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The problem of thermophoretic deposition of small particles onto cold surfaces is studied in two- 
dimensional and axisymmetric flow fields. The particle concentration equation is solved numerically 
together with the momentum and energy equations in the laminar boundary layer with variable density 
effect included. It is shown explicitly to what extent the particle concentration and deposition rate at the 
wall are influenced by the density variation effect for external flow past bodies. The general numerical 
procedure is given for two-dimensional and axisymmetric cases and is illustrated with examples ofther- 
mophoretic deposition of  particles in flows past a cold cylinder and a sphere. © 1989 Academic Press, Inc. 

1. INTRODUCTION 

The problem ofthermophoretic deposition 
of particles has attracted the attention of many 
investigators ( see (1-8)). The purpose of this 
paper is to treat the external problem and to 
provide a general method of calculating the 
thermophoretic deposition rate of particles 
suspended in two-dimensional or axisymmet- 
ric flow past a body held at a lower temperature 
than that of the flow. Some of the aforemen- 
tioned papers (1, 5, 7) treated the problem of 
flow past a body, but only Goren (1) who in- 
vestigated the flow past a flat plate took into 
account the density variation effect which is 
vital to the analysis of thermophoresis, as 
pointed out by Abbott (8). In this paper spe- 
cial consideration is given to the flow near the 
stagnation point of a cylinder and a sphere 
and past a fiat plate to show explicitly how the 
particle concentration and deposition rate at 
the wall are influenced by the density variation 
effect in these flow systems. Then the general 
case of two-dimensional and axisymmetric 
flow past bodies of arbitrary shape is consid- 
ered. A general numerical procedure is given 
and is illustrated by examples for flow past a 
cylinder and a sphere. 

The formulation of the problem and the 
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basic equations are given in Section 2. The 
solution in flows near the stagnation point on 
a cylinder and a sphere and past a fiat plate is 
given in Section 3. The method of solution 
used for the general case is given in Section 4. 
Examples of the calculation of thermophoretic 
deposition for flow past a cylinder and a sphere 
are presented in Section 5 followed by a section 
of discussion. 

2. FORMULATION OF THE PROBLEM 

In this paper our consideration of thermo- 
phoretic deposition focuses on external flow 
problems in which a stream of gas containing 
suspended particles flows past a body held at 
a lower temperature than that of the oncoming 
stream. The particle size and concentration 
are assumed to be small so that the velocity 
and temperature fields of the gas can be de- 
termined as in a flow free of particles. For the 
range of Reynolds and Mach numbers usually 
encountered in thermophoretic problems the 
stream of gas can be assumed to flow around 
the body irrotationally and as an incompres- 
sible fluid outside the laminar boundary layer 
near the surface inside of which the variation 
of density must be allowed for. Compressibility 
is retained near the body despite the smallness 
of the velocity because the thermophoretic ve- 
locity is proportional to the relative variation 
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of the temperature which in turn is propor- 
tional to the relative variation of the density 
for the ideal gas. For a two-dimensional or 
axisymmetric, laminar, compressible flow the 
mass conservation equation and the momen- 
tum and energy boundary layer equations in 
the boundary layer coordinate system can be 
written as 

O (rkpu) +--~y (rkpv) = [2.1] 

Ou Ou 
pu + pv 0-7 

dx  -~-~y rk # , [2.21 

01 3I 
PU ~x + pV ~y 

_ 1 3 [ rkOy { ( l )  OU # 3 / 1 ]  [2.3] r k # 1 -  u ~ y + a c g y j j  , 

where x represents streamwise distance along 
the surface from the leading edge or the stag- 
nation point, y is the position coordinate nor- 
mal to the boundary, u and v are the gas ve- 
locity components parallel and normal to the 
surface, r is the distance of the considered point 
to the axis, k = 1 for axisymmetric and k = 0 
for two-dimensional flows (see Fig. 1), ~ is the 
viscosity of the gas, and a = #cp/k~ is the ratio 
of the kinematic viscosity u to the thermal dif- 
fusivity kg/pCp, is equal to 0.72 for air, and 
lies within the range 0.66 to 0.80 for common 
gas, I = cpT + U2/2. 2 

The distribution of particle concentration 
in general is governed by convection, diffusion, 
and thermophoresis and is determined by the 
conservation law 

OC 
= -~7. Cu + V .  (DVC) - V .  C U T ,  

Ot 

[2.41 

where D is the Brownian diffusivity of the par- 
ticles, lIT is the thermophoretic velocity, 

2 F o r  a c o m p l e t e  l ist  o f  s y m b o l s  see  A p p e n d i x  B.  

j " - - "  
rd 

FIGURE 1 

K P  
II  T = - - -  grad T, [2.5] 

