*?76).SNSE and O(Re™'*% "« "*"0)-SNSE. ‘O(Re™* ™% ")-
SNSE that is located at the tenth level of the outer hierarchy is just NS equations.
From here we see that the two branches of the hierarchial structure, i.e. the inner
hierarchy from BLE to NS equations and the outer hierarchy from the Euler equations
to NS equations begin to intersect (or say, begin to branch) at the level of O(Re~
"4~ ") — SNSE (refer to Fig. 2).

A=
Fig. 3. Viscous jet and spherical coordinates (r, 8, ¢).

Now we consider the round laminar jet of a viscous compressible fluid. The
basic equations describing the jet in the spherical coordinates (r, 0, @) are stil
Eqs. (2.1)—(2.5), However, the length scales for the jet are completely different
from those for the viscous compressible flow over a sphere. This is why we study
simultaneously these two flows. In the vicinity of symmetrical axis of the jet, i.e. the
vicinity of 8 = 0 (refer to Fig. 3), the length scale in the r-direction is much larger
than that in the 6-direction and has

r v Re ™, r8 v Re ™0, Re™™ > Re ™0, ng=>n,=0, (2.26)
The expressions of the time scale and the orders of magnitude of all the variables are
still the relationship (2.9); the relationship (2.10) ought to be changed into
n,=—mn,+n=—mn,+t+n, n,=mn,+ ny, 2n,=n, — ny, (2.27)
The order-of-magnitude exponents of all the inertial terms in the NS equations (2.2)
and (2.3) satisfy the following relationships
(""'”u + ”:)3 (_Z”u + ﬂr): (—n,—n, + ng), (_”p + n, + ”r) = (_”v + ﬂ:)a
(=ny—n,+n), (—2n,+ n9) > (—n,—n)>(—2n). (2.28)
The order-of-magnitude exponents of all the diffusion terms satisfy the following re-
lationships
(—n, + 2n9) > (—n, + 2n9) > (—n, + ng) > (—n, + 2n,) > (—n, + n,) >
(—=n,) > (—n,+ 28)>(—n,+n)>(—n), (2.29)

in which (—1 + n, — n,) included in all the order-of-magnitude exponents has been
omitted in order to save the space and we also have assumed that 79 > 3#,. For the
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Fig. 4. Hierarchial structure of the Simplified Navier-Stokes Equations (SNSE)

for an axially symmetrical viscous jet of a compressible fluid (length scales in
the - and @-directions: r~Re™*r, r@~Re ™9, ng> n,=>0).

case of n, < mg < 3nm,, an inequality similar to the relationship (2.29) can be easily
found.

For the case where the maximum inertial term and the maximum viscous term
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have the same order of magnitude, i. e.

,,_a_’i...., _ﬁl__@_..( sin @ 6_“),
or cRe rsin@ 06 L
we neglect the small crder of magnitude terms from Egs. (2.1) to (2.5) in sequence
of the inequalities (2.28) and (2.29) and then obtain eight kinds of SNSE for the jet.

These eight kinds of SNSE belong to the inner hierarchy and are shown in Fig. 4.
‘Their details are omitted for brevity.

-

For the case where the maximum order of magnitude of viscous term is compara-
ble to the minimum order of magnitude of inertial term, i. e.

L0 (g )< 2,
er’Resinf 06 06 r

we neglect the small order of magnitude terms from Egs. (2.1) to (2.5) in sequence
of the inequalities (2.28) and (2.29) and then obtain nine kinds of SNSE, each of
which contains all the terms in the Euler equations. These nine kinds of SNSE in
the outer hierarchy are shown in Fig. 4. Their details are also omitted in order to
save the space. From Fig. 4 we sce that the inner hierarchy and the outer hierarchy
begin to intersect (or say, begin to branch) at the level of O(Re™%)-SNSE (refer
to Fig. 4). Therefore, if one of the inertial terms is of a very small order-of-magni-

2
tude, for the present example, -~ being of the small order of magnitude of Re %, all
T .

the inertial terms can be reasonably treated only at a level with higher accuracy in the
inner hierarchy.

