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Abstract-The mechanism of ductile damage caused by secondary void damage in the matrix around 
primary voids is studied by large strain, finite element analysis. A cylinder embedding an initially spherical 
void, a plane stress cell with a circular void and plane strain cell with a cylindrical or a flat void are 
analysed under different loading conditions. Secondary voids of smaller scale size nucleate in the strain 
hardening matrix, according to the requirements of some stress/strain criteria. Their growth and 
coalescence, handled by the empty element technique, demonstrate distinct mechanisms of damage as 
circumstances change. The macroscopic stress-strain curves are decomposed and illustrated in the form 
of the deviatoric and the volumetric parts. Concerning the stress response and the void growth prediction, 
comparisons are made between the present numerical results and those of previous authors. It is shown 
that loading condition, void growth history and void shape effect incorporated with the interaction 
between two generations of voids should be accounted for besides the void volume fraction. 

NOMENCLATURE 
a = primary void radius 
a2 = the width of primary void in flat shape 
L, = half-height along the major loading axis of the unit model 
L, = half-width along the minor loading axis of the unit model 

V ,  = normalized radial displacement of the lateral boundary in cylinder model (=AL, /L , )  
W, = normalized axial displacement at the end of cylinder model (=AL, /L . , , )  
Ux = normalized displacement along the major loading axis of the unit model (=ALl/Llo) 
V, = normalized displacement along the minor loading axis of the unit model (= AL2/Lz0) 
a = loading parameter that governs the overall strain ratio of the unit model 

r = normalized initial radius or half-width of primary void (=ao/&, or a,/L,) 

be, c, =equivalent stress and strain in the deviatoric space 
om, em = mean stress and strain in the volumetric space 

E = Young’s modulus 
cry, ey = yield stress and strain 

n = the exponent parameter in strain-hardening material that obeys the power law 
r = generalized time 
= the volume fraction of primary void 

f ,  = the total volume fraction of voids, including the primary and the secondary ones 

‘f = triaxiality parameter (=&,/6,) 

8, E = overall stress, strain of the unit model 
u, L = local stress, strain in the matrix material of the unit model 

suffix “0” denotes a variable at the initial time 

1. INTRODUCTION 

In search of a solution for the ductile fracture problem, many researchers have been focusing 
attention on void modelling, since the pioneering works of McClintock [l] and Rice and Tracey 
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[2]. Their results provided some simple formulas to estimate the void growth as a function of 
macroscopic stress and of macroscopic strain. As a consequence, the expansion of void volume 
results in an overall plastic dilatation. Gurson [3] developed approximate yield criteria and flow 
rules for porous (dilatant) rigid-plastic material, showing the role of triaxial tensile stress in plastic 
yield and the monotonous shrinking, or strain-softening effect, of this yield surface with respect 
to the increase of the porosity chosen. Guennouni and Franqois [4] proposed a new plastic potential 
for porous rigid plastic material in plane strain conditions. They found that Gurson’s model had 
overestimated the stress response of porous material in the rigid-plastic case, especially within the 
intermediate range of triaxial stress states. Guennouni and Franqois [5] made use of their plastic 
potential to characterize the behaviour of the matrix material with secondary voids surrounding 
a relatively large cylindrical void in another plane strain model. They indicated the strong 
interaction between two orders of voids. 

Application of the Gurson model to the shear band localization problem by Yamamoto [6] had 
shown that it did not necessarily seem to allow localization at reasonable strains unless some large 
value of porosity or initial imperfection within a thin slice of material should be considered. 
Tvergaard 171 had also experienced that the critical strain for localization into a shear band was 
considerably overestimated, when using the Gurson model. He then [8] claimed that much 
improvement could be obtained by a relatively simple modification of the equations suggested by 
Gurson. 

Growing voids embedded in a strain-hardening matrix were treated in a more realistic way by 
employing the finite element method with large strain analysis. Needleman [9] made an 
elastic-plastic analysis of a plane strain cell, including both the geometrical nonlinearities resulting 
from large deformation and the physical nonlinearities arising from plastic material. Besides the 
works on plane strain models [7], Tvergaard also studied the macroscopic behaviour of axisym- 
metric cylinders including a growing void of initially spherical shape [8]. Li and Howard [lo] 
proposed to use a strain-softening description, by assigning a negative value to the tangent modulus 
of the Prandtl-Reuss equation, when the local stress state in the matrix of the strain-hardening 
material reached a critical level. This strain-softening effect in the matrix was shown to have a 
substantial favouring effect on the growth of the initial void. Employing their model, Li and 
Howard [ 1 11 indicated the sensitivity of the macroscopic consequences of void growth to various 
mechanical and geometrical micro-parameters. 

