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ANALYSIS OF FLEXURAL VIBRATION OF VISCOELASTICALLY 
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The simplified governing equations and corresponding boundary conditions of flexural 
vibration of viscoelastically damped unsymmetrical sandwich plates are given. The 
asymptotic solution to the equations is then discussed. If only the first terms of the 
asymptotic solution of all variables are taken as an approximate solution, the result is 
identical with that obtained from the Modal Strain Energy (MSE) Method. As more terms 
of the asymptotic solution are taken, the successive calculations show improved accuracy. 
With the natural frequencies and the modal loss factors of a damped sandwich plate 
known, one can calculate the response of the plate to various loads providing a reliable 
basis for engineering design. 

1. INTRODUCTION 

It is known that structural vibration can be reduced by utilizing layers of viscoelastic 
damping material [l, 21. One effective approach is the constrained layer damping treat- 
ment. A constrained damped plate is generally an unsymmetrical sandwich plate, in which 
a layer of viscoelastic damping material is sandwiched between a primary structural layer 
and a constraining layer. The structural layer and the constraining layer may be made of 
different material. In general they are of unequal thicknesses. Such a sandwich plate will 
provide both strength and rigidity and yet have a low response to vibration over a wide 
frequency range. 

The governing equations of flexural vibration of symmetrical sandwich plates have 
been given in reference [3]. Successively, a set of governing equations for the vibratory 
bending of unsymmetrical sandwich plates was given in references [4,5]. It is a set of 
twelfth-order partial differential equations including bending-extension coupling. Solving 
the equations is difficult. In recently published papers [6-81 the flexural vibrations of 
constrained damped plates with complex shapes and various boundary conditions have 
been computed by finite element methods, the mechanical plate model presented in 
reference [4] having been used. The viscoelastic core was modelled with solid elements 
and the face layers were modelled with plate elements. The number of degrees of freedom 
of all the elements was so large that the work was expensive. In reference [8] it was 
suggested that available design charts be used insofar as possible. However, the number 
of design charts is limited. Because of this, the analysis and design of unsymmetrical 
sandwich plates are restricted. It is the aim of this paper to present a set of simplified 
governing equations for unsymmetrical sandwich plates, not including bending-extension 
coupling, and to discuss its asymptotic solution in terms of real values. 
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2. THE GOVERNING EQUATIONS OF FLEXURAL VIBRATION 

To derive the governing equations of flexural vibration of unsymmetrical sandwich 
plates, the following assumptions are made: (1) the face-layers are elastic and isotropic 
and suffer no transverse shear deformation; (2) the core carries transverse shear, but no 
in-plane stresses; it is linearly viscoelastic and has a complex shear modulus; (3) no slip 
occurs at the interfaces of the core and face-layers; all points on a normal to the plate 
move with the same transverse displacement; (4) though the metallic material of the 
structural layer and the constraining layer may be different, the values of their Poisson 
ratios may be approximately equal; (5) when the sandwich plate is in flexural vibration, 
the in-plane inertia effects of the plate are ignored and only the transverse inertia effects 
are considered. Assumptions (l)-(3) are generally made. Both assumptions (4) and (5) 
are necessary to establish a set of simplified governing equations of unsymmetrical 
sandwich plates not including bending-extension coupling. The influence of the in-plane 
inertia forces upon dynamic characteristics of a plate was discussed in references [4,5,9]. 
In most cases assumption (5) is acceptable. 

The unsymmetrical sandwich plate configuration is shown in Figure 1. The thicknesses 
of the constraining layer (face l), the viscoelastic layer (face 2) and the structural layer 
(face 3) are t, , tz and t3 respectively. The transverse displacement of the plate in flexural 
vibration is W(x, y, t). The in-plane displacements of the points in the middle planes of 
face 1 and face 3 are U, , V, and U3, V, respectively. The in-plane displacements of 
interfaces are Ulz, V,z and U,, , V,, respectively. According to the assumptions, there 
are uniform transverse shear strain components -yXz and r,, in the viscoelastic layer: 

Yx: = 
U,,- US, I aw_ u,- u’t- c aw VI,-- V,*+aW= VI- v3+c aw 

tz dX t2 t* ax ’ 
Ym = 

t2 aY t2 f2 aY . 
(1) 