T 

and C is the number density of the particles. 
For compressible flow it is more convenient 
to introduce ¢, the particle concentration per 
unit mass of gas, 

¢ = C/p. [2.6] 

With ¢ as the unknown function and in the 
same boundary layer approximation the 
steady state form of [2.4] can be written as 

a¢ a¢ 1~[ o¢o] = -- rkD 
pU-~x + pv Oy r k -~y J 

1 0 
r ~ay (r%pUvy), [2.71 

where UTy is the component of UT normal to 
the surface. The particle diffusivity D is much 
smaller than any of the gas diffusivities such 
as ~,. For example, for particles of diameter 
0.05-1.0 #m, D ranges from 2.4 × 10 -3 to 2.8 
× 10 -5 m2/s  and the Schmidt number Sc 
= v/D ranges from 6 X 103 to 5 × 105. So the 
effect of particle diffusion can be neglected ex- 
cept in the diffusion boundary layer which is 
expected to be very thin even in comparison 
with the boundary layer thickness. As in (1- 
3, 5-7), the particle diffusion term on the 
right-hand side of [2.7 ] is neglected and [2.7 ] 
is reduced to 
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""  Tz + .v a--; 

r k Oy -~- . [2.81 

Accordingly specification of ~boo in the on- 
coming stream is sufficient for the determi- 
nation of ~. To find the rate of deposition at 
the surface it is not necessary to consider con- 
ditions inside the very thin concentration 
boundary layer because the gas velocity is ex- 
tremely low there. The particles that enter this 
boundary layer by thermophoresis deposit 
nearly at the same streamwise position onto 
the wall. 

After the u, T, and 4~ fields are determined 
by solving Eqs. [ 2.2 ], [ 2.3 ], and [ 2.8 ] the local 
deposition rate defined as the local flux of par- 
ticles to the wall due to thermophoresis can 
be found easily, 

K~ { OT~ , 
J = -Cwn.  Urw = pw~w "~w \'@Y )w [2.91 

where ~w is the value of 4~ near the wall de- 
termined from [ 2.8 ] with diffusivity neglected. 

3. SOLUTION FOR THE CONCENTRATION 
AND DEPOSITION RATE IN FLOWS NEAR 

THE STAGNATION POINT AND 
PAST A FLAT PLATE 

In this section we give the solution for the 
particle concentration ¢ and deposition rate 
J in the flow near the stagnation point on a 
cylinder or a sphere obtained by a procedure 
which invokes the Howarth-Dorodnitsyn 
transformation. The stagnation point case is 
investigated separately in this section in order 
to compare the results with those obtained for 
the same flow system but on the assumption 
of incompressibility (7) to show how the ac- 
counting of variable density affects the pre- 
dicted values of particle concentration and 
deposition rate. The governing equations for 
flow past a flat plate have a similar form 
and are discussed here incidentally to show 
the identity of our approach with that of 
Goren (1). 

To give the velocity boundary layer equa- 
tions for the three flow systems a form similar 

to that in the incompressible case we introduce 
the Howarth-Dorodnitsyn variable Y, 

Y = (p/p~)dy,  [3.1] 

and the stream functions 't' and similarity 
variables nl as 

(a) flatplate • = (vu~ox)l/2f(~l), 

1 ( R ~ 1 1 / 2  
Y, 

(b) cylinder xI, = (31v)l/2xf(nO , 

(i'"' 
(c) sphere • = ~lv) x2f(nO,  

~, = (2!---!)'/2Y. [3.2] 

With 
p~ 0~  

U ~ - - ~  , @  

poo 0 ~I' , 
v = p ~ y [3.31 

by using [3.1] and [3.2], Eqs. [2.2] and [2.3] 
can be transformed into 

(a) fiat plate f "  + f f "  = O, f (O) = O, 

f ' ( 0 )  = 0, f" (oo)  = 2, 

f ( o )  = o, f ' ( o )  = o, f " ( o o )  = 1, 

(c) sphere f "  + f f "  + -~ _ f ,2  = 0, 

f(O) = O, f ' (O)  = O, f" (c~)  = 1, [3.4] 

and 

T" + afT'  = 0, T(0) = Tw, T(oo) = T~o, 

[3.5] 

for all three cases. In the derivation of [ 3.4] 
and [3;5] the assumptions ~tp = ~toopo~ and 
M 2 ,~ 1 are made. The former is a well-known 
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simplification and is close to reality for not 
too large variations in temperature. The im- 
plication of the latter is that the speed of the 
oncoming gas is not too large, the range of 
which for the applicability of the procedure is 
further discussed in Section 6. The concentra- 
tion Eq. [2.8] in the transformed coordinate 
system is written as 

] ---T- + f ¢ - K ---f + K~rf --f ¢ = 0 .  