Physically speaking, usually there are at least two generations of voids in most engineering 
materials. The primary ones may nucleate around large inclusions ( w  10 pm) at an early stage of 
plastic deformation, whereas the secondary ones that have stronger bonding strength with smaller 
particles (h-  1 pm) of carbides or precipitates can only be debonded at rather high stress-strain 
levels. This microstructural process of ductile damage was observed in many experiments by 
different authors, such as Hancock and Mackenzie [12], Lautridou and Pineau [13], Sun et al. [14], 
Xia, Yang et al. 1151 and Sun and Franqois [16]. The texts of Hancock and Mackenzie [12] and 
of Lautridou and Pineau [13] had also shown the strong dependence of the ductility of material 
on the orientation of the inclusions, as for example, in the case of the long transverse and the short 
transverse samples. Sun et al. [ 141 and later on Marini et al. [17] indicated that the theoretical model 
of Rice and Tracey [2] had considerably underestimated the actual void growth observed in their 
tests. 

The unanswered questions involved in the previous studies draw our attention on making further 
investigations on the ductile damage caused by secondary voids in the matrix material around 
primary voids. A wide range of loading conditions and of stress states was selected for the study, 
using axisymmetric, plane stress and plane strain models made of a strain-hardening material. 
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Fig. 1. A quadrant model cell. 

Secondary voids were assumed to be nucleated gradually, when a certain stress or strain criterion 
was met in the matrix, during the computations handled by a large strain finite element method. 
The sensitivity of the macroscopic consequences of void growth to various microstructural 
parameters and comparisons with the results of previous authors will be presented in the present 
paper. 

2. MODEL CELL WITH TWO GENERATIONS OF VOIDS 

It is shown in Fig. 1, a quadrant of the model cell that is to be analysed in axisymmetric, plane 
stress and plane strain loadings. The unit cell is taken from a porous material with primary voids 
that are assumed to be periodically distributed. Computations are made with three types of primary 
void shapes. 

(a) Spherical one in an axisymmetric cylinder, the initial ratio of void radius a, and cylinder 
radius LzO being given as 

r = aoIL20 (1) 

in Fig. l(a). 
(b) Cylindrical one in plane stress or plane strain loadings with the parameters a, and LzO 

representing the initial radius of the void and the half-length along the minor loading axis of the 
unit in Fig. l(a), respectively. 

(c) Flat void in plane strain condition of Fig. l(b) with its initial geometrical parameter as 

r = a20/J520* (2) 

Here and hereafter we always use a suffix “0” to denote a variable at the initial time. 
To simplify the computer simulation work, a proportional straining condition of loading is 

enforced at the boundary, rather than a more rigorous condition ensuring the continuity of both 
stress and displacement. Comparisons showed that this should not introduce too large discrep- 
ancies. Then the mechanical response of the cell is depending on the value of a parameter a which 
governs the overall strain ratio of the model. That is to say, during an incremental displacement 
loading 
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in the axisymmetric case, and 

for the plane stress or plane strain loading. In all the cases considered the initia. geometrical aspect 
ratio of the model is taken as LiolLzo = 1. Besides the incremental displacement condition assigned 
at the boundary, the shear stress along all the sides of the boundary is taken to be zero. 

For all the examples calculated in this paper, the matrix material that surrounds the primary 
void is assumed to obey the power law in strain-hardening condition as 

(:) = k (:>”. k = 1 

where cr,, E,,  0, and E ,  are the equivalent stress, the equivalent strain (neglecting the difference 
between the total one and the plastic part in large strain analysis), the yield stress (=0.002 E, E 
is Young’s modulus) and the yield strain (= 0.002) of the matrix, respectively. The exponent 
parameter in (5) is chosen as n = 0.15, which can represent a series of high strength steels and the 
Poisson’s ratio is taken as 0.3. Following the results of the tests [12-151, regarding the initiation 
of the secondary voids, we prefer to have a stress criterion 

urn + he = OC (6) 

Ee = Ecr (7) 

or a strain criterion 

whichever is the first to be reached, throughout the following computations. In (6),  0, and 6, are 
the local equivalent stress and mean stress in the matrix, respectively, 1 is a factor which is 
dependent on the shape of particles and is chosen to be 1.7 and oC is the critical stress that is taken 
as 

6, = 70,. 