Here c = t2 + f( t, + t3). The expression for the strain energy of the plate U is 
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Figure 1. The dimensions and the displacements of a damped sandwich plate. 
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(2) 

Here 

E,t, 
~2 = G2f2r 

E3t3 
x=l_vz Y3’l_v2) D, = 

Ed: E3f: 
12(1-v’)’ D3=12(1-v2)’ 

(3) 

where E, and E3 are the elastic moduli of the faces 1 and 3, Y is their common Poisson 
ratio, G2 is the shear modulus of the core 2, which is taken as a real quantity temporarily. 
One can introduce 

UfAY, t)=[l/(Y,+Y3)I[Y,U,(x,Y, t)+Y3U3kY, t)l, 

Vm(X,Y, t) =[ll(rl+Y3)1[Y1V,(X,Y, t)+Y3V3kY, t)l, 

Jlx(x, .Y, t> = (l/c)1 wx, Y, t) - ~3(x, Y, t)l, +Jx, Y, t) = (l/c)[ V,(x, Y, t) - V3(x, Y, 01. 

(4-5) 

Here U,,, and V,,, may be regarded as the weighted mean in-plane displacements of the 
unsymmetrical sandwich plate, I,II~ and $,, are the rotary angles of a line connecting the 
two corresponding points at the middle planes of the faces 1 and 3 after bending. For 
the sake of convenience later, the following dimensionless variables are introduced: 

5=x/a, 77 =y/a, u, = K/a, v, = Vm/a, w= W/a, **=*X9 

*‘9 = *.vcly, 8=Y2(Y*+y3)a2/y,y3t:, Y = Y,Ysc~/(Y, + Y~)(D, + 03). (6) 

Here a is a characteristic dimension of the plate, e.g., the length of an edge of a rectangular 
plate; g and Y are called the “shear parameter” and the “geometric parameter” respec- 
tively. 

The strain energy U can now be rewritten as 

The kinetic energy of the plate T is 

T = $a4 

(7) 

(8) 

where p is the mass per unit area of the plate. 
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According to Hamilton’s principle, one can obtain a set of simplified governing 
equations of motion of unsymmetrical sandwich plates (in dimensionless form): 

L tw 
3 

cc, IcI l=a2461 (l+d a’+, +(1-v) a2+E -- - 
3 59 r) 

86’ 2 aga7j 2 aqi-g *t+$ =O, 
( ) 

L (w $ IcI )=a2&+(l+v) a’+* _--- 4 7 5, ? av2 2 
+(1-v) a’+? ---g +,+g =o, 

agav 2 at2 ( 1 

L,(w,**,*J=v4w-Yg ?+2+vw 
( ) 

4 a% 
+ -= 
(ll:fO,, at2 O* (10) 

Here V2=a2/a[2+a2/an2. Equations (9) and (10) are uncoupled. The homogeneous 
equation (9) constitutes a plane stress problem in elasticity, in which u, and v, are 
unknown functions. The corresponding homegeneous boundary conditions are 

u,=O, or (%+v%) I+?(:+?) mzo, 

v,=O, or Q$(?+%) ,,( z$++0. (11) 

In most cases any in-plane rigid body motions of the plate are suppressed, so one has 

%I = v, =o. (12) 

Therefore, only the set of eighth-order partial differential equations (10) has to be solved. 
When a plate is in simple harmonic vibration, the forms 

~(5, 17, r) = ~(67) eiw’, JIs(5, 17, 1) = (CIr(5, 77) e’“‘, +,(5, 77, t) = 9,(5,7)) elw’, 
(13) 

are introduced. The circular frequency w can be expressed in dimensionless form as 

n = wJpa4/(D1 + D,). (14) 

Equations (13) can now be substituted into equations (10). However, as the plate is 
assumed to vibrate harmonically, the shear modulus G2 of the core has to be changed 
into the complex modulus G2 (1 + i p); here p is the loss factor of the viscoelastic material. 
The inertia term in equations (10) [pa4/(D, + D3)] a2w/at2 = -R2w must also be changed 
correspondingly into --a’(1 +in*)w; here the quantity n* is called the modal loss factor 
of the plate. The physical significance of the complex frequency a’( 1 + in*) has been 
discussed in reference [lo]. The amplitudes ~(6, n), I+$(& n) and 9, (5, 7) are all complex 
quantities. They must satisfy the following equations: 