In a word, for the viscous jet and the viscous flow over a sphere, both the inner
hierarchy from BLE to NS equations and the outer hierarchy from the Euler
equations to NS equations contain more than ten kinds of SNSE (refer to Fig. 2 and
Fig. 4). If we think over the fact that most of the SNSEs appearing in literature
are not consistent with the present hierarchial SNSE™# the number of SNSE is ob-
viously still larger. Therefore, it would be necessary to make a further study on va-
rious SNSEs and to sift out the best.

III. MATHEMATICAL PropErTY AND CLASSIFICATION OF THE HIERARCHIAL

StmpLiriep Navier-Stokes Equations (SNSE)

We take the viscous compressible flow over a sphere for example and study the
characteristics and subcharacteristics of all the hierarchial SNSEs. The study of the
characteristic and subcharacteristic surfaces determines the main structure of the flows,
identifies the zones of influence and dependence. If the surface @(z, 7, ) =01is a
characteristic surface in 3-dimensional space (#, r, 8) for Egs. (2.1)—(2.5), the
characteristic equation can be expressed as®?%

5 s () () ()"

ket Ryt ko=,

=0, (3.1)

where affrtrke) are the coefficients of the highest order partial derivatives of the de-
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pendent variables in Eqs. (2.1)—(2.5). a{f#*rke) can be functions of the independent
variables, the dependent variables and lower-order partial derivatives of the dependent
variables. #; is the order-number of the highest order partial derivative of the jth de-
pendent variable. Note that #; 3 n;(# 3 j) is permitted in the characteristic theory®-%.

1) For NS equations, O(Re™*?% % %*79)_.SNSE and O(Re™*7 7 "u*76)-SNSE,

we obtain a characteristic equation as follows:
s[5 (G) + -5 + = (58]
3 \Or r* \og or/. 3r2\06

fEse-

or r2\ o8
where
O 0 v Op
§=8 L +uLt+ ——L 3.3
‘o “ar | r o0 (3.3)

S is the particle derivative. This indicates that the particle paths are characteristics of
NS equations and these two kinds of SNSE. Other three factors of the characteristic
equation (3.2) stem from the viscous terms and they have no real solutions, NS equa-
tions and these two SNSEs are therefore elliptic in mathematics (refer to the caption
of Fig. 2),

2) For O(Re™ ™% 7% ")-SNSE, O(Re ™ **"~ 7 %*7).SNSE and O(Re™ 77 %+
276)-SNSE, we obtain the following characteristic equation:

ORGSO

The particle paths are still characteristics of these threc kinds of SMNSE. The third
and fourth factors of the characteristic equation (3.4), which stem from the momen-
tum equation in the O-direction and the equation of energy, have no real solutions.
These three kinds of SNSE are therefore elliptic in mathematics. However, the second
factor of the characteristic equation (3.4), which stems from the momentum equation
in the r-direction, does not contain derivatives with respect to the variable 6. There-
fore, 0 is a partially parabolized variable. From here we see that the physical content of
mathematical approximation of these three kinds of SNSE is different from that of
O(Re™ 7 " 24t56) SNSE or O(Re '*# #u~#,+286) . SNSE. These three SNSEs are
diffusions partially parabolized, as shown in Fig. 2.

3) For LsM-SNSE, O(Re "« "+)-SNSE and O(Re™'*"»"%x "s*")-SNSE, we obtain
a characteristic equation as follows:

s (252)6 =0, (3.5)

Or

The particle paths are characteristics of these three kinds of SNSE. The second factor
of the characteristic equation (3.5) does not contain derivatives with respect to the
variable 6. These three SNSEs are therefore parabolic in mathematics and an integra-
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tion can proceed by marching in the positive direction of the parabolic variable 6 for
steady flows.