For the strain controlled nucleation, the critical value of the local equivalent strain 6, is chosen 
as 

cC = 1.3. 

The solution of the problem is obtained through the use of the up-dated Lagrangian formulation 
of McMeeking and Rice [ 181 with an appropriate generalization of the classical Prandtl-Reuss 
equations for the constitutive description of the matrix behaviour. 

The quadrants in (a) and (b) of Fig. 1 are subdivided into 436 constant strain triangular elements 
with 248 nodal points and 438 elements with 250 points, respectively. In each of the element, once 
the stress-strain level attains either of the limiting conditions given by (6 )  and (7) it will be emptied, 
or in other words, it has no more stiffness. This empty element may then deform freely or coalesce 
with its neighbouring elements as loading proceeds. We take this process as the nucleation, growth 
and coalescence of the secondary voids. Since this event can actually take place at any site of the 
matrix, there is no point in choosing a finer mesh around the primary void than that for the other 
part of the matrix. We therefore decide to use an approximately equal size of triangular elements 
within the whole domain of matrix. 

The elongation along the main loading axis is selected as the generalized time t .  The method 
of computation within each increment At of time in the up-dated Lagrangian formulation of the 
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problem together with the generalized Prandtl-Reuss equations were explained by Li and Howard 
[lo]. The number of the incremental steps needed to complete each calculation varies from 300 to 
3000, depending on the ductility of the sample. Once the first secondary void initiates in the matrix, 
small incremental steps must be used for carrying on subsequent computations. This measure is 
taken to eliminate the computational error that could be caused by the local elastic unloading 
occurring suddenly around the newly nucleated void. Computations with a much finer mesh of 
equal size triangles (1209 elements, 654 nodes) had been employed to check the accuracy of the 
results obtained with the coarser mesh mentioned previously in regard to the macroscopic responses 
and the void growth. The calculations with these two meshes resulted in a difference less than 1% 
for both values of overall axial stress and the volume fractions of primary void, when that overall 
axial stress attained a maximum. The appropriate sizes of loading increments for each sample at 
different stages are also carefully handled and chosen to obtain convergent calculations. 

3. MODELS UNDER DIFFERENT LOADING CONDITIONS 

For the case of axisymmetric loading, a primary spherical void which has an initial radius ratio 
value of r = 0.15 is embedded in a cylinder and makes up an initial void volume fraction 
fvo = 0.225%. During proportional straining at the boundaries of this cylindrical cell shown in Fig. 
l(a), the overall principal true strains can be related to the elongation W, and the radial 
deformation U, as 

E, = ln(1 + W,) 

E, = ln(1 + U,) = -crE,. 

From these we have for the overall equivalent strain and mean strain 

E, = f(E, - E, )  

and 

- 2Er + E, 
l& = - 

3 

respectively. 

equivalent stress and mean stress should respectively be 
Let the average axial stress be 6* and the average radial stress denoted as &, then, the overall 

6, = 6, - 6, 

and 
- 6, + 26, 
6, = ~ 

3 .  

Here and hereafter we use a bar on stress or strain to denote the macroscopic or overall response 
of the model. It is expected that such an axisymmetric model is more rigid than a 3 dimensional 
one. 

In the plane stress model an initial circular void illustrated in Fig. l(a) has a radius ratio r = 0.15 
which corresponds to an initial void volume fraction fvo = 1.76%. During displacement controlled 

FFEMS 1 2 / 2 4  
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loading the following relationships for the overall stresses and strains are employed. 

dt; = dUJ1 + U,) 

dt; = dV,,/(l + V,) = - a  dE, 

dS, = dc,dA/A 

here, dc, is the local strain along the z direction and A is the matrix area, so, dE, means an average 
value over this area. 

dEe = - * -  [(dt, - dZ,)’ + (dF, - dFz)’ + (dCx - dC,)2]1/2 
3 

Ee = j,‘ dEe dEm = (dE, + dEy + dc2)/3 

8 = [82 - 8,6y + 8 y  
Cm = (6, + 8,)/3 

Em = lo‘ dEm 

where 6, and eY are the average stresses along the outer boundary lines. 
As another typical loading we studied the plane strain model embedding a cylindrical void as 

shown in Fig. l(a). Ratio values of r = 0.15 and 0.25 were chosen to account for the effect of initial 
void volume fractionsf,,, equal to 1.76 and 4.90%, respectively. A flat void shown in Fig. l(b) 
will be employed to study the effect of void size in the next section. 