(15) 

a2e6 (i+~> a2$ (i-~)aQ~ __+_~+- 
at 2 a&a17 2 

T-g(l+iP) $<+$ =O, 
( 1 

a’J_‘: I (l+d a2d+ +(1-d a’@, -- --- 
a7)- 2 a(av 2 at2 g(l+$) 

( ) 
i,+g =O, 

V4w- Yg(l+ip) 
( 

$+%+V’w 
> 

-0’(l+i n*)w=O. 
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In the particular case of a symmetrical sandwich plate equations (15) are identical with 
equations (5-7) of reference [3]. Typical homogeneous boundary conditions of unsym- 
metrical sandwich plates are as follows: (1) simply supported edges (I), 

a~~/a5(I2+vm2)+arl,/arl(m2+~vl2)+(1-v)(a~~/aO+a~,/ag)~m=o, 

IL, = 0, w = 0, a’w/an’+ (v/p.~)aw/an =o; (16) 

(2) simply supported edges (II), 

a~,/~~(~~+vm’)+a~,/a~(m2+v~2)+(1-v)(a~,/ar]+a~,/a~>~m=o, 

-(a~~/~~-a*,/a~)lm+~(i)*t/a~+a*9/i)~)(IZ-mZ)=0, 

w = 0, a2w/dn’+( v/p,)aw/an = 0; 

(3) clamped edges, 

IL” =O, IL, = 0, w = 0, awlan = 0; 

(4) free edges, 

ai+bk/af(12+ um2)+a+,/a~(m2+ d’)+(l- v)(a+bJa~+a+,/a5)InT =O, 

-(a~~/ag-a~,/arl)~m+~(a~~/a77+a~,/ag)(~’-m2) =O. 

(17) 

(18) 

-:(V’w)-(1-v): i g 
1 ( )I +Yg(l+ip) [( "") ( a,) ]=o, &+;if I+ t&+6 m 

$+v($+=)=o; (19) 

(5) at a corner, 

a aw 5, -0 
w =o, or 

[ c?nrls ( )ll = 0. 
s,+o 

(20) 

Here I= cos (n, 5) and m = cos (n, 77) are the direction cosines of the normal n drawn 
outwards on the boundary of the plate, where n (and s) are dimensionless. The ps is the 
local radius of curvature of the periphery. Thus to investigate flexural vibration of a 
viscoelastically damped unsymmetrical sandwich plate, one must first solve equations 
(15) for a given set of boundary conditions to find the natural frequencies R, the modal 
loss factors n*, and the corresponding complex modes w, & and I&. 

3. THE ASYMPTOTIC SOLUTION OF THE GOVERNING EQUATIONS 

Solving equations (15) is difficult. The exact solution can be obtained only in some 
particular cases. To obtain an approximate and practical solution and to avoid calculation 
with complex values, an asymptotic solution with p = i/k? as a complex parameter can be 
introduced. The same procedure has been used in reference [ll] to find the loss factors 
of a sandwich cantilever. One first expands the solution in power series: 

(21) 
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Substituting equations (21) into equations (15) gives the successive equations that the 
asymptotic solution must satisfy: 

(23) 

(24) 

LT(w31$&3, hf3) = yg 
wt2 
-+ 

a4 2 -L++v2w2 +n~(q~w2+q~Wo)+n:(q~wo+w,), ait a7 ) . . . (25) 

Here Lf, Li and LT are linear partial differential operators defined in equations (22). 
Substituting equations (21) into the boundary conditions (16)-(20), one finds that, except 
for the third of equations (19) for free edges which must be expanded in power series of 
II, the expressions for all other types of boundary conditions which the successive terms 
Wi, $ei* Il,i ti=O, 192~*-.) must satisfy are the same in form as before. Therefore, from 
equations (22) and the boundary conditions with respect to wo, tieo, JIso one can solve 
first a real eigenvalue problem and obtain all the eigenvalues 0; and corresponding 
modes wo, I&~ and tiVo. The modes can be normalized as follows. 