4) For the Euler-boundary-layer combined equations, we obtain the following

characteristic equation,
o) o1 (2]
(ar P \dr T (3.6)

in- which the first factor does not contain derivatives with respect to the variable 6
and the second factor has real solutions. Therefore, the Euler-boundary-layer combined
equations have parabolic-hyperbolic double property in mathematics.

5) For the Euler equations, we obtain a characteristic equation as follows:
. 2 2 .
ofo—e[(2]+5557) -
or r2 \ 06

where ¢* = T—p—, a is the sound speed. The particle paths are characteristics of the
P

Euler equations. The second factor of the characteristic equation (3.7) indicates that
when M <1, Eq. (3.7) has no real solutions and the Euler equations are therefore
elliptic for M <1 and that when M > 1, Eq. (3.7) has real solutions and the Euler
equations are therefore hyperbolic for M > 1, where M is the Mach numbers, M? =
(# + v*)/a’, For the cases of incompressible flows, the characteristic equation (3.7)

The characteristic equation (3.8) shows that for incompressible flows the Euler equa-
tions are elliptic and the particle paths are characteristics. These two conclusions, of
course, agree with those proved in the preceding paragraph.

6) For the boundary layer equations (BLE) and the modified boundary layer
equations (MBLE), we obtain a characteristic equation as follows: '

(ZeY o, (9

The characteristic equation (3.9) does not contain the partial derivatices with respect
to the independent variables, # and 8. BLE and MBLE are therefore parabelic in
mathematics and an integration can proceed by marching in the positive directions of
the parabolic variables both ¢ and 6.

The subcharacteristics (or the limiting characteristics as called in [10]) of &
hierarchial SNSE are determined by the system of partial differential equations which
are obtained by letting Re — 00, 1. e. by neglecting all the viscous and heat conduc-
tion terms from the original hierarchial SNSE“-" It is obvious that the subcharac-
teristics of all the hierarchial SNSEs except the Euler equations and the classical and
modified boundary layer equations are just the characteristics of the Euler equations,
that is to say, their subcharacteristic equations are just Eq. (3.7). Therefore, the
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particle paths are subcharacteristics of these hierarchial SNSEs., Especially, in accord-
ance with subcharacteristics, these hierarchial SNSEs are hyperbolic for M > 1, and
yet they are elliptic for M < 1, |

For BLE and MBLE, we obtain a subcharacteristic equation as follows:

2

5? (2‘2) -0, (3.10)
Or

It 1s interesting to note that BLE and MBLE are still parabolic in accordance with

their subcharacteristics.,

For the cases of the viscous compressible jet and other viscous flows, an analysis
of characteristics and subcharacteristics will give the same results as we have listed
above. As an example, the analytical results for the viscous compressible jet are dem-
onstrated in Fig. 4. As a result, we can draw out some general conclusions as follows,

1) The mathematical properties of all the hierarchial SNSE and NS equations
are represented by the higher-order diffusion terms as well as the pressure gradient
terms. The mathematical properties represented by the former are independent of
- Mach numbers M. However, the mathematical properties represented by the latter

are dependent on M: when M <1, all the hierarchial SNSEs except the classica land
modified boundary layer equations are always elliptic in mathematics. This means that
the elliptic character represented by the pressure gradient terms is restricted within
the subsonic flow region of M <1, in other words, the pressure gradient terms allow
an upstream propagation of disturbances in the flow field through the elliptic subsonic
regions; when M > 1, all the hierarchial SNSEs are hyperbolic-parabolic,

2) Although there are many SNSEs, they can be divided into only three types
according to their mathematical properties. These three types are: elliptic, diffusion
parabolic (i. e. type of the Euler equations) and hyperbolic-parabolic. On the other
hand, they may be also divided into five groups according to their physical content.
This five groups are: elliptic approximation, diffusion partially parabolized approxima-
tion, diffusion parabolized approximation, inviscid approximation and the boundary layer
approximation (refer to Table 1, Fig.2 and Fig. 4)