[3.61 

With the boundary condition 

¢(oo) = 4~oo, [3.7] 

the solution of [3.6] can be written as 

[3.8] 

The Eqs. [3.4], [3.5], [3.8] for f ,  T, and ¢ 
have almost the same form as those for f ,  T, 
and C in the case of incompressible fluid (see 
(7)). The only difference is in the momentum 
equations for the cylinder and sphere; instead 
of constant 1 there stands the ratio of tem- 
peratures T / T ~ .  Equations [3.4], [3.51 are 
solved by the Runge-Kutta method and the 
particle concentration ¢ is obtained from [3.8 ] 

by a quadrature of functions f and T. For a 
flat plate our result is identical with that of 
Goren (1) as can be expected and will not be 
given here. The values of ¢w/¢oo at the body 
surface for a cylinder and a sphere are given 
in Table I. One can see from the comparison 
of the data given here with those given in Table 
I of(7)  that even for Tw/Too much less than 
1 the values of ¢w/¢ ~ are approximately the 
same as those of Cw/Coo obtained in the as- 
sumption of incompressible fluid, But the re- 
lationship between ¢ and C, i.e., Eq. [2.6], 
shows 

¢___~ = Cw Tw 
[3.9] 

¢o~ CooTs" 

So the assumption of constant density would 
result in an incorrect reduction of the value 
of concentration by a factor of Tw/T®. 

As for the local deposition rate, in the as- 
sumption of incompressibility one would have 

C~ Kv aT 

For compressible fluid one has 

c. poo Tw c .  y=0" 

[3.10] 

[3.11] 

TABLE I 

Values of the Particle Concentration Ratio ¢w/¢~ at the Body Surface 

TWIT® 

H 0.2 0.333 0.5 0.667 0.8 0,9 

0.8 (b) 0.2198 0.3618 0.5336 0.6984 0.8247 0.9147 
(c) 0.2195 0.3614 0.5332 0.6980 0,8241 0.9146 

0.7 (b) 0.2320 0.3790 0.5534 0.7164 0.8377 0.9225 
(c) 0.2316 0.3784 0.5526 0.7157 0.8372 0.9223 

0.5 (b) 0.2640 0.4227 0.6015 0.7583 0.8675 0.9393 
(e) 0.2631 0.4214 0.6000 0.7571 0.8667 0.9389 

0.3 (b) 0.3152 0.4887 0.6688 0.8124 0.9034 0.9582 
(c) 0.3136 0.4865 0.6665 0.8106 0.9023 0.9578 

0.15 (b) 0.3881 0.5747 0.7474 0.8688 0.9375 0.9749 
(c) 0.3854 0.5712 0.7442 0.8667 0.9363 0.9744 

0.1 (b) 0.4317 0.6217 0.7861 0.8941 0.9516 0.9813 
(c) 0.4284 0.6178 0.7827 0.8919 0.9504 0.9809 

Note. Lines (b) refer to the flow near the stagnation point on a cylinder, and (c) to that on a sphere. 

Journal of Colloid and Interface Science, Vol. 127, No. 1, January 1989 



108 C. SHEN 

From [ 3.10 ] and [ 3.11 ] one concludes that 

J nc = = (rW?:c,  [312] 
• \ # w /  \ T ~ ]  " 

because 

and 

ow(0 ) I 
c. y=0 Pm inc. y=0" 

The latter relationship can be obtained from 
the similarity of  the governing equations and 
boundary conditions for both flow systems and 
the Howarth-Dorodnitsyn transformation. So 
the assumption of constant density would re- 
duce incorrectly the result for the local de- 
position rate by a factor of (o~/Ow) z or 
(T~/T~) 2. 

In this section the significance of the density 
variation effect in the cases of  flow past a flat 
plate and near the stagnation point of  a cyl- 
inder and a sphere was shown. But it is to be 
emphasized that the quantitative measure of  
this effect in each case must be analyzed con- 
cretely. 