In the present case we may find the following relations 

Z, = ln(1 + U,) 

Ey = ln(1 + V,,) = -aF, 

E,=;(l + a  +aye, 
E m = ( l  -a)E,/3 

6, = - [(6, - 6))2 + (8, - 8,)Z + (8) - 6:)2]1/2 
1 

Jz 
and 

CTm = (8, + 8, + 8,)/3 

where 

8, = o,dAILlL2 

and A is the matrix area, so, 8, is an average value of the stress along the z direction. 
The stress-strain curves calculated for a = 0.30, 0.35, 0.40, 0.45, 0.47, 0.48 and 0.49 are 

illustrated in Fig. 2(a) for axisymmetric loading, where the total response is decomposed into a 
deviatoric part (ee vs E,)  and a volumetric part (8, vs Em),  with r = 0 representing the continuum 
behaviour of the matrix material which itself is incompressible in plasticity and has the volumetric 
strain contributed only by elasticity. The level of triaxiality is characterized by the parameter 
T = 8,/8, attained for each value of a. We may approximately refer the condition of a = 0.3 to 
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the case of a material near to an existing crack. As the values of a increase to 0.49, triaxiality 
decreases gradually and approaches the condition of the material at the centre of an axisym- 
metrically notched bar and finally of a smooth bar. The point where the axial stress fiz attains a 
maximum is marked by a short dash on the curves. 

In Fig. 2(b) the results of the relationships of Ce vs E, and fi,,, vs E, for a = - 1, -0.6, -0.3, 
-0.1, 0, 0.1, 0.3, 0.45, 0.55 and 0.65 in plane stress conditions are depicted. Comparing with the 
axisymmetric case we find the triaxial tension is here much lowered down. Another salient feature 
is that the ductility does not vary monotonously as previously with the enhancement of the triaxial 
stress. It actually has the lowest value at a = 0,  which is a plane strain condition. From which either 
an increase or a decrease of the general mean stress enhances the ductility. This situation seems 
to be quite similar to the general trend resulting from metal sheet forming. 

Macroscopic stress-strain curves for r = 0.15 are represented by solid lines in Fig. 2(c) for plane 
strain loading with a = - 1, -0.6, -0.3, 0,0.3,0.45,0.55,0.65,0.75,0.85 and rY = 0. The ductility 
is now again varying monotonously with the degree of general triaxial tension enforced on the 
model as in the case of axisymmetric loading. When a < 0.3, the equivalent stress drops abruptly 
from its maximum point with little plastic strain, but soon after that this equivalent stress keeps 
raising up. This indicates that the plane strain behaviour is very sensitive to the triaxial stress state. 
Computed results also show that a larger initial void size, such as the r = 0.25 curves in broken 
line, can substantially alleviate the triaxial tension. This implies that at the time of attaining the 
same porosity the two material models ( r  = 0.15 and r = 0.25) can have quite different macroscopic 
stress/strain responses. That is to say, the void growth history must have a strong influence on the 
stress state; especially on the mean stress. 

Figure 3 shows the increase of the void volume fraction vs the overall equivalent strain. The 
broken lines represent the parts contributed by the primary voids whilst the solid lines are those 
of the total parts. Naturally, the difference comes from the nucleation and growth of secondary 
voids. In each case the development of secondary voids at first accelerates the growth of the primary 
ones, or, alternatively, we may also say that a faster growth of the primary void favours the 
multiplication of secondary ones. However at the final stage the growth of the primary void may 
be suppressed owing to its coalescence with the secondary voids or to the too rapid development 
of the latter ones, as shown by the drop of the broken lines. It is easy to see that, among the three 
loading conditions, the plane strain case is the most favourable condition for void growth. This 
limits the maximum ductility that can be obtained in this case. Another interesting point in 
Fig. 3(c) is the approximately linear feature of most parts of the curves. This is in contrast with 
the exponential trend shown in Fig. 3(a) and 3(b). 