Table 1
Classified Catalogue for Simplified Navier-Stokes Equations (SNSE)

s : . diffusion partially boundary-layer
Physical aspects el:gtl]c}:spir?:t?:;:on parabolized approx- approximation
¢ imation (BLE and MBLE)
Mathematical character elliptic parabolic-hyperbolic
. diffusion parabolized inviscid approximation
Physical aspects approximation (Euler equations)
) parabolic-hyperbolic(or hyperbolic)
Mathematical character for M>1;
elliptic for M<1,

Note: BLE and MBLE are abbreviations of the classical and modified boundary layer
equations, respectively. M indicates Mach number,
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3) The diffusion parabolized SNSEs are always elliptic in flow region in the vi-
cinity of the solid wall, whether the flow far from the wall is either supersonic of
M > 1 or subsonic of M < 1. This forms a most important difference between them
and the boundary layer equations (BLE) or modified BLE, the former can represent
the interaction between two flows near and far from the solid wall, while the latter
cannot. The mathematical properties of the diffusion parabolized SNSE are consistent
with that of the Euler equations (refer to Table 1). As a result, the diffusion para-
bolized SNSE may be regarded as the inviscid Euler equations with physical viscosity,

4) As for the solution of various SNSEs, if their mathematical types are the
same, there is little difference between them, though they embrace numbers of terms.
Therefore, according to the viewpoint of numerical computation, both the elliptic SNSE
and the diffusion partially parabolized SNSE are nearly identical with NS equations;
the diffusion parabolized SNSE may be identical with the Euler equations. Fortunately,
solving the diffusion parabolized SNSE will give a solution for the whole flow-field
including both inviscid and viscous regions,

5) Some common SNSEs appeared in literature, such as the SNSE in which the
streamwise viscous derivatives are ignored™, Davis’s viscous layer equations", para-
bolized NS equations (PNS)“9, modified PNS (MPNS)"  thin-layer approximation
NS equations® and slender thin-layer approximation NS equations™” and so on. All
SNSEs, whether they coincide with the present hierarchial SNSE or not, can be proved
to be diffusion parabolized, which reveals that there are a lot of formulations of dif-
fusion parabolized SNSE, therefore, it would be necessary to systematize them and to

choose the best,

IV. Mecuanica. CONNOTATION oF THE HIERARCHIAL SiMpLiriED NAVIER-STOKES
EquaTions (SNSE) anp THE DirrusioN PARABOLIZED APPROXIMATION

1) For moderate and high Reynold’s number flows with main stream direction,
the inner and outer hierarchies of SNSE elucidate the equational evolution from
the most simplest equations, i. e. the classical boundary layer equations and the Euler
equations, to NS equations. On the other ‘hand, a moderate or high Re shear flow with
a main stream direction can be divided into several layers (see next paragraph) in the
normal direction of the main stream. We are first concerned with the simplest SNSE
being suitable to each one of the layers as well as the solution of the whole flow-
field obtained by solving simultaneously all the simplest SNSE above-mentioned with
physical and mathematical conditions at the boundaries and junctures of all the neigh-
bouring two layers. Secondly, we are also concerned with the simplest SNSE being simul-
taneously suitable to all the layers as well as the solution of the whole flow-field
obtained by solving this SNSE with physical boundary conditions. It is obvious that the
diffusion parabolized SNSE within all of the SNSEs being suitable to the whole flow-
field are of most importance,

2) Mechanical connotation of the diffusion parabolized approximation. We illu-
minate the present proposition with an example of a viscous compressible flow over a
thin body. In this case, the main stream direction is parallel to the surface of the
thin body. The distance of viscous diffusion is of the order of magnitude of LRe™/?
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during the characteristic transit time L/U of a fluid particle crossing the flow region
near the surface of the body, where Re = pLU/p, L and U are the characteristic
length and velocity, respectively, '