4. METHOD OF SOLUTION IN 
THE GENERAL CASE 

To solve the boundary layer Eqs. [2.2], 
[2.3 ], [2.8] in the general case the Mangler- 
Lew-Lees  transformation (see (9-11)) ,  

d(  = O,~ue( v/ a)2k dx ,  [4.1] 

d~ = [Oue/ (201/2](r /a)kdy ,  [4.2] 

is introduced, where a is the characteristic 
length of the body. W i t h f '  ~ u/u~,  g =-- 1/Ie, 
and w ---- 4~/q~ as unknown functions these 
equations can be written in the form 

( b f " ) '  + f f "  + ~(c - ( f , )2 )  

= 2 ( ( f ' O f ' / O (  - f " O f ] O 0 ,  [4.3] 

(alg'  + a z f ' f " ) '  + fg '  

= 2~(f'Og/O~ - g'Of/O~), [4.4] 

aK(al (g ' /g )  w)'  + f w '  

= 2~(f'Ow/O~ - w'Of]O0, [4.51 

where 

b = (1 + t)2kOU/OeUe, 
13 = ( 21i/ uO( d u d  dli), 

c = Pe/P, 
al = (1 + t)2kmz/(au~pO, 

a2 = (1 + t)zk(1 - (1/cr))OUu~/(I~o~e), 

[4.6] 

and '  denotes the derivative with respect to n, 
and t is the transverse curvature parameter, 
representing the deviation of  r from ro (see 
Fig. 1), 

r y cos c~ 
- - =  1 + ~ =  l + t .  [4.7] 
ro  ro  

The boundary conditions for [4.3 ] - [4 .5  ] 
are 

f ' ( ( ,  0) = O, lim f ' (~ ,  n) = 1, [4.8] 

g(~, 0) = 0, lim g(~, n) = 1, [4.9] 

lim w ( ( , n ) =  1. [4.10] 

The momentum and energy Eqs. [4.3], 
[4.4] are the usual laminar boundary layer 
equations and are solved in the present paper 
by the Keller's box method as described in 
Cebeci and Smith (11). The algorithm will not 
be repeated here except that a few corrected 
formulae needed are indicated in Appen- 
dix A. 

As for the particle concentration equation, 
we note that it is an equation of first order and 
its difference equation can be written as 

~K[(aT(Gn/gn)) jw7 - (aT(Gn/gn)) j_ 1 wj~-l ] 

hj 

[(1 + an ) f "  - .-1 ~ . a n f  ] j -1 /2 (Wj  -- W j - l )  + 
hj 

:'1 n 
_ 2(O~nun_l/2)j_l /2 Wj +2 wj-I = S j _ l / 2  

[4.111 
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where G --- g', and hj is the net spacing in the 
direction, j = 1, 2 . . . . .  J ,  ~j = ~oo. 
n--I - -  S j-l~2 

-- { crK[ ( a~-l ( Gn-1/ gn-1) 

(a,]]l ( G . - 1 / g . - i  ))j--I Wj ~'~1 ] 
hj J 

n-I n-1 
n-I Wj -- W j -  1 

+ f j - l /2  h j  

n-I n-1 
n-l/2 Wj + Wj-[ 

-b 2an Uj'-I/2 2 

+ (fn __ fn -1 ) j_ l / 2  Wj -- Wj-  1 
hj 

[4.12] 

with a ,  = 2~,-1/2/kn, kn being the net spacing 
in the ~ direction, n = 1, 2 . . . . .  N. Equation 
[4.12 ] can be solved by the recurrence formula 

n - l  n 
S j - I / 2  A j w j  [4.13] n 

w j-1 = B j  B j  ' 

where 

GrK [ , G") 
= + C j - D j ,  A j --~j l a , -~-# 

aK  a'~ . - C j -  Dj ,  
B j  = hj j- t 

Cj = [(1 + a . ) f "  - a . f ' - l ] j - l / 2  
hj 

Dj  = (a ,u ' - l / 2 ) j - l / 2 .  

The coefficients of Eq. [4.13] are all known 
functions after the convergent solutions of the 
difference equations of [4.3], [4.4] are ob- 
tained. With the same accuracy the functions 
w j-1 . . . . .  wl can be found from [4.13] suc- 
cessively with the boundary condition wj = 1. 
Then the formula [2.9] is used to calculate 
the deposition rate. 

The system of [4.1]-[4.13]  with [2.9] can 
be used to solve any external flow problem of  
thermophoretic deposition provided the body 

form and the outer flow parameters are given. 
We illustrate the numerical procedure on ex- 
amples of thermophoretic deposition of par- 
ticles in flow around a cylinder and sphere. 