The internal cracking condition of some typical cases are demonstrated in Fig. 4(a) at a level 
of being totally voided with a volume fractionf, around 10%. The primary void changes its shape 
from an originally spherical type to an ellipsoidal one with its long axis parallel to the main loading 
direction, when the value of a tends to 0.49 as in the figure. At the same time the ductility of the 
material also increases enormously. It is interesting to notice the difference in damage feature and 
fractography at rupture. When the ductility becomes larger, the sites of secondary voids become 
scattered and the shape of these voids may be distorted in extreme cases to a thin slot. On the other 
hand in the case of, say, a = 0.35 the site of secondary voids is more or less limited within a plane 
layer perpendicular to the main loading line. In the same figure we use broken lines to sketch out 
the regions that could be damaged by secondary voids at the final stage of rupture with a total 
void volume fractionf, around 25%. It was not possible to proceed with the computation for 
a = 0.49 to such an extension as even withf, = 10% the elements were already very much elongated 
to thin triangles. It should also be noticed that in this case the secondary voids have totally encircled 
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and coalesced with the primary one, therefore it would be very difficult, if not impossible, to 
distinguish the original border line between them. The fact that the void growth measured in the 
tests of [I41 and [17] is much higher than the theoretical prediction [2] can be explained as mainly 
caused by this coalescence mechanism, besides possibly the interaction effect that was neglected 
in the theoretical analysis. The wide spread of secondary voids in the case of CI = 0.47 and the long 
pulled shape of voids when a = 0.49 are quite in accordance with the observations of the tests of 
axisymmetric bars, such as reported by Sun et al. [14], Xia et al. [15] and Sun and Franqois [16]. 

Since the mean stress is low in the plane stress type of loading, the nucleation of secondary voids 
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Fig. 2 .  Caption on facing page. 



Secondary void damage around voids 113 

IL )rc a=0.3 ..,kl, , -:: ~ 

0.0 0.2 0.4 0.6 0.8 0.0 0.4 0.8 1.2 1.6 2.0 
- - 
E C  € m  

Fig. 2. The macroscopic equivalent stress-strain curves and the macroscopic mean stress-strain curves. 
(a) Axisymmetric models with spherical voids (r = 0.15). (b) Plane stress models with cylindrical voids 

(r = 0.15). (c) Plane strain models with cylindrical voids (r = 0.15, 0.25). 

is found to be mainly governed by the strain criterion (7). The high strained region as shown in 
Fig. 4(b) is rather localized in a band perpendicular to the major principal stress direction. 

Following this line cracking always starts at the vicinity of primary voids and protrudes from 
there into the material straightforwardly up to it crossing through the cell and meeting with the 
boundary with almost no zig-zag path in the middle way. Final rupture may occur approximately 
at a porosity of f ,  = 22%. In no case in plane stress loading does the damage mainly occur away 
from primary voids as seen in the other loading conditions. 

In Fig. 4(c) is shown that the damage may occur from both parts which are near to or far from 
the primary void at higher triaxial stress level, e.g. ct = - 1 to 0. However, when the triaxial stress 
is lowered down, the nucleation and growth of secondary voids mainly occurs around the primary 
void as shown for example by the case with ct = 0.45. As straining is carrying on, the final fracture 
could take place in the biaxial case with a flat faced crack perpendicular to the principal stress 
direction, but the cracked face might become fibrous as shown by the broken lines in Fig. 4(c) at 
f =  22% for the lower triaxial condition. 

4. THE EFFECTS OF VOID SHAPE AND VOID GROWTH 
HISTORY AND COMPARISONS WITH THE WORKS OF 

PREVIOUS AUTHORS 

Some further examples in the plane strain condition will be shown in this section to prove the 
effects of void shape and void growth history. One is implemented by considering a flat shape void 
as shown in Fig. l(b) which has the same initial void volume fraction as the cylindrical void of 
r = 0.15, whereas another scheme is employing a larger initial cylindrical void of r = 0.25. 
Comparison of the mechanical behaviour of voided materials with different initial void volumes 
at some same stage of total porosity will then show the influence of void growth history on material 
behaviour. Both cases are subjected to plane strain loading. According to the definition in (2) the 



114 G. C. LI et 01. 

, ( 0 )  
0.30 

,o 0.450.47 0.48 

D 0.49 

max Fz 

4 

2 -  

0.49 
/--------- 

I I I 
0 0.2 0.4 0.6 .0.8 1.0 

( b )  
a = O  -1 0.55 

0 I 0.03 0.06 
C 

Fig. 3. The growth of void volume fraction vs equivalent strain (- total volume fractionf,, - - -  volume 
fraction of primary voidsLi). (a) Axisymmetric condition ( r  = 0.15). (b) Plane stress condition ( r  = 0.15). 