This means that during the transit time L/U the direct influence range of viscous
diffusion is of the order of magnitude of LRe™?, On the other hand, as was stated
above the pressure gradient allows upstream propogation of disturbances in the flow-
field through subsonic flow region. We call this phenomenon the pressure propogation
of disturbances for convenience. The range of the pressure propogation of disturbances
is of the order of magnitude of ¢L/U during the transit time L/U, where a is the
sound speed. The propagation velocity of disturbances is approximately unaffected by
viscosity. When Re > 1, ¢L/U is much larger than LRe "2 for subsonic flows as well
as flows within the boundary layer. Therefore, for a moderate or high Re flow with
a main stream direction the influence of downstream disturbances on upstream region
is mainly decided by the pressure propogation of disturbances, the direct influence of
viscous diffusion is rather small and can be neglected. In other words, the down-
stream boundary conditions of the closed boundary conditions demanded by the highest-
order viscous derivatives can be ignored. The above-mentioned state is mechanical con-
notation of diffusion parabolized approximation. This demonstrates that the standard
"judging merit and demerit of all the diffusion parabolized SNSEs ought to see whether
it is able to predict correctly the pressure distribution of the flow-field. In the cases
of 2- and 3-dimensional viscous incompressible flows for which the Navier-Stokes
equations are in Cartesian coordinates, we can prove that within all the hierarchial
SNSEs only L,M-SNSE can take viscous effects into account as well as lead to an
exact pressure-velocity equatien, which is

div(ﬂ) -1 Ap,
e

where A is the Laplace operator,

V. Murtayer Structure Mopel For Viscous Suear Frow, TRANSITION
LAYER AND PrACTICAL EXAMPLE

1) Multilayer structure model. As was stated above, simplifying NS equations
as well as subdividing the flow-field should be based on the resolving of the spatial scales
of the flow-field and the comparing of the orders the of magnitude between the inertial
and viscous terms. The subdividing of a viscous shear flow with a main stream direc-
¢ion leads to a multilayer-structure model. The main points of the model are
as follows: a moderate or high Reynold’s number shear flow with a main stream direc-
don can be divided into several layers in the normal direction of the main stream
according to the resolving of the spatial scales of the shear flow and the comparison
of the orders of magnitude between the inertial and viscius terms. Each of the layers
is expressed by a set of length scales in the coordinate directions. The streamwise
length scale of any one of the layers in which viscous effects cannot be neglected is
always larger than that in the normal direction, as a result, the orders of magnitude
of various terms in the NS equations are different. For example, a jet has five (or
three) layers in the normal direction of the jet axis; a viscous flow over a thin body
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Table 2

Essential Elements of Transition and Viscous Layers

Transition Layer and LsM-SNSE

Viscous Layer and BLE

1.

Moderate and high Reynold’s numbers(Re)

1. Moderate and high Reynold’s numbers (Re)

2. Length scale L, in the normal direction 2. Thickness & of the layer is much smaller
is much smaller than length scale L, in than length -scalc L, in the main stream
the main stream direction(L,«L,). direction(§«L,).

3. The minimum inertial term and the max- 3. The maximum inerfial term and the max-
imum viscous term are of the same order imum viscous term are of the same ,order
of magnitude (U, U, /L, or Ui/L~U,[Re of magnitude (U] /Ly~U,/Rel}),

L3).
4. Influence of solid wall on transition layer 4. Influence of solid wall on viscous layer

is weak, diffusion proceeds in the various is strong, diffusion proceeds mainly in

coordinate directions. the normal direction,
S. When NS equations are simplified, all 5. When NS equations are simplitied, the

retained and the inertial and viscous terms are retained

up
order of magnitude of U,/RelLi, then we
obtain LsM-SNSE,

the inertial terms are

viscous terms are retained to the up to the order of magnitude of U,/ReL},

then we obtain BLE,

.