If all the boundary conditions of the plate are homogeneous, one can prove that 
orthogonality exists between two complex modes. This means that if there are two different 
complex eigenvalues 0:(1 +inT) and #,(I +inT,) and their corresponding complex 
modes W, &r, $J,,~ and wlI, &II, IL+I, then 

II 
wIwrr dS dq = 0. (26) 

Equation (26) is analogous to the orthogonality condition in the case of sandwich beams 
which was given in reference [12]. Therefore, the normalization of the complex modes 
can be stated as 

w’d[dr/=l. (27) 
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Substituting the first of equations (21) into equation (27), one can obtain 

IJ 
w;d[dT=l, 

IS 
2w,w, d[ dv = 0, (28329) 

I1 
(2w,w,+ w:, d[ d7 = 0, 

il 
(2w,w,+2w,w,)d&dn=O,..., (30,31) 

successively. In accordance with equation (28) one can normalize the real mode w(,, erO 
and I/J,“. From equations (22), 

H 
[ YJ/& ( wo, Jlgo, &J + W,oJ2ho, tigo, B,o) - woLT(wo, $go, 9,o)l d5 dr, =O. 

(32) 

Through integrations by parts and other calculations one obtains 

(33) 

The sum of the first two integrals in equation (33) is proportional to the strain energy in 
the faces 1 and 3 due to the normalized real mode wo, $go and (LVo, while the third integral 
is proportional to the strain energy in the core. Both proportionality coefficients are 
2/(D, + Q). This is obvious from comparison of equations (33) and (7). 

Next one can solve equations (23). First the value of 7: must be determined. By using 
a similar procedure as before, when equation (32) was obtained, one gets a relation from 
equation (23): 

(34) 

From equation (34) one obtains 

(35) 

77: is evidently a fraction of elastic strain energy attributable to the viscoelastic core when 
the damped plate deforms in the mode wo, I,&, and I&~. Up to now all the first terms of 
each expression in equations (21) have been obtained. If less accuracy is acceptable, the 
approximate solution can be expressed as 

w(5917) = wo(S, rl), $g(5, rl) = &0(5, n), A?(59 71) = &70(5,77), 
L?? = n;, 71* = 77TP. (36) 

In references [7] and [8] the Modal Strain Energy (MSE) Method is suggested for analysis 
of viscoelastically damped structures. For viscoelastically damped sandwich plates, adopt- 
ing the simplified scheme of this paper, one obtains equations (33), (35) and (36), which 
are the same as the results obtained by means of MSE. Therefore, MSE can be considered 
to be the first-order approximation of the asymptotic solution presented in this paper. 
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To improve accuracy, one must calculate successive terms of the asymptotic solution. 
Having determined the value of VT, one can obtain the unique solution for w, , I)*, and 
II, 71 of all modes in accordance with equations (23) and corresponding boundary condi- 
tions. The general solution for w,, I/I(, and I/J~, may be written in the following form: 

Here wry +cls and (clVlls are a set of particular solutions, where C, is an undetermined 
constant. The value of C, can be given by means of the normalization condition, equation 
(29). Then the expressions for w,, I+!J~, and $,,, can be determined completely. 

Thereafter one solves equation (24). Through calculations similar to those previously, 
the expression for 0: is first obtained. 

Using the normalization condition (30), one can obtain the unique solution for w2, Gcz 
and (LV2 in accordance with equations (24) and corresponding boundary conditions. 

Before solving equations (25) one determines the value of 7:; 

d= -7: : w,w&dv+$ 
0 > 

Then, using equation (31), one can also obtain the unique solution for w3, I,& and ++. 
If the calculation is not to be continued, one is left with the expressions for the asymptotic 
solution given explicitly in equations (21), without the residual terms indicated by (a . 3) 
on their right sides. The last of equations (21) may be rewritten as 

77* = 77TPlLl +be?T)P’l, (40) 

By calculating in accordance with equation (40), one can often obtain better results. 