5. E X A M P L E S  O F  C A L C U L A T I O N S  O F  

T H E R M O P H O R E T I C  D E P O S I T I O N  O F  

P A R T I C L E S  O N  A C Y L I N D E R  A N D  A S P H E R E  

As examples of application of the method 
of the previous section we consider the flows 
of  gas containing suspended particles around 
a cold cylinder and sphere. For the range of  
velocities usually encountered in thermo- 
phoretic problems the Mach number of  the 
outer flow is very small: Me 2 ~ 1. In that case 

1 c p T +  ( 1 /2 )u  e T 
g - I~ cpT~ + (1/2)Ue 2 ~ ~ '  [5.11 

so that in Eq. [4.3] 

Pe T 
c . . . .  ~ g. [5.2] 

p Te 

Equations [ 4.3 ], [ 4.4 ] can be further simpli- 
fied when the well-known assumption 

p #  = p e ~  [ 5 . 3 ]  

is made as was already done in Section 3. Fi- 
nally, we neglect the transverse curvature effect 
in the flow past a sphere; that is, we make the 
assumption t ~ 0, which is valid approxi- 
mately when Re~ is of the order 10 4 or larger. 
Of course, the transverse curvature effect could 
be taken into account without any principal 
difficulty in which case the calculation would 
have to be made for each value of  Re~ and 
the parameter Reo~ would appear in the pre- 
sentation of the results for a sphere. 

For the flow past a circular cylinder we have 
the velocity of  the inviscid, incompressible 
flow outside the boundary layer 

ue = 2u~osin 0, [5.4] 

where 0 = x / a ,  a being the radius of  the cyl- 
inder. From [4.1] and [4.6] we see 

= -20#uo~a(cos 0 - 1), [5.5] 
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cos 0 2 cos 0(1 - cos O) 
p/~uooa sin20 sin20 

= I, at the stagnation point. [5.6] 

For the flow past a sphere 

3 
ue = ~ uoosin 0, [5.7] 

= ~ p#uooa cos30 - cos 0 + , [5.81 

4 ~ cos 0 

3 O#uooa sin40 

32_)cos0 
= 2 cos30 - cos 0 + sin40, 

1 

2 '  
at the stagnation point. [5.9] 

With [ 5.2 ] - [  5.9 ] substituted into Eqs. [4.3 ] 
and [4.4], they are solved by Keller's box 
method and then the concentration is obtained 
from [4.13 ] for a variety of  parameters of  T~/ 
T~ and aK. 

In the calculations, equal net spacing h 
= 0.1 in the normal direction was used. Along 
the tangential direction of  the surface the di- 
mensionless coordinate ~ = Up/~u~a was in- 
troduced. The spacing of~ was determined by 
uniform division of 0 into equal intervals of  
7r/20 through formulae [5.5] and [5.8]. 

To test the accuracy of the method the so- 
lution at the stagnation point has been com- 
pared with the results obtained in Section 3. 
The solutions by the present method have been 
found to be very close to those of  Section 3 as 
can be seen from the comparison of Table I 

with Table II where the data obtained by the 
present method are given. To economize 
space, only data for aK = 0.5 are presented. 
One can conclude that the algorithm in this 
section has the same accuracy as the Runge-  
Kutta method applied to the transformed 
equations according to Howarth and Dorod- 
nitsyn. 

In Fig. 2 the wall values ~bw/~b~ of  concen- 
tration at the stagnation point of  a cylinder 
for various Tw/Too are shown as functions of  
aK. The values for a sphere differ very little 
from those for a cylinder as is evident from 
Tables I and II. 

The variation of the concentration along the 
surface can be calculated for each set of pa- 
rameters of aK and Tw/T~. In Fig. 3 the dis- 
tributions of  q~w/Cboo as functions of 0 for aK 
-- 0.576 wit Tw/Too = 0.1 and 0.5 are shown 
for a cylinder. It is noted that ~w/~# oo remains 
almost constant along the surface and this is 
true for other values of  aK and Tw/Too and 
for a sphere. 

The local deposition rate can be expressed 
a s  

J= pwOWVSw 

pw Ue fr  f_L_l 
= Kv-2(Reoo)l/2(~)l/2 ~a] ~gl-~ w' 

where co is the power index in the viscosity 
law: ~ /uoo  = ( Twl T~)~ =g~. It is convenient 
to introduce the dimensionless deposition rate 

j__  R'(-~-~ J [5.10] 
C~uoo 

TABLE II 

Values of ~w/~ at the Stagnation Point of a Cylinder and a Sphere Calculated by the Method Used in This Section 

T, IT® 

H 0.2 0.333 0.5 0.667 0.8 0.9 

0.5 (b) 0.2640 0.4227 0.6014 0.7582 0.8674 0,9392 
(C) 0.2632 0.4214 0.6000 0.7570 0.8667 0.9389 
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For a cylinder we have 

J c = 2 K ~ b W  sin0 ( 1  Og) [5.11] 
c~o~ Vl ~ ~osO g~w-~ff~ w 

and at the stagnation point 

Analogously for a sphere we have 

3 ~bw sin2/~ 

Js = ~ K ~b ~ Vcos 30 - 3 cos 8 + 2 

[ l Og~, 
× \g-~-~/w [5.13] 

8 

-o- 

1.0 

. 8  

- Tw/Too=.5 

Tw/Too=.l 

I I I I I I I I 

0 20 40 60 80 100 

O,DEGREES 

FIG. 3. Cw/~0~ along the surface of a cylinder for aK 
= 0.576, Tw/To~ = 0.1 and 0.5. 