Note: LsM-SNSE and BLE are abbreviations of the layers matched Simplified Navier-Stokes
Equations and the boundary layer equation, respectively. U, and U; are the characte-
ristic velocities of the normal and tangential directions of the layer, respectively,

or over a flat plate has three layers. The three layers are respectively viscous layer,
inviscid layer and transition layer being situated between the former two layers, see
next section. Now we discuss briefly two problems: how to determine the length
scales of the above-mentioned three layers and which of all the hierarchial SNSEs suit-
able to each of the three layers is the simplest? All the length scales of the viscous la-
yer are determined by four supplementary relationships which are respectively that between
the maximum viscous term and the maximum inertial term being of the same order of
magnitude, two relationships between Re and the shear stress and thermal flux at the wall,
and that between the maximum inertial term and the pressure gradient term being of the
same order of magnitude. Details are in the following paragraph. The boundary layer
equation within all the SNSEs being suitable to the viscous layer is the simplest and
the most important. All the length scales of the inviscid layer are determined by four
supplementary conditions which are respectively the maximum viscous term being
much smaller than the minimum inertial term, the length scale of the main stream
direction as well as the orders of magnitude of both the pressure and temperature
being matched with those of the transition layer. The simplest and the most important
SNSE being suitable to the inviscid layer 1s the Euler equations. All the length scales
of the transition layer are determined by four supplementary relationships which are
respectively the maximum viscous term and the minimum inertial term being of the
same order of magnitude, the length scale of the main stream direction as well as the
order of magnitude of both the pressure and temperature being matched with those
of the viscous layer. The simplest SNSE being suitable to the transition layer is the
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Euler-boundary-layer combined equations, the next simplest SNSE is the LsM-SNSE.
A further supplement for the transition layer as well as LsM-SNSE is as foilows.

2) Transition laver. The transition layer is such a flow layer where inertial force
is the main force, viscous force begins to play an indispensable role in equilibrating'
forces and the maximum viscous term is comparable to the minimum inertial term. A
comparison between essential elements of the transition layer and the viscous layer is
given in Table 2. An equation governing the transition layer flow should be the LsM-
SNSE, because LsM-SNSE is superior to the Euler-boundary-layer combined equations
and LsM-SNSE has the possibility of predicting correctly the pressure field and
many solutions of LsM-SNSE are completely consistent with the exact solutions
of NS equations® and LsM-SNSE is not only suitable to all the layers but also satisfy
mathematical conditions of smooth transition at the junctures between all the neigh-
bouring two layers, that is why we call this SNSE as layers-matched (LsM) SNSE.
The meaning of introducing a concept of the transition layer shall be further discussed
in the following paragraph. In addition, LsM-SNSE 1is exactly an extension of the
inner-outer-layers-matched SNSE™ to multilayer case, furthermore, the formulation
of the former is always consistent with that of the latter. The inner-outer-layers-
matched SNSE was developed on the basis of both an assumption of two-layers mod-
el for viscous shear flow and an estimation of the order of magnitude of the

classical boundary layer theory!®”,

3) Practical examples. The multilayer structure model is applied to viscous incom-
pressible flow over a flat plate (including the separated flow region and the attached
flow region, i. e. the flow region before the separation point). The flow-field is
divided into tbree layers in the normal direction of the wall. The length scales in the
individual coordinate directions and the order-of-magnitude of the individual terms
related to the problem are given below.

i) The viscous layer. For a laminar flowover a flat plate the relationships be-
tween Re and the pressure and the shearing stressat the wall are as follows [6:1®)

(p — p.) ~ Re™™ (m < % for the attached-flow, (5.1)

m = -i— for the separated—flow),

- 1 O
C;=27,/p UL ~Re™V " — —=, 5.2

1 / Re By’ (5.2)

where 7, is the shearing stress at the wall. Again using the relationships among
- 2