4. AN EXAMPLE 

Consider a rectangular viscoelastically damped sandwich plate with simple support (I) 
along all edges. Its length and width are a and b respectively. Define 0 = b/a. Introduce 
a dimensionless co-ordinate system 05~ and let the edges of the plate to be 5 = 0, 1 and 
n = 0, 8. One can obtain the asymptotic solution for the natural frequencies, modes and 
modal loss factors of this plate as follows: 

~~=a:q(l+--=). 2 wo( 5, 7) = me sin prr& sin y, 

&0(5, 17 I= - fi:p% 
o,,+g) 

cos pm$ sin y, 

(L,o(& 77) = - @$qng 
%J+g) 

sin prrt cos 7; (41) 
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Figure 2. Ratio of the asymptotic solutions of natural frequencies to the exact ones us. the variable g/a,,. 
- - -, n;/n2; - . -, (n;-p2n:)/n2. I, Y =3.5; II, Y = 10 (p = 1.0). 

here aPq = p2~2 + q2n2/ t12, and p and q are positive integers; 

71T=ab4Ygl[(a,B+g)Z+ Yg(a,,+g)l, %(5,17) =o. 

&*(& 77) = 2png2apq 
Je(apq+d3 

cos p1~6 sin qrv/ 0, 

2qrg2ap, 
(1v2(5v ?I) = h/7( apq + g)3 

sin p?r& cos 7; 

d= al+ mzlbpq+g)z+ Ygbpq+g)], w3(5, 71) =o, 

Jls3(,e, 7)) = - 2pTg3apq 
m(u,q+g)4 

COs pn.$ sin 7, 

2mT’~ q 
&3(&v) = - 8JBcap, Jg14 sin p?rt cos 7, . . . . 

(42) 

(43) 

(4) 

As this problem is simple, the exact solution of it can be obtained directly from equations 
(15) 

12*=a;q 1+ 
1 

Ygbpq+g(l+P2)1 
1 

2 . WV 
b,,+d2+g2P2 ’ 

W(& r))=~sinp7r~sm~, 

2Pwdl +$I 
+.A5, rl)= -Je~ap,+g~l+ip~3 cospvfsiny, 

h(‘5 a)= - 
WA1 +iP) . WV 

8J8[ap, + g( 1 + i/3)] ‘ln pTr ‘OS 8’ 

77*=%qwlr(~pq+g)2+ Yg(cy,+g)+(l+ Y)g2/32]. (45) 
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Figure 3. Ratio of T* to p US. the variable g/n,,. p = 1.0. - - -, VT; - -, vT/[l +(vT/qT)P’]. 1, Y = 3.5; 
II, Y = 10. 

To examine the accuracy of the asymptotic solution obtained, numerical calculation 
was done for two plates, both with p = 1.0, but with Y = 3.5 or 10 respectively. In Figure 
2 the curves representing the variation of L?$L?’ and (L$-/3’0:)/f12 with the variable 

g/ %r are given; here L?* is the exact solution as shown in equations (45). Obviously the 
values fl~-p”@ approximate to the exact values 0’ better than the values L!;, which 
are equivalent to the result obtained by the MSE Method. Figure 3 shows 7*/p as a 
function of the variable g/a,,, where the values of T* are calculated according to VT/~, 
or equation (40). The latter in this example is just the exact expression of n* as shown 
in the last of equations (45). Figure 2 and Figure 3 are applicable to all modes of simply 
supported rectangular plates with various values of 6. 

5. CONCLUSIONS 

In this paper a set of simplified governing equations and corresponding boundary 
conditions of viscoelastically damped unsymmetrical sandwich plates in llexural vibration 
are given. To avoid calculation with complex values, an asymptotic solution of the 
simplified governing equations has been introduced, with the loss factor of the viscoelastic 
material of the core used as a parameter. In simpler cases the asymptotic solution in 
analytical form can be obtained. In other cases one can use approximate methods to 
obtain numerical solutions. If in the asymptotic solution only the first terms of all quantities 
are adopted, then the result is identical in principle with that as given in accordance with 
the Modal Strain Energy (MSE) Method. However, when the value of the loss factor p 
of the viscoelastic material is larger, then the errors in the values of the natural frequencies 
and modal loss factors are somewhat appreciable in a certain range of the value of g. By 
taking more terms of the asymptotic solution, with successive calculations, accuracy can 
be improved. With the character of the free flexural vibrations of a viscoelastically damped 
sandwich plate thus established, one can further analyze the response of the plate to 
various types of dynamic loads to provide a reliable basis for design. 
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