(c) Plane strain condition ( r  = 0.15). 

flat void has an initial radius ratio r = 0.40, which retains the initial porosity of & = 1.76%, the 
same as that of the cylindrical void of r = 0.15 but has its void shape completely changed. The 
size of the mesh is such that the strong concentrations at the corners of the flat void are smoothed 
out. The larger void sample of r = 0.25 results inf,, = 4.90% which is more than twice the value 
of the smaller one withf,, = 1.76%. These two samples will be compared at the total porosity of 
fv = 10%. 
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Computed results have been obtained for both the model A which has a flat void and the model 
with a cylindrical void of r = 0.25 under proportional straining conditions of u = -0.3,0,0.3,0.45, 
0.55, 0.65 and 0.75. A huge decrease of mean stress response is observed in Fig. 2(c) for a larger 
initial void. Figure 5 collects together the results from the five models we have considered. Each 
point refers to a certain model under a certain mode of straining. The solid circles (for cylindrical 
void model with r =0.25) and the inverted solid triangles (for flat void) together with the data 
obtained from previous computations exhibit a wide extent of stress-strain variation caused by the 
differences in loading condition, void shape and void growth history, when compared at the same 
porosity offY = 10%. If it were reasonable to take these effects as negligible the distribution of the 
data would be rather compacted into a certain band-like curve for E, vs T. However, it is not the 
case in here. This advises us to handle carefully each material case, that is to be treated, by selecting 
an appropriate model that can really be taken as representative of its physical background. 

Based on approximate rigid-perfectly plastic computations for special void geometries, Gurson 
[3] proposed approximate yield surfaces for void-containing materials. His formulae are now 
commonly adapted into the strain-hardening case by stating 

Q, = - +2fv ch - -(1 + f t ) = O  (:J (2) 
for a spherical void embedded in a spherically symmetric model, and 

Q,=(1+3fY+24f:)2 - +2fch Js- - ( l+ f ; )=O (:J ( 2) (9) 

for a cylindrical void in the plane strain condition. These plastic potentials are formulated in terms 
of the macroscopic equivalent stress 6, and of the macroscopic mean stress 6, both normalized 
by the current flow stress a, of an unvoided continuum. The value of this flow stress is depending 
on the overall equivalent strain E, that has been attained. In large strain calculations the difference 
between the plastic part and the total part of equivalent strain can be neglected. The parameter 
f v  in (8) and (9) as usual represents the porosity. 

Tvergaard [7-81 modified Gurson's model by suggesting that some additional and adjustable 
parameters be added into the form given by (8). He took the yield surface as 

Q, = (2y + 2fql ch(q, 2) - (1 + q 3 f t )  = 0. 

If q1 = qz = q3 = 1, (10) coincides with (8). Tvergaard proposed to use q, = 1.5, q2 = 1 and q3 = q l ,  
in order to improve the predictions of the critical strain for localization into a shear band. 

Recently Guennouni and FranGois [4, 51 have made use of finite element analysis on a plane strain 
square cell which is also made of rigid-perfectly plastic material surrounding a cylindrical void. 
Along the square boundaries, either pure normal stresses or together with shear stress are enforced 
to simulate different overall triaxiality stress states. The porosity condition can be changed by 
assigning different void size as in Gurson [3]. The new yield surface proposed by Guennouni and 
FranGois can be written as 

@ = Js [ ( 5 T  + ( 5)']"2 = 1 
Ba, Aa, 
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Fig. 4. Caption on facing page. 
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Fig. 4. Illustration of the damage development. (a) Axisymmetric models ( r  = 0.15). (b) Plane stress 
models ( r  = 0.15). (c) Plane strain models ( r  = 0.15). 

where 

A = -(1 - 1.92fv + 5.57f t - 6.04f:)lnfv 

2.06 [exp( -4.9f) - 4.4 lo-’] 
- 1.33f:6) when f, < 0.1256 

otherwise and up is the current flow stress as before. 
Comparison of the plastic loading condition between the present results of numerical calculations 

and those of Gurson, Tvergaard and Guennouni and Franqois are shown in Figs 6 and 7 at the 
total porosity off, = 3% and offV = lo%, respectively. Each of the data is representing a certain 
model subjected to a certain mode of straining. It is not possible to have the data of the plane strain 

0.3 0-4Lx A 

A Axisymmetric ( r’O.15 ) 

x Plone stress ( r = 0 . 1 5 )  
o Plane strain ( r = O . I S  1 

Plone strain ( r . 0 . 2 5 )  
v Plane strain model €6 

0.1 o*21 0 
X . 