%3 ~ ilg -g;'—j, u%i‘— ~ —g{ and %:— ~ -3—;— we deduce the following results:

L m, ny 2 m, ny 2 ny 2 " (53)

For the attached flow withm=0, we have n,=n, =0, n,=n, = L, u—a—:i ~1 Ou

2 Ox Re 0y?
2

~ Re%, R Re "2, these are exactly the results of the classical boundary layer
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7, (LILIID)

2y (111)

Fig. 5. Variation of the length scale exponents 5. and n, with m for viscous incom-
pressible flow over a flat plate (x~Re™"x, y~Re ™"y, (p — p.)~Re™™; O indicates the
classical boundary layer theory; @ indicates the triple deck theory™® for separated
tlow),

theory'®. For the separated flow with m == -}T, we have n, = _?Z_’ n =L - 5

8 8 8
2 2
n, — %; “%#_ ~ _IiL g_‘: ~ Re', é %}% ~ Re™, which are consistent with the
x e Oy '

lower deck of the triple deck theory™ for separated flow (refer to Fig. 5).

ii) The transition layer. Based on the fact that the maximum viscous term and the
minimum inertial term are of the same order of magnitude and that the length scale
in the main stream direction and the order-of-magnitude of the tangential velocity (or
the pressure) must be matched with those of the viscouslayer, we deduce the following
results:

1 24+ 5m 24+ m
=M, By TS My By = n, = ———, 5.4
n, H 2 ¥ 6 E] 6 ( )
For the attached flow with m = 0, we have n,=n,=0, n,=n, -—_1_, ,,g_‘imReo
X

- 2 N
1 0 Re™ 1 9 Re™??, For the separated flow of m = —1-, we have n,=

Re?’i‘;; > Re 0Oy

2 ’ 2
_'S:_, ﬂ“—_—-i, nya:l}-, ny=l;uﬁ£~LQNRe_l/ﬂ’ _];__a___fﬂ,Re“S/N'
8 8 24 24" 0x  Re 0¥ Re 0Oy?

iii) The inviscid layer. Based on the fact that the maximum viscous term is much
smaller than the minimum inertial term and that the length scale in the main stream
direction and the order-of-magnitude of the tangential velocity (or the prsesure) must
be matched with those of the transition layer, we deduce the following results:
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1 2+ 5m

n,,=%m, n,=—m, 0 <n, <

s — N, tn,=m, (5,5)

For the attached flow with m=0, we have n, =n, =0, 0 < n, <—;—, if the length
scale in the y-direction is equal to that in the x-direction we further have 7, =0

and n, =0, For the separated flow of m = -;—, we have n, = —Z—, ny = —;—, 0 <

13

ny << —, if the length scale in the y-dirction is equal to that in the x-direction, we

further have n, = -3—, n, == -él—(refcr to Fig. 5),
8

From the above-mentioned results we can draw out that for the viscous incom-
pressible flow over a flat plate, the present multilayer structure model construct not
only new three layers models for both the attached and separated flows but also reveal
the physical character of transition from the attached three-layers to the separated
three-layers. The normal length scale of the transition layer decreases from LRe™” to
LRe™ ™% with increase of positive pressure gradient along the wall; the transition
layer seems to jostle gradually into the classical boundary layer with a rise in the
interaction between inviscid and viscous flows. In this case, the concept and equations

s a 1 - LY “ 1 - . . -

the transition and inviscid layers are corrésponding to the main and upper decks,
respectively. In the case of attached flow with m = 0, the classical boundary layer
theory proposes a two layers model (refer to Fig. 5). It is obvious that viscous
action region ought to contain both the viscous layer and transition layer. There-
fore, the normal length scales of the viscous action region are LRe™* for the

attached flow with m=0 and LRe™* for the separated flow of m=—i—, respectively.

These length scales are distinctly different from those with the classical boundary layer
theory and the triple-deck theory™ for separated flow,
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