[5.14] 

The dimensionless deposition rates at the 
stagnation point for a cylinder and a sphere 
for a variety of  parameters of  ~K and Tw/Too 
are calculated according to [ 5.12 ] and [ 5.14 ] 
after the solutions of  [ 4.3 ], [ 4.4 ], [ 4.13 ] had 
been obtained by the procedure described 
above. They are shown in Figs. 4 and 5 as 
functions of  aK with Tw/To~ as a parameter. 
The results can be used for a given set of  pa- 
rameters Co~, uoo, and Re~ to obtain the di- 
mensional deposition rates from [5.10].  

1.0 

. 8  

8 .6 

.4 

0 .4 .6 .8 1.0 

H=o~K 

.333 

_ TwlToo=.l 

I I l I ] I I l I 

.2 

FiG. 2. ~ / ~ o ~  at the stagnation point of a cylinder. 

As for the deposition rate distribution along 
the surface it would seem to be necessary to 
calculate it each time for each set of  parameters 

10 

,05 

,02 

.01 

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1 

H=GK 

FIG. 4. Dimensionless deposition rate at the stagnation 
point of a cylinder. 
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10 

5! 

r ~ T ~  

.2 

.05 

.02 

.01 I l I I l I I l l 

• 1 .2 .3  .4 .5 .6 .7 . 8  .9 1 

H=eK 

FIG. 5. D i m e n s i o n l e s s  depos i t i on  rate at  the  s tagnat ion  

point of a sphere. 

of  trK and Tw/To. As examples, the results 
for aK = 0.576, Tw/To~ = 0.1 and 0.5 for a 
cylinder and a sphere are shown in Figs. 6 and 
7. It can be seen that although the absolute 
values of  deposition rates differ rather greatly 
for Tw/T~ = 0.1 and Tw/T~ = 0.5, the rela- 
tive distributions are almost identical. This 
is caused by the fact that the factor 
((~w/~)(ag/O~)w/g2w -~ in formulae [5.11] 
and [ 5.13 ] remains almost constant when 0 
varies from zero to larger values downstream. 
As an example, the calculated values of  the 
factor K( q~w / ¢ ~ ) (Og/O*/)w / g2w- ~ for K = 0.8, 
Tw/To~ = 0.5 as function of  0 are shown to 
remain constant up to O = 72 ° with an accu- 
racy of 1%. So for practical purposes for a va- 
riety of  parameters of  aK and Tw/To one can 
be sure that the distribution normalized by the 
stagnation point value has the form of  
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sin 0 / 1 / 2 ( 1 -  cos) for a cylinder and of 
~/3 sin20/2(cos3# - 3 cos # + 2)1/2 for a sphere. 

It is convenient to define the total dimen- 
sionless deposition rate as 

J.o . = J a s  , [5.15] 

where S is part of  the body surface wetted by 
the oncoming flow. For a cylinder and a sphere 
it is well known that the real external flow field 
differs from the potential flow pattern given 
by [5.4] and [5.8] rather significantly owing 
to the separation of flow. The results presented 
are valid approximately up to O = 600-70 °. I f  
we suppose that formulae [ 5.11 ] -  [ 5.13 ] are 
valid approximately for the front part of  the 
surface and that the deposition at the rear part  
is zero, the total deposition rates for a cylinder 
and a sphere can be written approximately as 

• Ic .o t .=)  ~ __2 f~r/2 JcadO 
7ra ,so 

2Jc(st.p.) ~,~/2 sin #dO 

a" =o0 V2(1 - cos 0) 

0.9drC(st.p.), [5.16] 

1.0 

.8 

SPHERE 
.2 

0 ] I I [ I I I I I 
- 1 0 1 ) - 8 0 - 6 0 - 4 0 - 2 0  0 20 40 60 80 100 

O,DEGREES 

FIG. 6. D imens ion l e s s  depos i t i on  ra te  a l o n g  the  sur face  

of a cylinder and a sphere. Tw/T~o = 0.1, K = 0.8, and 
= 0.72. 
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FIG. 7. Dimensionless  deposition rate along the surface 
of a cylinder and a sphere. Tw/T~ = 0.5, K = 0.8, and 
= 0.72. 