A 

* o  
X .  

0 
0 

m o  . 
e o  v A  

1 I I I I 
0 1 2 3 4 5 ’  

0 

T 

Fig. 5. Comparison between the plastic loading points at f, = 10% for different models. 
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- Gurson’s sphericat model 
__- -  Gurson‘s plane strain model 
-- Tvergoord‘s modificotion 
- -- Guennouni- Francois‘s model 

A Axisymmetrtc model (Go = 0.225% I 
o Plane-strain model ( G o =  1.76%) 
x Plane-stress model Cfvo= 1.76% 1 
v Plane-strain model A (fvo= 1.76%) 

A 

0 

- 
U , f U , l  

Fig. 6 .  Comparison between the plastic loading points for different models at = 3%. 

model with r = 0.25 shown in Fig. 6, since this model starts with an initial void volume fraction 
that is larger than 3%. The difference shown by the plane strain models in blank circles, solid circles 
and inverted solid triangles in these figures indicate the strong effects cause by void growth history 
and void shape on the plastic loading stress state. The data represented by blank triangles and 
crosses are referring to the spherical void in axisymmetric loading and the plane stress void model, 
respectively. The plane strain data for spherical voids are more or less included between these two 
loading cases. Usually the axisymmetric void model yields rather scattered results in these figures. 
This is because it has the smallest primary void volume fraction; then the secondary void makes 
the larger contribution to the total porosity. Even with the equal sized elements chosen for the mesh 
of numerical calculations, when secondary voids initiate at sites far from the central axis of the 
model, a large amount of void volume may suddenly appear and could cause an abrupt change 
in the macroscopic response. This is also the reason why a larger scatter is seen in Fig. 7 at& = 10% 
than in Fig. 6 at = 3%. It might not be unreasonable if we notice the usual scattering feature 
of the data recorded in experiments concerning the microstructural behaviour at the stage of serious 
damage. The stress response yielded by the axisymmetric model is considerably higher than that 
of Gurson or Tvergaard. This can be attributed to the elasticity effect that is neglected by using 
a “rigid” assumption in Gurson’s model. A similar situation can also be seen in the Fig. 4 of 
Tvergaard’s study [8] on materials containing spherical voids. 

A further comparison between the present computations and the formulae given by Rice and 
Tracey [2] and by Guennouni and Franqois [4] is made for estimating void growth. Only a single 
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Gurson's spherical model 
__-- Gurson's plane slrain model 
-- Tvergaard's modification 
- -- Guennouni- FronCois's model 

I I9 

A Axisymmetric 
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Comparison between the plastic loading points for different models at f, = 10%. 

void is accounted for in the previous models; therefore the formulae can be written as 

- 0.849 C, exp --=- (2) f v l  3l.i f,=a- 
based on the Rice-Tracey model with a single spherical void embedded in an infinite medium, and 

according to the plane strain model of Guennouni-Franqois in the case of strain-hardening 
material, where 

A = p (1 + [3(p - 1) - 0.77p21fvJ 

and n is the strain hardening exponent in ( 5 )  which has been taken to be 0.15 here in this paper. 
Making use of the macroscopic stresses ~7~ and 6, and the macroscopic increment f of equivalent 
strain obtained at the end of each increment of generalized time, we are able to calculate the 
corresponding increment fvI of the void volume fraction predicted by (12) and (13). An integration 



120 G .  C .  LI et a/ 

Table 1 .  Comparison between Ll and fRT in axisymmetric loading (r = 0.15) 
tl 0.30 0.35 0.40 0.45 0.47 0.48 0.49 

o,5% fvl(%) 0.316 0.326 0.336 0.352 0.39 0.336 0.366 
fRT(%) 0.319 0.323 0.330 0.345 0.336 0.343 0.418 
Ll(%) 0.328 0.336 0.355 0.409 0.477 0.547 0.619 1.3% 

4.5% f,I(%) 0.341 0.357 0.388 0.463 0.580 0.773 0.859 
f R , ( % )  2,101 4.070 0.898 0.484 0.601 0.887 1.749 

fRT(%) 0.337 0.336 0.352 0.406 0.482 0.579 0.811 

of all these increments accumulated up to a certain time gives the total value of void volume 
fraction at that time. 

Table 1 and Table 2 present the comparisons between our numerical calculations and those 
integrated from the formulae of Rice and Tracey and Guennouni and Franqois, respectively. For 
the axisymmetric case with a spherical void comparisons are made at three stages of total voiding, 
which aref ,  = 0.5, 1.3 and 4.5%, as given in Table 1. Usually the void volume fraction fRT given 
by (12) is much smaller than the total valuef, attained by our computer simulation. However the 
results off,, are in rather good accordance with those values of the volume fractionf,, of primary 
void, until around a total porosity of f,= 4.5%. Sooner or later afterwards the result of 
Rice-Tracey formula will quickly tend to infinity, owing to the relatively rapid drop of the 
macroscopic equivalent stress with respect to the macroscopic mean stress F,,,; which makes the 
exponential part in the formula (1 2) multiply enormously. The large discrepancies between f,, and 
fRT in the cases of a = 0.3, 0.35, 0.40 and 0.49 in Table I are reflecting the starting of this critical 
stage. Table 2 shows the good agreement between the void volume fraction fGF of 
Guennouni-Frangois formula (1 3) and the present numerical calculations for primary void at 
different stages of porosity Cf, = 3, 10 and 20%) which actually cover the whole loading history. 
However the value of fGF is still much smaller than the total value off,. It needs to be noticed 
that by using the macroscopic responses obtained from the numerical calculations, the interaction 
effect between two generations of voids are introduced into the integration results of [12] and [13], 
although the derivation of these formulas is based on single voids. 

5. CONCLUSIONS 

During the process of ductile damage caused by void growth the interaction between two 
generations of voids is, in effect, shown throughout this paper to play a very important role which 
has not yet been fully recognized. In no respect can the real internal voiding condition be correctly 
represented by simple modelling based on a single void analysis. As has been pointed out by 

Table 2. Comparison between A, and fGF in plane strain loading ( r  = 0.15) 
a - 1  -0.6 -0.3 0 0.45 0.55 0.65 0.75 

S,,(%) 2.65 2.71 2.93 2.90 2.86 2.80 2.61 2.61 
fGF(%) 2.21 2.25 2.31 2.31 2.53 2.55 2.46 2.54 
,A,(%) 3.64 4.00 4.71 4.49 7.22 6.82 6.79 6.48 

f, Ll 
3 yo 

fGF(%) 3.29 3.42 3.72 3.15 5.59 6.04 6.54 7.10 
Ll(%) 5.83 6.57 8.95 7.47 10.90 10.40 11.26 10.68 
j;GF(%) 7.47 6.55 7.25 4.72 9.23 10.18 11.42 12.75 20% 
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Guennouni and Franqois [ 5 ]  this effect is not additive, or in other words, the macroscopic response 
of a medium with one order of voids is not equivalent to another that has the same void volume 
fraction but composed of two orders of voids. 

The interaction effect is much more complicated through the strong influence of loading 
conditions (axisymmetric, plane stress and plane strain etc.), of initial void shape (spherical, 
cylindrical and flat, etc.) and of void growth history (larger or smaller initial porosity). Special care 
should therefore be taken in selecting an appropriate constitutive characterization for porous 
materials. A plastic potential does not seem to exist when damage is accumulated to a large extent. 
Generally speaking, a single internal variable based on void volume fraction is not sufficient for 
theoretical descriptions of the damage in porous materials. 

Lastly but not the least, there are still some effects that may have a substantial influence, which 
however, are not accounted for up to now. Such as the non-proportionality of straining in actual 
loading, the existence of other microstructural features that have not yet been investigated. 
Theoretical modelling does help us to understand the microstructural mechanism, the damage 
evolution and the characterizing parameters that should be chosen to describe the process of ductile 
damage. However, for the sake of making a quantitative estimation of its macroscopic/microscopic 
behaviour, the undetermined effects involved in physical material should be completed and taken 
into account by employing experimental results. 
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