1 
p 17r/2 Js27ra2sin OdO • TS(total) ~ ~ dO 

f~/2 ( f 3 / 2 )  sin3OdO 
Js(st.p.> oo 1/cos30 - 3 cos 0 + 2 

0.817JStst.p0. [5.17] 

So one can turn to Figs. 4 and 5 for the 
dependence of JC(total) and .IS(total) on param- 
eters aK and Tw/To~. 

It is interesting to compare the results of  the 
present approach with those obtained from 
const, density considerations. We note first 
that the dimensionless local deposition flux 
used in (5) (designated further in this paper 
as av(5)) was defined there implicitly as (in no- 
tation of  (5))  

J(s> = C ~ u l g "  [5.18] 

For a cylinder from (5) we have uiR  = Uo~, 
Re = 2uo~a/v, but it was not specified under 
what temperature v ought to be measured. If 
we suppose v is determined at the bottom of  
the boundary layer one has the relationship 
between ](5) and our ] c  

2~-eewJ 1 / 1 \0+~)/2 
]~S,=C.2u-- - - - - - - -=-~w)  J c - [ 5 . 1 9 ]  

From Table I and Fig. 2 of  (5) one has the 
local particle flux at the stagnation point in 
the incompressible assumption for gw = 0.5 
and K = 0.8, ~ = 0.71 

J(5) = 0.233, 

or in our notation (gw = 0.5, co = 0.77 is sup- 
posed) 

Jc(st.p.)inc. = 0.178, [5.20] 

while from our calculation for the same set of  
parameters (except for a small difference in a, 
a = 0.72 in our case) one has (see Figs. 4 and 
6) 

Jc(st.p.>c. = 0.732. [5.21 ] 

By comparing [5.20] and [5.21] we see that 
the relationship [3.12] between Jinc. and Jc. 
holds within the accuracy of  calculation. As 
for the distribution of the deposition rate we 
note that the distribution form of  ] c  is quite 
different from that obtained in the incom- 
pressible assumption (cf. (5, Fig. 2)). As there 
is no similarity transformation from com- 
pressible into incompressible flow fields in the 
whole region of the flow, the explicit relation- 
ship between av~. and avi,~, like that of  the form 
[ 3.12 ] is not expected to exist in the general 
case. 

6. DISCUSSION 

In this paper our attention is focused on 
providing a general method of calculation of  
the thermophoretic deposition in external flow 
past bodies and on elucidating the significant 
density variation effect in thermophoretic 
problems of  external flow. The predicted val- 
ues of the wall concentration and deposition 
rate by the const, density assumption are 
shown to differ from the correct values by fac- 
tors of Tw/To~ and (Tw/To~) 2, respectively, for 
flows near the stagnation point of  a cylinder 
and a sphere and a past fiat plate. But it is 
emphasized that this is not a universal con- 
clusion. Numerical examples are given for 
flows around a cylinder and a sphere, the pro- 
cedure being quite common in solving prob- 
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lems of flows past bodies of arbitrary shape. It 
has been mentioned that the potential flow 
patterns given by [5.4] and [5.8] differ from 
the real flow outside the boundary layer be- 
cause of flow separation. When the external 
flow field U(x) is known either from theoret- 
ical consideration or from experimental in- 
vestigations the numerical algorithm can be 
carded out in the same way to get more re- 
alistic results. 

The method used in this paper has direct 
applications in problems like the staining of 
the surface of heat exchangers and the erosion 
of turbine blades by small particles sedimented 
on them. The analysis shows that these prob- 
lems are more serious than they would seem 
to be from the constant density analysis. 

For the validity of the boundary layer ap- 
proximation the oncoming Reoo must be 
greater than 103. For a characteristic length a 

0.1 m, this implies that u~ must be greater 
than 0.1 m/s. Greater Reoo is required to verify 
the neglect the transverse curvature effect in 
the axisymmetric flow case. This implies u~ 
> 1 m/s  (for a = 0.1 m). Furthermore, in the 
previous formulation it has been assumed that 
the particles follow the gas motion closely 
when thermophoresis is absent. This can 
be verified when the Stokes number St 
= (2/9)(ap/a)2(pp/poo)Re~, i.e., the ratio of 
the relaxation time of the particle due to vis- 
cosity to the gas flow characteristic time, is 
sufficiently small. For a -~ 0.1 m and aw "~ 1 
urn, Re~ < 107 is implied. For smaller bodies 
smaller Re~ is required. 

APPENDIX A 

In the formula [7.9.1 lb] of(11) the correct 
expression for matrix A forj  = J should have 
the special form (the notation of(11) is used) 

. r-h.,r  -h..,12] 
As [ ~j " - O J  J 

[A.I] 

instead of the general form indicated in (11). Sc 
Analogously the aj matrix in [7.9.17] f o r j  St 
= J also should have the special form 

[-hs/2 + ej-i  -hj/2] [A.2] 
Otj = L - ~ J  + Ojej-I dpj J" 

As a consequence, the following expressions 
for x j, yy, 

mf - h j / 2  / (oq,)j - h j / 2  [A .3 ]  xj= ~j / (a2~)j ~j ' 

yj = (2/hj)[(Otll)jX J -- m j ] ,  [A.41 

should replace the general formulae given in 
[7.9.23] of(11). 

APPENDIX B: NOMENCLATURE 

Symbols 

a radius 
am cf. [4.6] 
a2 cf. [4.6] 
b cf. [4.6] 
C Pe/P 
C ~bp, number density of particles 
Cp specific heat 
D Brownian diffusivity of particles 
f '  U/Ue 
g 1]Ie 
G g' 
H aK, thermophoretic coefficient 
hj net spacing in n direction 
I cpT + u2/2, total enthalpy 
J local deposition rate, [ 2.9 ] 
J ~ J/(Coo u~o), dimensionless de- 

position rate 
k 1, for axisymmetric flow 
k 0, for two-dimensional flow 
K thermophoretic coefficient 
kg thermal conductivity of gas 
kn net spacing in ~ direction 
p pressure 
r radial distance 
ro radial distance from the body 
Re~ u~a/v~, Reynolds number 
Rew uooa/Vw, Reynolds number 
S part of surface wetted by the oncoming 

flow 
v/D, Schmidt number 
( 2 /9 )( ap/ a)2(pp/ poo )Re~, Stokes 

number 
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t 
T 
b/,l) 

l iT  

W 

X, y 

Y 
OL 

0 
# 
/1 

p 

O" 

O9 

y COS o ~ / r o  

temperature 
x ,  y componen t s  o f  the gas velocity 
thermophore t ic  velocity, [ 2.5 ] 

~/~o 
coordinates along and normal  to the 

surface 
Howar th -D orodn i t syn  variable, [ 3:1 ] 
angle between the tangent  and axis o f  

the body  
2 ~ ( d u e / d O / u ~ ,  [4.6] 
outer  edge speed parameter,  [3.2] 
t ransformed y coordinate,  [ 4.2 ] 
similarity coordinate for stagnational 

case, [ 3.2 ] 
x / a  
viscosity o f  the gas 
# /p ,  kinematic  viscosity 
density 
t ransformed x coordinate,  [4.2] 
U ( p ~ U ~ u o o a ) ,  [4.1] 
ucp/k~ 
C / p ,  particle concentra t ion per unit  

mass o f  gas 
stream funct ion 
power index o f  the viscosity law 

l n d i c e s  

c. compressible, variable density 
C cylinder 
e at the edge o f  boundary  layer 
g gas property 
inc. incompressible, const, density 

j value at the j t h  node point  in ~ direc- 
t ion 

n value at the n th  node point  in ~ direc- 
t ion 

p particle property 
S sphere 
st.p. stagnation point  value 
w wall value 

free stream value 

ACKNOWLEDGMENTS 

The author expresses his thanks to the National Natural 
Science Foundation of China for supporting this work. He 
also expresses his gratefulness to Professor G. K. Batchelor 
for his care and cardinal suggestions during this work. 

REFERENCES 

1. Goren, S. L., J. ColloidlnterfaceSci. 61, 77 (1977). 
2. Walker, K. L., Homsy, G. M., and Geyling, F. T., J. 

Colloid Interface Sei. 69, 138 (1979). 
3. Walker, K. L., Geyling, F. T., and Nagel, S. R., J. 

Amer. Ceram. Soc. 63, 552 (1980). 
4. Talbot, L., Cheng, R. K., Schefer, R. W., and Willis, 

D. R., J. Fluid Meeh. 101, 737 (1980). 
5. Homsy, G. M., Geyling, H. T., and Walker, K. L., J. 

Colloid Interface Sci. 83, 495 (1981). 
6. Weinberg, M. C., J. Amer. Ceram. Soc. 65, 81 (1982). 
7. Batchelor, G. K., and Shen, C., J. Colloid Interface 

Sci. 107, 21 (1985). 
8. Abbott, J. S., paper presented at SIAM meeting, Bos- 

ton, July 1986. 
9. Probstein, R. F., and Elliott, D., J. Aeronaut. Sci. 23, 

2O8 (1956). 
10. Hayes, W. D., and Probstein, R. F., "Hypersonic Flow 

Theory." Academic Press, New York, 1959. 
11. Cebeci, T., and Smith, A. M. O., "Analysis of Tur- 

bulent Boundary Layers." Academic Press, New 
York, 1974. 

Journal of Colloid and Interface Science, Vot. 127, No. 1, January 1989 


